JPH05133849A - Time series correcting method of analysis value - Google Patents

Time series correcting method of analysis value

Info

Publication number
JPH05133849A
JPH05133849A JP29914091A JP29914091A JPH05133849A JP H05133849 A JPH05133849 A JP H05133849A JP 29914091 A JP29914091 A JP 29914091A JP 29914091 A JP29914091 A JP 29914091A JP H05133849 A JPH05133849 A JP H05133849A
Authority
JP
Japan
Prior art keywords
analysis
value
standard
lot
time series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29914091A
Other languages
Japanese (ja)
Inventor
Kazusane Mizukami
和実 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29914091A priority Critical patent/JPH05133849A/en
Publication of JPH05133849A publication Critical patent/JPH05133849A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To ensure the analytical accuracy of a continuous analysis by correcting the time series drift of the analysis value of a component based on a specific expression with taking note of the fact that the standard values of standard samples interposed in the regular interval are known. CONSTITUTION:A high (low) concentration standard sample is denoted by H(L), and the known concentration thereof is YH0 (YL0). A unit of lots as a subject of the time series correction includes from a pair of analyzing values (YH1, YL1) of the initial standard sample to a pair of analyzing values (YH2, YL2) of a next standard sample, with the analyzing values of unknown samples halfway between the initial and the next samples. The time series correction is repeated for every unit of lots, so that the analyzing values of all the samples are corrected based on the expression. In the expression, (a) and (b) are an inclination and an intercept when the standard value Y and the analyzing value Y' of the standard sample of the initial lot are represented by a linear expression Y=aY'+b; (c) and (d) are an inclination and an intercept when the standard value Y and the analyzing value Y' of the standard sample in the final lot are represented by a linear expression Y=cY'+d; N is the whole number of measuring times of the lot; and (n) is the measuring order in the lot.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、成分分析における分析
値時系列補正方法に関するもので、成分分析を行う装置
に発生する時系列的なドリフトを補正することにより分
析精度の向上と連続分析数の拡大による作業能率向上を
達成できる補正方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a time series correction method for analysis values in component analysis, which improves the accuracy of analysis and the number of continuous analysis by correcting a time series drift occurring in a device for component analysis. The present invention relates to a correction method capable of achieving an improvement in work efficiency by enlarging the.

【0002】[0002]

【従来の技術】従来技術では、測定初期に標準試料の測
定強度と既知の標準値との関係から検量線を作成し、未
知試料の測定強度をこの検量線に代入して分析値を求め
ていた。
2. Description of the Related Art In the prior art, a calibration curve is created from the relationship between the measurement intensity of a standard sample and a known standard value at the beginning of measurement, and the measurement intensity of an unknown sample is substituted into this calibration curve to obtain an analytical value. It was

【0003】[0003]

【発明が解決しようとする課題】従来の成分分析におけ
る測定初期の検量線から分析値を求める方法だけでは、
測定回路系の試料目づまりや光学レンズの曇り、装置の
温度変化などの原因で発生する測定途中での時系列的な
ドリフトが分析精度を悪化させるために、分析ロットを
小さくして測定時間を短くしたり、再度検量線作成から
測定までやり直すなどを行わねばならず、分析精度およ
び作業効率を向上する上での重大な阻害要因となってい
た。本発明はこのような問題点を解決し、分析値の時系
列的なドリフトを補正し、連続分析による分析精度を保
証することを目的とする。
[Problems to be Solved by the Invention] With the conventional method of obtaining an analysis value from a calibration curve in the initial stage of measurement in component analysis,
Since the time-series drift during the measurement that occurs due to sample clogging of the measurement circuit system, fogging of the optical lens, temperature change of the device, etc. deteriorates the analysis accuracy, the analysis lot should be reduced to reduce the measurement time. It had to be shortened or repeated from the preparation of the calibration curve to the measurement again, which was a serious impediment factor in improving analysis accuracy and work efficiency. An object of the present invention is to solve such a problem, correct the time series drift of the analysis value, and guarantee the analysis accuracy by the continuous analysis.

【0004】[0004]

【課題を解決するための手段】本発明は、成分分析にお
いて、定期間隔に挟み込んだ標準試料の標準値は既知で
あることに着目して、成分分析値の時系列的なドリフト
を下式に基づいて補正し分析精度を向上させることを特
徴とする分析値時系列補正方法である。 補正後分析値(Yn )=(a×Y′+b)+{(c−a)×Y′+(d−b) }×n/N (1) ここで、 a,b:分析ロット初めの、標準試料の標準値Yと分析
値Y′を一次式 Y=a×Y′+bで表した時の傾きaと切片b。 c,d:分析ロット終わりでの、標準試料の標準値Yと
分析値Y′を一次式 Y=cY′+dで表した時の傾きcと切片d。 N:分析ロットの全測定数 n:分析ロットにおける測定順番
The present invention focuses on the fact that the standard values of standard samples sandwiched at regular intervals are known in the component analysis, and the time series drift of the component analysis values is expressed by the following equation. A method for correcting an analysis value time series, which is characterized in that the correction is performed based on the analysis value to improve the analysis accuracy. Corrected analysis value (Y n ) = (a × Y ′ + b) + {(c−a) × Y ′ + (d−b)} × n / N (1) where a and b are the beginning of the analysis lot The slope a and the intercept b when the standard value Y and the analysis value Y ′ of the standard sample are represented by the linear expression Y = a × Y ′ + b. c, d: slope c and intercept d when the standard value Y and the analytical value Y ′ of the standard sample at the end of the analysis lot are represented by the linear expression Y = cY ′ + d. N: Total number of measurements in analysis lot n: Measurement order in analysis lot

【0005】以下、図面に基づいて本発明を説明する。
図1は、時系列ドリフトと標準試料の挟み込み方法を示
した図である。縦軸に濃度を採り、横軸に測定試料数を
採ることにより時間推移を示す。高濃度標準試料をHと
し、その既知(真)の濃度をYH0とする。また低濃度標
準試料をLとし、その既知(真)の濃度をYL0とする。
時系列補正を行なうロット単位は、図中左側の初めの標
準試料のペアの分析値(YH1、YL1)から途中の未知試
料の分析値を挟んだ、次の標準試料ペアの分析値
(YH2、YL2)までとする。時系列補正は、この分析ロ
ット単位で繰り返して全試料の分析値を補正する。
The present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing a time series drift and a method of sandwiching a standard sample. The time transition is shown by taking the concentration on the vertical axis and the number of measurement samples on the horizontal axis. The high-concentration standard sample is H, and its known (true) concentration is Y H0 . The low-concentration standard sample is L, and its known (true) concentration is Y L0 .
The unit of lot for time series correction is the analytical value of the next standard sample pair (the analytical value of the first standard sample pair (Y H1 , Y L1 ) on the left side of the figure with the analytical value of the unknown sample in between). Y H2 , Y L2 ). The time series correction is repeated for each analysis lot to correct the analysis values of all the samples.

【0006】時系列ドリフトの発生原因としては、主に
試料の目詰まりや、酸化物、塩の発生等に起因する試料
量の変動や、光学レンズの曇りや温度変化による測定系
の変動などにより発生する。このドリフトが発生すると
分析精度悪化に大きく影響し、特に長時間連続で無人分
析を行なう上では大きな障害となる。
The cause of the time-series drift is mainly due to the clogging of the sample, fluctuations in the sample amount due to the generation of oxides and salts, fluctuations in the measurement system due to clouding of the optical lens and temperature changes. Occur. The occurrence of this drift has a great influence on the deterioration of the analysis accuracy, which is a serious obstacle particularly to performing unattended analysis continuously for a long time.

【0007】図1の例の場合、高濃度標準試料の標準値
はAl:100ppmがYHOとなり分析ロット初めの測定
では、97ppm (YH1)を示し、その後、測定を重ねる
につれて、感度減少による時系列変化が発生し、分析ロ
ット最後の測定では90ppm(YH2)まで減少してい
る。同じく、低濃度標準試料Lは、標準値(YL0)50
ppm が、初めの測定では48ppm (YL1)を示し、最後
の測定では40ppm (YL2)まで減少している。そこ
で、標準試料の標準値は既知であることに着目して、時
系列的なベースラインドリフトが分析値に与える影響
を、標準試料の分析値変化より定量化して、ドリフトに
よる影響を除去することを検討した。
In the case of the example of FIG. 1, the standard value of the high-concentration standard sample is Y HO when Al: 100 ppm is 97 ppm (Y H1 ) in the measurement at the beginning of the analysis lot, and thereafter, the sensitivity decreases as the measurement is repeated. A time-series change occurred, and it was reduced to 90 ppm (Y H2 ) in the last measurement of the analysis lot. Similarly, the low-concentration standard sample L has a standard value (Y L0 ) of 50.
ppm is 48 ppm (Y L1 ) in the first measurement, and is reduced to 40 ppm (Y L2 ) in the last measurement. Therefore, paying attention to the fact that the standard value of the standard sample is known, quantify the effect of time series baseline drift on the analytical value from the change in the analytical value of the standard sample, and remove the effect of the drift. It was investigated.

【0008】図2は、標準試料を時系列的に分析した時
の変化を示した図である。縦軸に分析濃度を横軸に標準
試料の既知(真)の濃度を取る。時系列補正を行なう分
析ロットの、標準試料の分析濃度が高濃度試料の場合、
本来YH0がYH1を示し、ロット最後にはYH2に変化す
る。また低濃度試料の場合、本来YL0がYL1を示し、ロ
ット最後にはYL2に変化する。このとき、初めのYH0
H1、YL0、YL1の関係式を、既知(真)の濃度をY、
分析した濃度をY′とおくと、 Y=aY′+b (2) で現わすことができる。
FIG. 2 is a diagram showing changes when a standard sample is analyzed in time series. The analytical concentration is plotted on the vertical axis and the known (true) concentration of the standard sample is plotted on the horizontal axis. If the analysis concentration of the standard sample of the analysis lot to be time-series corrected is a high concentration sample,
Originally Y H0 indicates Y H1 and changes to Y H2 at the end of the lot. In the case of a low-concentration sample, Y L0 originally shows Y L1 and changes to Y L2 at the end of the lot. At this time, the first Y H0 ,
The relational expression of Y H1 , Y L0 , and Y L1 is calculated from the known (true) concentration Y,
When the analyzed concentration is Y ', it can be expressed as Y = aY' + b (2).

【0009】次に、分析ロット最後でのYH0、YH2、Y
L0、YL2の関係式も同様にして求める。 Y=cY′+d (3) この(2)式から(3)式に変化するときの関係は、
今、1試料分析した時間毎に順次傾きaがδαずつ、ま
た切片bはδβずつ変化すると仮定すると、全試料(N
個)分析した時点で傾きがc、切片がdに変化している
ので、次式により関係付けられる。 c=a+N×δα (4) d=b+N×δβ (5) 従って、分析ロット途中での未知試料(n個目)の真の分析値(Yn )は、 Yn =(a+n×δα)×Y′+(b+n×δβ) (6) に上記(3)、(4)式を代入して、 Yn =(a×Y′+b)+{(c−a)×Y′+(d−b)}×n/N (7) を得る。
Next, Y H0 , Y H2 , Y at the end of the analysis lot
The relational expression of L0 and Y L2 is similarly obtained. Y = cY '+ d (3) The relationship when changing from this equation (2) to equation (3) is
Assuming that the slope a changes by δα and the intercept b changes by δβ every time one sample is analyzed, all samples (N
Since the slope has changed to c and the intercept has changed to d at the time of analysis, they are related by the following equation. c = a + N × δα (4) d = b + N × δβ (5) Therefore, the true analysis value (Y n ) of the unknown sample (nth sample) in the middle of the analysis lot is Y n = (a + n × δα) × Y ′ + (b + n × δβ) (6) Substituting the equations (3) and (4), Y n = (a × Y ′ + b) + {(c−a) × Y ′ + (d− b)} × n / N (7) is obtained.

【0010】ここで、a,b,c,dの各係数は、下式
(8)〜(11)式より算出する。 a=(YH0−YL0)/(YH1−YL1) (8) b=(YL0×YH1−YH0×YL1)/(YH1−YL1) (9) c=(YH0−YL0)/(YH2−YL2) (10) d=(YL0×YH2−YH0×YL2)/(YH2−YL2) (11)
Here, each coefficient of a, b, c and d is calculated by the following equations (8) to (11). a = (Y H0 -Y L0) / (Y H1 -Y L1) (8) b = (Y L0 × Y H1 -Y H0 × Y L1) / (Y H1 -Y L1) (9) c = (Y H0 -Y L0) / (Y H2 -Y L2) (10) d = (Y L0 × Y H2 -Y H0 × Y L2) / (Y H2 -Y L2) (11)

【0011】図2の例の場合、測定初期のYH0、YH1
L1の関係は、まず係数a,bを求めると、 a=(YH0−YLO)/(YH1−YL1) =(100−50)/(97−48)=1.020408 b=(YLO×YH1−YH0×YL1))/(YH1−YL1) =(50×97−100×48)/(97−48)=1.020408 を得る。
In the case of the example of FIG. 2, Y H0 , Y H1 , and
The relation of Y L1 is as follows: First, when the coefficients a and b are obtained, a = (Y H0 −Y LO ) / (Y H1 −Y L1 ) = (100−50) / (97−48) = 1.020408 b = (Y LO × Y H1 -Y H0 × Y L1)) / (Y H1 -Y L1) = ( get 50 × 97-100 × 48) / ( 97-48) = 1.020408.

【0012】これより、真の濃度Yと分析した濃度の関
係は、 Y=aY′+b =1.020408×Y′+1.020408 (12) を得る。
From this, the relationship between the true density Y and the analyzed density is Y = aY '+ b = 1.020408 × Y' + 1.020408 (12)

【0013】例えば、YH1=97ppm を(12)式に代
入すると、真値YH0:100ppm が得られる。同様にし
て測定最後のYH0、YLO、YH2、YL2の関係は、 c=(YH0−YLO)/(YH2−YL2) =(100−50)/(90−40)=1.000000 d=(YLO×YH2−YH0×YL2))/(YH2−YL2) =(50×90−100×40)/(90−40)=10.000000を 求めて Y=cY′+d =1.000000×Y′+10.000000 (13) を得る。ためしに、YL2:40ppm を(13)式に代入
すると、真値YH0:50ppm を得る。
For example, by substituting Y H1 = 97 ppm into the equation (12), the true value Y H0 : 100 ppm can be obtained. Similarly, the relationship of Y H0 , Y LO , Y H2 , and Y L2 at the end of measurement is as follows: c = (Y H0 −Y LO ) / (Y H2 −Y L2 ) = (100−50) / (90−40) = 1.0000000 d = (Y LO × Y H2- Y H0 × Y L2 )) / (Y H2- Y L2 ) = (50 × 90-100 × 40) / (90-40) = 10.000000 As a result, Y = cY ′ + d = 1.000000 × Y ′ + 10.000000 (13) is obtained. By substituting Y L2 : 40 ppm into the equation (13), the true value Y H0 : 50 ppm is obtained.

【0014】次に途中で10個の未知試料測定した場
合、全測定数は、標準試料の測定回数を加えてN=12
とする。よって、n個目の真値を求める式は、 Yn =(a×Y′+b)+{(c−a)×Y′+(d−b)}×n/N =(1.020408×Y′+1.020408)+{(1.00000 0−1.020408)×Y′+(1.000000−1.02040 8)}×n/12 =(1.020408xY′+1.020408)+(0.020408 ×Y′+8.979592)×n/12 (14) を得る。
Next, when 10 unknown samples are measured on the way, the total number of measurements is N = 12, including the number of times of measurement of the standard sample.
And Therefore, the formula for obtaining the n - th true value is: Y n = (a × Y ′ + b) + {(c−a) × Y ′ + (d−b)} × n / N = (1.020408 × Y '+ 1.020408) + {(1.00000 0-1.020408) * Y' + (1.00000-1.020408)} * n / 12 = (1.020408xY '+ 1.020408) + (0 0.020408 × Y ′ + 8.979592) × n / 12 (14) is obtained.

【0015】表1は、標準値70ppm Al溶液を10回
繰返し分析を行い、時系列補正をかけた例である。表中
の項目は、左より測定回数n、標準値Y0 =70ppm 、
補正前分析値Y′、補正後分析値Y、そして、標準値と
補正前分析値の差:Y0 −Y′、標準値と補正後分析値
の差:Y0 −Yを示す。この例で、補正前分析値と補正
後分析値を比較すると、Y′は標準値との差が最高で9
ppm 発生しているのに対して、補正後では標準値の±
0.5ppm 以内におさまっており、分析精度が向上され
た。なお本補正方法は、実施例ではAl分析を例として
取り上げたが、他の全ての成分分析においても本法は適
用できる。
Table 1 shows an example in which a standard value 70 ppm Al solution was repeatedly analyzed 10 times and subjected to time series correction. Items in the table are, from the left, the number of measurements n, standard value Y 0 = 70 ppm,
An uncorrected analysis value Y ′, a corrected analysis value Y, a difference between the standard value and the uncorrected analysis value: Y 0 −Y ′, and a difference between the standard value and the corrected analysis value: Y 0 −Y are shown. In this example, when the analysis value before correction and the analysis value after correction are compared, Y'has a maximum difference of 9 from the standard value.
Although ppm is generated, it is ± of the standard value after correction.
The analysis accuracy was improved because it was within 0.5ppm. Although the present correction method takes Al analysis as an example in the embodiment, the present method can be applied to all other component analyses.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】従来の成分分析における測定初期の検量
線から分析値を求める方法だけでは、測定回路系の試料
目づまりや光学レンズの曇り、装置の温度変化などの原
因で発生する測定途中での時系列的なドリフトが分析精
度を悪化させるために、分析ロットを小さくして測定時
間を短くしたり、再度検量線作成から測定までやり直す
などを行わねばならなかったのを本発明によってドリフ
ト分を補正することにより、分析精度および作業効率を
向上することができる。
EFFECTS OF THE INVENTION With the conventional method of obtaining an analysis value from a calibration curve at the initial stage of measurement in the component analysis, the measurement circuit system may be clogged with a sample, the optical lens may be fogged, or the temperature of the device may change during measurement. In order to reduce the analysis accuracy due to the drift in time series, it was necessary to reduce the analysis lot to shorten the measurement time, and to repeat the procedure from calibration curve creation to measurement again. It is possible to improve the analysis accuracy and work efficiency by correcting the.

【図面の簡単な説明】[Brief description of drawings]

【図1】時系列ドリフトと標準試料の挟み込み方法を示
す図。
FIG. 1 is a diagram showing a time series drift and a method of sandwiching a standard sample.

【図2】標準試料を時系列的に分析した時の変化を示す
図。
FIG. 2 is a diagram showing changes when a standard sample is analyzed in time series.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 成分分析において、定期間隔に挟み込ん
だ標準試料の標準値は既知であることに着目して、成分
分析値の時系列的なドリフトを下式に基づいて補正し分
析精度を向上させることを特徴とする分析値時系列補正
方法。 補正後分析値(Yn )=(a×Y′+b)+{(c−a)×Y′+(d−b) }×n/N (1) ここで、 a,b:分析ロット初めの、標準試料の標準値Yと分析
値Y′を一次式Y=a×Y′+bで表した時の傾きaと
切片b。 c,d:分析ロット終わりでの、標準試料の標準値Yと
分析値Y′を一次式Y=cY′+dで表した時の傾きc
と切片d。 N:分析ロットの全測定数 n:分析ロットにおける測定順番
1. In the component analysis, focusing on the fact that the standard values of standard samples sandwiched at regular intervals are known, the time series drift of the component analysis values is corrected based on the following formula to improve the analysis accuracy. A method for correcting an analysis value time series, characterized by: Corrected analysis value (Y n ) = (a × Y ′ + b) + {(c−a) × Y ′ + (d−b)} × n / N (1) where a and b are the beginning of the analysis lot The slope a and the intercept b when the standard value Y and the analytical value Y ′ of the standard sample are represented by the linear expression Y = a × Y ′ + b. c, d: Slope c when the standard value Y of the standard sample and the analysis value Y ′ at the end of the analysis lot are represented by the linear expression Y = cY ′ + d
And intercept d. N: Total number of measurements in analysis lot n: Measurement order in analysis lot
JP29914091A 1991-11-14 1991-11-14 Time series correcting method of analysis value Pending JPH05133849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29914091A JPH05133849A (en) 1991-11-14 1991-11-14 Time series correcting method of analysis value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29914091A JPH05133849A (en) 1991-11-14 1991-11-14 Time series correcting method of analysis value

Publications (1)

Publication Number Publication Date
JPH05133849A true JPH05133849A (en) 1993-05-28

Family

ID=17868641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29914091A Pending JPH05133849A (en) 1991-11-14 1991-11-14 Time series correcting method of analysis value

Country Status (1)

Country Link
JP (1) JPH05133849A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106747A (en) * 2015-12-07 2017-06-15 東亜ディーケーケー株式会社 Analysis device, method of evaluating drift of the same, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246674A (en) * 1987-04-01 1988-10-13 Hitachi Ltd Automatic analyzer
JPH01280256A (en) * 1988-05-06 1989-11-10 Toshiba Corp Automatic chemical analyzing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246674A (en) * 1987-04-01 1988-10-13 Hitachi Ltd Automatic analyzer
JPH01280256A (en) * 1988-05-06 1989-11-10 Toshiba Corp Automatic chemical analyzing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106747A (en) * 2015-12-07 2017-06-15 東亜ディーケーケー株式会社 Analysis device, method of evaluating drift of the same, and program

Similar Documents

Publication Publication Date Title
JP3098768B2 (en) Spectrophotometer and its photometric method
JPH08285684A (en) Spectrum stabilizing method in spectrometry
JPH07209082A (en) Spectrum correcting method for stray emission and smoothing spectrum
US7361908B2 (en) Radiation dose estimation for radiochromic films based on measurements at multiple absorption peaks
US6804693B2 (en) Method for reducing skew in a real-time centroid calculation
JP3304692B2 (en) Spectrometer
JPH05133849A (en) Time series correcting method of analysis value
US20210209816A1 (en) Modelling pileup effect for use in spectral imaging
KR102231379B1 (en) Method of processing data from point-of-care test readers
JP3004748B2 (en) Quantitative analysis method using Fourier transform infrared spectrometer
JP3660472B2 (en) Interferogram correction method
JP2720530B2 (en) Fourier transform infrared spectrophotometer
Caldwell A practical method for the accurate analysis of high alloy steels by X‐ray emission
JP2564930B2 (en) X-ray fluorescence analyzer
JPH04138325A (en) Sensitivity correcting device for array detector
JP3172649B2 (en) Interference correction method for infrared gas analyzer
JP2002357571A (en) Wavelength dispersion type fluorescent x-ray analysis apparatus
JPH11271244A (en) Quantitative analysing method by x-ray spectrum
JP2003014628A (en) Calibration method for quantitative analysis
JP2939848B2 (en) Quantitative method in spectroscopic analysis
JPH07128450A (en) Correcting method for imaging equipment for nuclear medicine
JP2659398B2 (en) Atomic absorption photometer
JP2001235419A (en) Infrared gas analyzer
US20200265109A1 (en) Data smoothing method, and program for performing the method
JPH0641916B2 (en) Spectrofluorometer

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980317