JP2001235419A - Infrared gas analyzer - Google Patents

Infrared gas analyzer

Info

Publication number
JP2001235419A
JP2001235419A JP2000045573A JP2000045573A JP2001235419A JP 2001235419 A JP2001235419 A JP 2001235419A JP 2000045573 A JP2000045573 A JP 2000045573A JP 2000045573 A JP2000045573 A JP 2000045573A JP 2001235419 A JP2001235419 A JP 2001235419A
Authority
JP
Japan
Prior art keywords
temperature
data
characteristic curve
correction characteristic
gas analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000045573A
Other languages
Japanese (ja)
Inventor
Mitsuru Oishi
満 大石
Yoshihiro Utsuki
喜弘 宇津木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000045573A priority Critical patent/JP2001235419A/en
Publication of JP2001235419A publication Critical patent/JP2001235419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To simply perform the correction of the output of an infrared gas analyzer against a temperature change. SOLUTION: Temperature data from rising to stable time at the time of warming operation and the indication data thereof are collected as shown by the dotted line of Fig1 (a). For example, a zero point temperature correction characteristic curve Z2 based on 25 deg.C is operated from these data, and a zero point at an arbitrary temperature is calculated from this correction characteristic curve. In the same way, a temperature correction characteristic curve S2 like Fig1 (b) is calculated, a span at an arbitrary temperature is calculated from this correction characteristic curve, and accurate output indication data at an arbitrary temperature is made possible to operate from two correction characteristic curves.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、試料ガス中に含
まれている多成分ガスの定量分析を行なう吸光式赤外線
ガス分析計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption type infrared gas analyzer for performing a quantitative analysis of a multi-component gas contained in a sample gas.

【0002】[0002]

【従来の技術】吸光式の赤外線ガス分析計は、試料ガス
中に含まれる測定成分ガスによる赤外線の吸光量から試
料ガスの定性,定量分析を行なうものであり、この方式
は一般的に選択性が良く、測定感度が高いことからガス
分析計として各種分野で広く使用されている。従来より
用いられている非分散形の吸光式赤外線ガス分析計の構
成、およびその動作原理を図2を参照して説明する。同
図において、1は試料ガスを流す測定セル、2は測定セ
ル1の入射側に設けられた赤外線光源部、3はこの赤外
線光源部2から出射した赤外線光束を断続させるチョッ
パ、4はチョッパ3を回転させるモータ、5は測定セル
1の出射側に配備した検出部であり、この検出部5には
センサ取り付けブロック6に、試料ガス中に含まれる各
種測定成分ガスに対応する複数(図では♯1〜♯3の3
個)の赤外線センサ7Aと光バンドパスフィルタ7Bと
を対にして構成される検出素子7が併置配備されてい
る。なお、光バンドパスフィルタ7Bには検出素子7に
波長選択性を持たせるために、多層膜干渉フィルタが、
また、赤外線センサ7Aには例えば焦電形センサ,半導
体センサなどの固体センサが採用される。
2. Description of the Related Art An absorption type infrared gas analyzer performs qualitative and quantitative analysis of a sample gas based on the amount of infrared absorption by a measurement component gas contained in the sample gas. It is widely used in various fields as a gas analyzer because of its good measurement sensitivity. The configuration of a conventional non-dispersive absorption type infrared gas analyzer and the operation principle thereof will be described with reference to FIG. In FIG. 1, reference numeral 1 denotes a measurement cell through which a sample gas flows, reference numeral 2 denotes an infrared light source provided on the incident side of the measurement cell 1, reference numeral 3 denotes a chopper for interrupting an infrared light beam emitted from the infrared light source 2, and reference numeral 4 denotes a chopper 3. Is a detection unit provided on the emission side of the measurement cell 1. The detection unit 5 has a sensor mounting block 6 and a plurality of detection component gas corresponding to various measurement component gases contained in the sample gas (in the figure, $ 1 to $ 3
Of the infrared sensor 7A and the optical bandpass filter 7B. The optical bandpass filter 7B includes a multilayer interference filter in order to make the detection element 7 have wavelength selectivity.
Further, a solid-state sensor such as a pyroelectric sensor or a semiconductor sensor is employed as the infrared sensor 7A.

【0003】上記の構成で、光源2から出射した赤外線
は、チョッパ3により一定周期で断続した赤外線光束と
なって測定セル1に入射し、測定セル内を透過する過程
で試料ガス中に含まれている各種測定成分ガスにより、
固有の赤外線波長が成分濃度に応じて吸収される。一般
に、異原子分子のガスはその分子構造に応じて固有の波
長の赤外線を吸収し、その赤外線の吸収の強さとガス濃
度との関係は、「ランバート・ベールの法則」に従うこ
とが良く知られている。 I=Io・exp(−kcL) Io:赤外線の入射光量 I :赤外線の透過光量 k :吸光係数 c :被測定ガス成分の濃度 L :赤外線の透過厚さ
[0003] In the above configuration, the infrared light emitted from the light source 2 is included in the sample gas in the process of entering the measurement cell 1 as an infrared light beam intermittently intermittently by the chopper 3 and transmitting through the measurement cell. Depending on the various measurement component gases
The specific infrared wavelength is absorbed according to the component concentration. In general, it is well known that a gas of a heteroatomic molecule absorbs infrared light having a specific wavelength according to its molecular structure, and the relationship between the intensity of the infrared absorption and the gas concentration obeys Lambert-Beer's law. ing. I = Io · exp (−kcL) Io: incident light amount of infrared light I: transmitted light amount of infrared light k: extinction coefficient c: concentration of gas component to be measured L: infrared light transmission thickness

【0004】すなわち、図2の吸光式赤外線ガス分析計
は、光バンドパスフィルタ7Bにより測定対象ガスの固
有吸収帯の波長を選択し、赤外線光量の変化を赤外線セ
ンサ7Aにより検出して電気信号に変換し、濃度に比例
した信号を得るようにしたものである。
That is, in the absorption type infrared gas analyzer of FIG. 2, the wavelength of the specific absorption band of the gas to be measured is selected by the optical band-pass filter 7B, the change in the amount of infrared light is detected by the infrared sensor 7A and converted into an electric signal. The signal is converted to obtain a signal proportional to the density.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記のよう
なガス分析計においては、センサ,光バンドパスフィル
タ,光源,これらを駆動する電源回路,アンプなどの温
度特性により、分析計周囲温度が変化すると指示変化を
生じるため、通常は温度特性を演算により補正し、周囲
温度の影響を受けない信号を得るようにしている。しか
しながら、温度特性を補正するデータは、上記センサ,
光バンドパスフィルタなどのバラツキにより分析計個々
に異なっており、正確な補正データを得るためには、分
析計個々に温度試験をし、温度補正データを得る必要が
あり、温度試験設備と試験工数を必要とするという問題
がある。したがって、この発明の課題は、簡易な方法で
正確な温度補正データを得、精度の高い出力を得られる
ようにすることにある。
In the gas analyzer described above, the ambient temperature of the analyzer changes due to the temperature characteristics of a sensor, an optical band-pass filter, a light source, a power supply circuit for driving them, an amplifier, and the like. As a result, an instruction change occurs, so that the temperature characteristic is normally corrected by calculation to obtain a signal that is not affected by the ambient temperature. However, the data for correcting the temperature characteristics is based on the sensor,
The analyzers differ from each other due to variations in optical bandpass filters, etc.In order to obtain accurate correction data, it is necessary to perform a temperature test on each analyzer and obtain temperature correction data. There is a problem that requires. Accordingly, an object of the present invention is to obtain accurate temperature correction data by a simple method and to obtain a highly accurate output.

【0006】[0006]

【課題を解決するための手段】このような課題を解決す
るため、請求項1の発明では、演算機能を持つ赤外線ガ
ス分析計の暖機時における立上げ時から安定時までの温
度データおよび指示データを収集し、これらのデータか
ら或る温度を基準とするゼロ点温度補正特性曲線とスパ
ン温度補正特性曲線とを演算し、この2つの補正特性曲
線から任意の温度における指示データを演算可能にした
ことを特徴とする。
In order to solve such a problem, according to the invention of claim 1, temperature data and an instruction from a start-up time to a stable time in warm-up of an infrared gas analyzer having an arithmetic function are provided. Data is collected, and a zero-point temperature correction characteristic curve and a span temperature correction characteristic curve based on a certain temperature are calculated from these data, and instruction data at an arbitrary temperature can be calculated from the two correction characteristic curves. It is characterized by having done.

【0007】[0007]

【発明の実施の形態】図1はこの発明の実施の形態を説
明するための説明図である。この発明は図2の如き赤外
線ガス分析計の、暖機運転時のデータを利用するもの
で、その立上げ時から安定時までの温度変化データと指
示データとから、或る温度を基準とするゼロ点温度補正
特性曲線とスパン温度補正特性曲線とを演算し、この2
つの補正特性曲線から任意の温度におけるゼロ点とスパ
ンを求め、これにより任意の温度における補正データを
得るものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram for explaining an embodiment of the present invention. The present invention utilizes the data at the time of warm-up operation of the infrared gas analyzer as shown in FIG. 2, and sets a certain temperature as a reference from the temperature change data from the start-up to the stable time and the instruction data. A zero-point temperature correction characteristic curve and a span temperature correction characteristic curve are calculated.
A zero point and a span at an arbitrary temperature are obtained from the two correction characteristic curves, thereby obtaining correction data at an arbitrary temperature.

【0008】いま、分析計の暖機運転時におけるゼロ点
が、例えば図1(a)の点線Z1で示すように変化した
とする。ここで、暖機スタート時の温度Tsとそのとき
の指示値Zs、および暖機終了時の温度Teとそのときの
指示値Zeを記録すれば、 Q=aT+b …(1) の如く示されるゼロ点温度特性曲線を求めることができ
る。
Now, it is assumed that the zero point during the warm-up operation of the analyzer changes, for example, as shown by a dotted line Z1 in FIG. Here, if the temperature Ts at the start of warm-up and the indicated value Zs at that time and the temperature Te at the end of warm-up and the indicated value Ze at that time are recorded, zero represented as Q = aT + b (1) is obtained. A point temperature characteristic curve can be obtained.

【0009】つまり、T=TsのときQ= Zs、T=Teのと
きQ= Zeであることから、 a=(Zs−Ze)/(Ts−Te) …(2) からゼロ点温度特性曲線の勾配を求めることができる。
切片もこれと同様にして求められるが、ここではT=2
5℃(T25)のときを基準としてこれを「0」とす
る。これより、 b=−aT25=−T25(Zs−Ze)/(Ts−Te) …( 3) となる。このようにして、図1(a)に実線Z2で示す
ゼロ点温度補正特性曲線を求めることができる。
That is, since Q = Zs when T = Ts and Q = Ze when T = Te, a zero-point temperature characteristic curve is obtained from a = (Zs−Ze) / (Ts−Te) (2) Can be determined.
The intercept is obtained in the same manner, but here, T = 2
This is set to “0” based on the time of 5 ° C. (T25). Thus, b = −aT25 = −T25 (Zs−Ze) / (Ts−Te) (3) In this manner, the zero point temperature correction characteristic curve indicated by the solid line Z2 in FIG. 1A can be obtained.

【0010】同様に、スパン温度補正特性曲線S2も図
1(b)の実線で示すように求めることができる。な
お、スパンは暖機スタート時の指示値Stsおよびゼロ
点指示値ZsからSs=Sts−Zs、また、暖機終了時
の指示値Steおよびゼロ点指示値ZeからSe=St
e−Zeとして求めるようにしている。このように、ゼ
ロ点温度補正特性曲線Z2は実測データ曲線Z1をT=2
5℃のとき「0」となるよう、同様にスパン温度補正特
性曲線S2は実測データ曲線S1をT=25℃のとき
「1」または「100%FS(フルスケール)」となる
よう、それぞれ平行移動することにより得ることができ
る。
Similarly, the span temperature correction characteristic curve S2 can be obtained as shown by the solid line in FIG. The span is Ss = Sts−Zs from the indicated value Sts and the zero point indicated value Zs at the start of warming up, and Se = St from the indicated value Ste and the zero point indicated value Ze at the end of warming up.
It is determined as e-Ze. As described above, the zero-point temperature correction characteristic curve Z2 is obtained by converting the actually measured data curve Z1 into T = 2.
Similarly, the span temperature correction characteristic curve S2 is parallelized so that the measured data curve S1 becomes “1” or “100% FS (full scale)” when T = 25 ° C. It can be obtained by moving.

【0011】上記暖機時のデータである、暖機スタート
時温度センサデータTs,暖機終了時温度センサデータT
e,暖機スタート時ゼロ点指示値Zs,暖機終了時ゼロ
点指示値Ze,暖機スタート時スパン点指示値Sts,
暖機終了時スパン点指示値Ste,暖機スタート時スパ
ンSsおよび暖機終了時スパンSe等を表にまとめると
次の表1となる。
The warm-up start temperature sensor data Ts and the warm-up end temperature sensor data T
e, a warm-up start zero point instruction value Zs, a warm-up end zero point instruction value Ze, a warm-up start span point instruction value Sts,
Table 1 below summarizes the warm-up end span point instruction value Ste, the warm-up start span Ss, the warm-up end span Se, and the like.

【表1】 [Table 1]

【0012】以上の結果から、任意の温度におけるゼロ
点とスパン値が分かるので、この値をT=25℃のとき
のゼロ点,スパン値と比較する(両者の比を求めたりす
る)ことで、任意の温度における指示値を求めることが
可能となる。
From the above results, the zero point and the span value at an arbitrary temperature can be determined. By comparing these values with the zero point and the span value at T = 25 ° C. (calculating the ratio between the two). , An indicated value at an arbitrary temperature can be obtained.

【0013】[0013]

【発明の効果】この発明によれば、分析計の暖機時にお
けるセンサ部の温度変化と分析計の指示変化を記録し、
演算により温度に対する分析計指示の変化量(割合)を
求めるようにしたので、分析計個々の温度特性に極めて
近い温度補正データを簡単に得ることが可能となり、分
析計毎に温度特性を測定する手間を省略することができ
るという利点が得られる。
According to the present invention, the change in temperature of the sensor unit and the change in instruction of the analyzer when the analyzer is warmed up are recorded,
Since the amount of change (ratio) of the instruction of the analyzer with respect to the temperature is obtained by the calculation, it is possible to easily obtain temperature correction data that is very close to the temperature characteristic of each analyzer, and to measure the temperature characteristic for each analyzer. The advantage that labor can be saved can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態を説明するための説明図
である。
FIG. 1 is an explanatory diagram for describing an embodiment of the present invention.

【図2】赤外線ガス分析計の一般的な構成を示す概要図
である。
FIG. 2 is a schematic diagram showing a general configuration of an infrared gas analyzer.

【符号の説明】[Explanation of symbols]

1…測定セル、2…赤外線光源、3…回転式チョッパ、
4…モータ、5…検出部、6…センサ取付ブロック、7
A…赤外線センサ、7B…多層膜干渉フィルタ、8…赤
外線光束。
1. Measurement cell, 2. Infrared light source, 3. Rotary chopper,
4 ... motor, 5 ... detector, 6 ... sensor mounting block, 7
A: infrared sensor, 7B: multilayer interference filter, 8: infrared light flux.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 演算機能を持つ赤外線ガス分析計の暖機
時における立上げ時から安定時までの温度データおよび
指示データを収集し、これらのデータから或る温度を基
準とするゼロ点温度補正特性曲線とスパン温度補正特性
曲線とを演算し、この2つの補正特性曲線から任意の温
度における指示データを演算可能にしたことを特徴とす
る赤外線ガス分析計。
1. An infrared gas analyzer having an arithmetic function collects temperature data and instruction data from a start-up time to a stable time when the infrared gas analyzer is warmed up, and corrects a zero point temperature based on these data based on a certain temperature. An infrared gas analyzer wherein a characteristic curve and a span temperature correction characteristic curve are calculated, and instruction data at an arbitrary temperature can be calculated from the two correction characteristic curves.
JP2000045573A 2000-02-23 2000-02-23 Infrared gas analyzer Pending JP2001235419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000045573A JP2001235419A (en) 2000-02-23 2000-02-23 Infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000045573A JP2001235419A (en) 2000-02-23 2000-02-23 Infrared gas analyzer

Publications (1)

Publication Number Publication Date
JP2001235419A true JP2001235419A (en) 2001-08-31

Family

ID=18568132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000045573A Pending JP2001235419A (en) 2000-02-23 2000-02-23 Infrared gas analyzer

Country Status (1)

Country Link
JP (1) JP2001235419A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502407A (en) * 2003-08-11 2007-02-08 センセエアー アーベー Method for compensating measurement errors and electronic configuration therefor
JP2012073098A (en) * 2010-09-28 2012-04-12 Asahi Kasei Electronics Co Ltd Gas concentration detection method and gas concentration sensor
JP2021524582A (en) * 2018-05-24 2021-09-13 ユーロセッツ エス.アール.エル. A device that measures carbon dioxide removed by an oxygen dispenser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502407A (en) * 2003-08-11 2007-02-08 センセエアー アーベー Method for compensating measurement errors and electronic configuration therefor
JP2012073098A (en) * 2010-09-28 2012-04-12 Asahi Kasei Electronics Co Ltd Gas concentration detection method and gas concentration sensor
JP2021524582A (en) * 2018-05-24 2021-09-13 ユーロセッツ エス.アール.エル. A device that measures carbon dioxide removed by an oxygen dispenser

Similar Documents

Publication Publication Date Title
US4829183A (en) Dual sample cell gas analyzer
JP2005517923A (en) Method for determining analyte concentration in a sample from an absorption spectrum
US6528792B2 (en) Gas detection apparatus using a combined infrared source and high temperature bolometer
JPH03221843A (en) Analyzer by light
CN114526831A (en) Dew point frost point temperature sensor and measuring method thereof
JP2003050203A (en) Gas analyzing device of non-dispersive infrared absorption type, and its analyzing method
JPS6217183B2 (en)
JP4158314B2 (en) Isotope gas measuring device
JP2001235419A (en) Infrared gas analyzer
JPH06249779A (en) Gas analyzer
JPH0672841B2 (en) Atomic absorption spectrophotometer
JPH0219718Y2 (en)
JP4797233B2 (en) Compact sample concentration measuring device
JP3261842B2 (en) Non-dispersive infrared gas analyzer
WO1998052020A1 (en) Self normalizing radiant energy monitor and apparatus for gain independent material quantity measurements
GB2401939A (en) Device and method for determining the concentration of at least one gas component in a respiratory gas mixture
JPH0219717Y2 (en)
JPH1183734A (en) Gas detector and gas detecting method
JPH0560687A (en) Infrared analyzer
JP3172649B2 (en) Interference correction method for infrared gas analyzer
JPH08159968A (en) Analyzer
JPH05203573A (en) Infrared ray gas analyzer
EP4276444A1 (en) Optical co2 concentration meter based on ir light absorption in gas
JPH0210441Y2 (en)
JPS6244217B2 (en)