JP2017106747A - Analysis device, method of evaluating drift of the same, and program - Google Patents

Analysis device, method of evaluating drift of the same, and program Download PDF

Info

Publication number
JP2017106747A
JP2017106747A JP2015238678A JP2015238678A JP2017106747A JP 2017106747 A JP2017106747 A JP 2017106747A JP 2015238678 A JP2015238678 A JP 2015238678A JP 2015238678 A JP2015238678 A JP 2015238678A JP 2017106747 A JP2017106747 A JP 2017106747A
Authority
JP
Japan
Prior art keywords
calibration
solution
absorbance
concentration
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015238678A
Other languages
Japanese (ja)
Other versions
JP6730579B2 (en
Inventor
基 岩本
Motoi Iwamoto
基 岩本
石原 和彦
Kazuhiko Ishihara
和彦 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DKK TOA Corp
Original Assignee
DKK TOA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp filed Critical DKK TOA Corp
Priority to JP2015238678A priority Critical patent/JP6730579B2/en
Publication of JP2017106747A publication Critical patent/JP2017106747A/en
Application granted granted Critical
Publication of JP6730579B2 publication Critical patent/JP6730579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an analysis device configured to measure optical absorbance of a reaction liquid obtained by reacting a sample liquid with reagent, which is capable of eliminating time loss for checking drift and of providing an operator with an intuitively graspable check result immediately after completion of calibration.SOLUTION: In a calibration mode, calibration curve information for converting optical absorbance into concentration is produced based on a known concentration Cz of a calibration liquid Z, a known concentration Cs (Cz≠Cs) of a calibration liquid S, optical absorbance data Iz corresponding to when the calibration liquid Z is used as a sample liquid, and optical absorbance data Is corresponding to when the calibration liquid S is used as a sample liquid. Optical absorbance data of the calibration liquids acquired for calibration is converted into concentration data based on the calibration curve information produced in the previous calibration mode.SELECTED DRAWING: Figure 1

Description

本発明は分析装置、分析装置のドリフト評価方法、及びプログラムに関する。さらに詳しくは、試料液に試薬を反応させた反応液を吸光度測定することにより、試料液中の成分の濃度を求める分析装置、分析装置のドリフト評価方法、及びプログラムに関する。   The present invention relates to an analyzer, a drift evaluation method for the analyzer, and a program. More specifically, the present invention relates to an analyzer that determines the concentration of a component in a sample solution by measuring the absorbance of a reaction solution obtained by reacting a reagent with the sample solution, a drift evaluation method for the analyzer, and a program.

吸光光度計を用いる分析装置では、吸光度と測定対象成分の濃度との関係を示す検量線を得るため、濃度既知の校正液を用いた校正作業を定期的に行う必要がある。この校正作業時に、検量線が極端に変動(ドリフト)している場合は、装置の故障や試薬の変質等、何らかのトラブルが生じている可能性が高い。そのため、校正時に過大なドリフトが発生した際にはアラームを出すことも考えられる。   In an analyzer using an absorptiometer, in order to obtain a calibration curve indicating the relationship between the absorbance and the concentration of the component to be measured, it is necessary to periodically perform a calibration operation using a calibration solution having a known concentration. If the calibration curve fluctuates (drifts) at the time of this calibration work, there is a high possibility that some trouble such as failure of the apparatus or alteration of the reagent has occurred. For this reason, an alarm may be issued when an excessive drift occurs during calibration.

しかし、アラーム機能だけでは、アラームを出すほど過大ではないが、通常よりも大きいドリフトの発生を検知することができない。その場合、装置内に、校正時の吸光度の履歴を残しておき、操作者が今回の校正時の吸光度と対比できるようにすることも考えられる。
しかしながら、操作者が吸光度のドリフトを見ても、その吸光度のドリフトが、実際の濃度データにどの程度影響を与え得るものなのか、直感的に理解することは困難である。
そこで、実務上、ドリフトを確認したい場合には、校正作業とは別に、校正液を試料液として濃度を測定し、その校正液の既知濃度と対比をすることが行われている。
However, the alarm function alone is not so large as to give an alarm, but it cannot detect the occurrence of a drift larger than usual. In that case, it is conceivable that an absorbance history at the time of calibration is left in the apparatus so that the operator can compare with the absorbance at the time of calibration.
However, even if the operator sees the absorbance drift, it is difficult to intuitively understand how much the absorbance drift can affect the actual concentration data.
Therefore, in practice, when it is desired to confirm drift, a calibration solution is used as a sample solution to measure the concentration separately from the calibration work, and is compared with the known concentration of the calibration solution.

ところが、吸光光度計を用いる分析装置は、試料液の吸光度をそのまま測定するものだけでなく、試料液に試薬を反応させた反応液を吸光度測定するものも多い。
特に1回の測定に1時間程度を要する場合(例えば特許文献1)、ドリフト確認のために校正液の測定作業を行うと時間的ロスが大きい。例えば、ゼロドリフトとスパンドリフトの双方を確認するには、2時間程度を要することとなる。
However, many analyzers using an absorptiometer measure not only the absorbance of a sample solution as it is, but also the absorbance of a reaction solution obtained by reacting a sample solution with a reagent.
In particular, when it takes about one hour for one measurement (for example, Patent Document 1), if a calibration solution is measured for drift confirmation, a time loss is large. For example, it takes about 2 hours to confirm both zero drift and span drift.

特許第4044399号公報Japanese Patent No. 4044399

本発明は上記の点に鑑みてなされたものであり、試料液に試薬を反応させた反応液を吸光度測定する分析装置において、ドリフト確認のための時間的ロスを省き、しかも、操作者が直感的に理解しやすく、校正作業終了後即座に確認結果を得ることが可能な分析装置のドリフト評価方法、及び、この評価方法を実施するための分析装置及びプログラムを提供することを課題とする。   The present invention has been made in view of the above points, and in an analyzer for measuring the absorbance of a reaction solution obtained by reacting a sample solution with a reagent, a time loss for confirming drift is eliminated, and the operator is intuitive. It is an object of the present invention to provide a drift evaluation method for an analyzer that is easy to understand and can obtain a confirmation result immediately after completion of a calibration operation, and an analyzer and a program for implementing this evaluation method.

上記の課題を達成するために、本発明は、以下の構成を採用した。
[1]試料液に試薬を反応させて反応液を得る反応部と
得られた反応液の吸光度を測定する吸光光度計と、
前記反応部及び前記吸光光度計を制御すると共に、前記吸光光度計で得られる吸光度が入力される演算制御部を備え、
前記演算制御部は、校正モードにおいて、校正液Zの既知濃度Cz及び校正液Sの既知濃度Cs(但しCz≠Cs)、並びに校正液Zを試料液とした際の吸光度データIz及び校正液Sを試料液とした際の吸光度データIsに基づき、吸光度を濃度に換算するための検量線情報を作成すると共に、
前回の校正モード時において作成した検量線情報に基づき、今回の校正モード時において得られた吸光度データIz及び吸光度データIsの一方又は両方を濃度に換算することを特徴とする分析装置。
[2]前記演算制御部は、前記校正液Z及び前記校正液Sの一方又は両方について、前記換算した濃度と、今回の校正モード時における既知濃度との差を求める[1]に記載の分析装置。
In order to achieve the above object, the present invention employs the following configuration.
[1] A reaction part for reacting a sample solution with a reagent to obtain a reaction solution, an absorptiometer for measuring the absorbance of the obtained reaction solution,
A control unit for controlling the reaction unit and the absorptiometer and inputting the absorbance obtained by the absorptiometer,
In the calibration mode, the arithmetic control unit performs the calibration solution Z with the known concentration Cz and the calibration solution S with the known concentration Cs (where Cz ≠ Cs), the absorbance data Iz when the calibration solution Z is used as the sample solution, and the calibration solution S. Based on the absorbance data Is when the sample solution is used, the calibration curve information for converting the absorbance into the concentration is created,
An analyzer characterized by converting one or both of absorbance data Iz and absorbance data Is obtained in the current calibration mode into a concentration based on calibration curve information created in the previous calibration mode.
[2] The calculation control unit obtains a difference between the converted concentration and a known concentration in the current calibration mode for one or both of the calibration solution Z and the calibration solution S. [1] apparatus.

[3]試料液に試薬を反応させて得られた反応液の吸光度を測定して試料液の濃度を求める分析装置のドリフト評価方法であって、
校正モード時に、校正液Zの既知濃度Cz及び校正液Sの既知濃度Cs(但しCz≠Cs)、並びに校正液Zを試料液とした際の吸光度データIz及び校正液Sを試料液とした際の吸光度データIsに基づき、吸光度を濃度に換算するための検量線情報を作成すると共に、
前記校正液Z及び前記校正液Sの一方又は両方について、前回の校正モード時において作成した検量線情報に基づき、今回の校正モード時において得られた吸光度データを濃度に換算し、前記換算した濃度と、今回の校正モード時における既知濃度との差を求めることを特徴とする分析装置のドリフト評価方法。
[3] A drift evaluation method for an analyzer that measures the absorbance of a reaction solution obtained by reacting a reagent with a sample solution to determine the concentration of the sample solution,
In the calibration mode, when the calibration solution Z has the known concentration Cz, the calibration solution S has the known concentration Cs (where Cz ≠ Cs), and the absorbance data Iz when the calibration solution Z is the sample solution and the calibration solution S is the sample solution Based on the absorbance data Is, calibration curve information for converting the absorbance into a concentration is created,
For one or both of the calibration solution Z and the calibration solution S, the absorbance data obtained in the current calibration mode is converted into a concentration based on the calibration curve information created in the previous calibration mode, and the converted concentration And a drift evaluation method for an analyzer, wherein a difference between the measured concentration and the known concentration in the current calibration mode is obtained.

[4]試料液に試薬を反応させて反応液を得る反応部と
得られた反応液の吸光度を測定する吸光光度計と、
前記反応部及び前記吸光光度計を制御すると共に、前記吸光光度計で得られる吸光度が入力される演算制御部を備える分析装置において校正モードが選択された際に、
前記演算制御部に以下のステップを含む処理を実行させるプログラム。
[ステップA1]
前記反応部と前記吸光光度計を、校正液Zと校正液Sの各々を試料液として各々の反応液の吸光度データを得るように制御し、
校正液Zの既知濃度Cz及び校正液Sの既知濃度Cs(但しCz≠Cs)、並びに校正液Zを試料液とした際の吸光度データIz及び校正液Sを試料液とした際の吸光度データIsに基づき、吸光度を濃度に換算するための検量線情報を作成するステップ。
[ステップA2]
前回の校正モード時において作成した検量線情報に基づき、今回の校正モード時において得られた吸光度データIz及び吸光度データIsの一方又は両方を濃度に換算するステップ。
[5]前記ステップA2が、さらに、前記校正液Z及び前記校正液Sの一方又は両方について、前記換算した濃度と、今回の校正モード時における既知濃度との差を求めるステップである[4]に記載のプログラム。
[4] A reaction part for reacting a reagent with a sample solution to obtain a reaction solution, an absorptiometer for measuring the absorbance of the obtained reaction solution,
When controlling the reaction unit and the absorptiometer, and when a calibration mode is selected in an analyzer having an operation control unit to which the absorbance obtained by the absorptiometer is input,
A program for causing the arithmetic control unit to execute processing including the following steps.
[Step A1]
The reaction unit and the absorptiometer are controlled so as to obtain absorbance data of each reaction solution using each of the calibration solution Z and the calibration solution S as sample solutions,
The known concentration Cz of the calibration solution Z, the known concentration Cs of the calibration solution S (where Cz ≠ Cs), the absorbance data Iz when the calibration solution Z is the sample solution, and the absorbance data Is when the calibration solution S is the sample solution Creating calibration curve information for converting absorbance to concentration based on the above.
[Step A2]
A step of converting one or both of the absorbance data Iz and the absorbance data Is obtained in the current calibration mode into a concentration based on the calibration curve information created in the previous calibration mode.
[5] The step A2 is a step of obtaining a difference between the converted concentration and the known concentration in the current calibration mode for one or both of the calibration solution Z and the calibration solution S. [4] The program described in.

本発明の分析装置、分析装置のドリフト評価方法、及びプログラムによれば、試料液に試薬を反応させた反応液を吸光度測定する分析装置のドリフト確認のための時間的ロスを省き、しかも、操作者が直感的に理解しやすく、校正作業終了後即座に確認結果を得ることが可能である。   According to the analyzer of the present invention, the drift evaluation method of the analyzer, and the program, the time loss for confirming the drift of the analyzer that measures the absorbance of the reaction liquid obtained by reacting the reagent with the sample liquid is eliminated, and the operation It is easy for a person to understand intuitively, and a confirmation result can be obtained immediately after the calibration work is completed.

本発明の1実施形態に係る分析装置の概略構成図である。It is a schematic block diagram of the analyzer which concerns on one Embodiment of this invention.

<分析装置の構成>
本発明の1実施形態に係る分析装置について図1を用いて説明する。本実施形態の分析計は、全窒素、全りん、CODの3項目をJIS法に準拠して求める分析装置である。この3項目の内、CODについては、試料液に試薬を反応させることなく、直接吸光度を測定することにより求められるが、全窒素、全りんについては、試料液に試薬を反応させることにより得られる反応液の吸光度を測定することにより求められる。
<Analyzer configuration>
An analyzer according to an embodiment of the present invention will be described with reference to FIG. The analyzer of this embodiment is an analyzer that calculates three items of total nitrogen, total phosphorus, and COD based on the JIS method. Of these three items, COD can be obtained by directly measuring the absorbance without reacting the reagent with the sample solution, but total nitrogen and total phosphorus can be obtained by reacting the reagent with the sample solution. It is determined by measuring the absorbance of the reaction solution.

本実施形態の分析装置は、反応部10と吸光光度計20と、演算制御部30とから構成されている。
反応部10は、反応槽11と、加熱分解槽12と、反応槽11内の温度を測定する温度センサー13と、反応槽11内の反応液を吸光光度計20のフローセルに導入するためのポンプ14と、多数の流路を備えている。
反応部10には、ポンプや各種弁が設けられており、これら弁やポンプの動作を演算制御部30が制御することにより、試料液や試薬等が、各流路内を適宜移動できるようになっている。反応部10の加熱分解槽12も、演算制御部30により制御されるようになっている。
The analyzer according to this embodiment includes a reaction unit 10, an absorptiometer 20, and an arithmetic control unit 30.
The reaction unit 10 includes a reaction tank 11, a thermal decomposition tank 12, a temperature sensor 13 that measures the temperature in the reaction tank 11, and a pump for introducing the reaction solution in the reaction tank 11 into the flow cell of the absorptiometer 20. 14 and a large number of flow paths.
The reaction unit 10 is provided with a pump and various valves, and the operation and control of these valves and pumps are controlled by the arithmetic control unit 30 so that the sample solution, the reagent, and the like can be appropriately moved in each channel. It has become. The thermal decomposition tank 12 of the reaction unit 10 is also controlled by the calculation control unit 30.

図1には、本実施形態の分析装置の主要な流路、弁及びポンプを示した。流路L1は反応槽11内の反応液を吸光光度計20に導入するための流路で、この流路L1に、ポンプ14と吸光光度計20のフローセルが設けられている。
流路L2は試料液流路、流路L3〜L5は試薬流路である。流路L3は、ペルオキソ二硫酸カリウム溶液を反応槽11に送る流路、流路L4は、水酸化ナトリウム溶液と塩酸を反応槽11に送る流路、流路L5はモリブデン酸アンモニウム溶液とL−アスコルビン酸溶液を反応槽11に送る流路である。なお、モリブデン酸アンモニウム溶液は、少量のタルトラトアンチモン(III)酸カリウムを含む硫酸酸性のモリブデン酸アンモニウム溶液である。
FIG. 1 shows main flow paths, valves, and pumps of the analyzer according to the present embodiment. The flow path L1 is a flow path for introducing the reaction solution in the reaction tank 11 into the absorptiometer 20, and the flow cell of the pump 14 and the absorptiometer 20 is provided in this flow path L1.
The flow path L2 is a sample liquid flow path, and the flow paths L3 to L5 are reagent flow paths. The flow path L3 is a flow path for sending potassium peroxodisulfate solution to the reaction tank 11, the flow path L4 is a flow path for sending sodium hydroxide solution and hydrochloric acid to the reaction tank 11, and the flow path L5 is an ammonium molybdate solution and L- This is a flow path for sending an ascorbic acid solution to the reaction tank 11. The ammonium molybdate solution is a sulfuric acid ammonium molybdate solution containing a small amount of potassium tartrate antimonate (III).

流路L6は全窒素測定用のサンプル分解流路、流路L7は全りん測定用のサンプル分解流路で、何れも、下端が反応槽11の底部に挿入され、上端側は、図示を省略するポンプに接続可能とされている。このポンプは、エアポンプ及びステッピングモーターを使用した定量ポンプであることが好ましい。また、何れも流路の中間部分が加熱分解槽12に収容されている。そして、流路L6の加熱分解槽12に収容されている部分の反応槽11側には常閉弁SV1が、反応槽11と反対側には常閉弁SV2が設けられている。また、流路L7の加熱分解槽12に収容されている部分の反応槽11側には常閉弁SV3が、反応槽11と反対側には常閉弁SV4が設けられている。
流路L8は、純水を反応槽11に送る流路、流路L9〜L10は廃液流路である。
The flow path L6 is a sample decomposition flow path for measuring total nitrogen, and the flow path L7 is a sample decomposition flow path for measuring total phosphorus, both of which have a lower end inserted into the bottom of the reaction tank 11, and an upper end side is not shown. It can be connected to the pump. This pump is preferably a metering pump using an air pump and a stepping motor. In both cases, the intermediate portion of the flow path is accommodated in the thermal decomposition tank 12. A normally closed valve SV1 is provided on the reaction tank 11 side of the portion of the flow path L6 accommodated in the thermal decomposition tank 12, and a normally closed valve SV2 is provided on the opposite side of the reaction tank 11. In addition, a normally closed valve SV3 is provided on the reaction tank 11 side of the portion accommodated in the thermal decomposition tank 12 of the flow path L7, and a normally closed valve SV4 is provided on the opposite side to the reaction tank 11.
The flow path L8 is a flow path for sending pure water to the reaction tank 11, and the flow paths L9 to L10 are waste liquid flow paths.

吸光光度計20は、図示を省略するフローセルと光源と分光検出器で構成されている。フローセルは、石英ガラス製である。光源としては、重水素ランプとタングステンランプが用いられており、これらは、同光軸上に配置されている。分光検出器は、回折格子を用いた分光部とリニアアレイ検出器で構成されている。
演算制御部30は、反応部10と吸光光度計20を制御すると共に、吸光光度計で得られる吸光度が入力されるようになっている。演算制御部30には、本発明のプログラムが組み込まれている。
The absorptiometer 20 includes a flow cell, a light source, and a spectroscopic detector that are not shown. The flow cell is made of quartz glass. As the light source, a deuterium lamp and a tungsten lamp are used, and these are arranged on the same optical axis. The spectroscopic detector includes a spectroscopic unit using a diffraction grating and a linear array detector.
The arithmetic control unit 30 controls the reaction unit 10 and the absorptiometer 20 and receives the absorbance obtained by the absorptiometer. The arithmetic control unit 30 incorporates the program of the present invention.

<試料液の測定>
本実施形態の分析装置は、演算制御部30による制御の下、以下の手順により、試料液の全窒素、全りん、CODの3項目を求める。加熱分解槽12の温度は、加熱分解時以外は、全工程を通じて70℃の余熱状態とされており、加熱分解時には120℃とされる。各工程において行われる洗浄は、洗浄が必要な部分に純水を導入し、その後廃液することにより行われる。
なお、以下の説明において、吸光光度計20によって得られる試料液または反応液の吸光度は、ブランク測定値を差し引くことによってブランク補正した値であることが好ましい。ブランク測定値は、フローセルに純水を流した際の吸光度である。
<Measurement of sample solution>
The analyzer of the present embodiment obtains three items of total nitrogen, total phosphorus, and COD of the sample solution under the control of the arithmetic control unit 30 according to the following procedure. The temperature of the thermal decomposition tank 12 is set to a residual heat state of 70 ° C. throughout the entire process except during the thermal decomposition, and is set to 120 ° C. during the thermal decomposition. The cleaning performed in each step is performed by introducing pure water into a portion that needs to be cleaned and then draining it.
In the following description, the absorbance of the sample solution or reaction solution obtained by the absorptiometer 20 is preferably a value obtained by blank correction by subtracting a blank measurement value. The blank measurement value is the absorbance when pure water is allowed to flow through the flow cell.

1.全窒素サンプル調整
まず、流路L2により、所定量の試料液を反応槽11に導入する。ここで、必要に応じて、流路L8から純水を反応槽11に導入して試料液を希釈する。次いで、流路L3、L4により、全窒素測定用の加熱分解試薬であるペルオキソ二硫酸カリウム溶液と水酸化ナトリウム溶液を反応槽11に導入する。その後流路L6にポンプをつないで、常閉弁SV1と常閉弁SV2を開とした状態で反応槽11内にバブリングすることにより、試料液と加熱分解試薬を混合し、全窒素サンプル液とする。そして、流路L6につながれたポンプを駆動させることにより、全窒素サンプル液の全量を流路L6の加熱分解槽12(余熱状態)に収容されている部分まで吸引して、常閉弁SV1と常閉弁SV2を閉状態に戻し、全りんサンプル調整を行っている間待機する。
1. Preparation of total nitrogen sample First, a predetermined amount of sample liquid is introduced into the reaction tank 11 through the flow path L2. Here, if necessary, pure water is introduced into the reaction tank 11 from the flow path L8 to dilute the sample solution. Next, a potassium peroxodisulfate solution and a sodium hydroxide solution, which are thermal decomposition reagents for measuring total nitrogen, are introduced into the reaction tank 11 through the flow paths L3 and L4. Thereafter, a pump is connected to the flow path L6, and the sample solution and the thermal decomposition reagent are mixed by bubbling into the reaction tank 11 with the normally closed valve SV1 and the normally closed valve SV2 opened, and the total nitrogen sample solution and To do. Then, by driving the pump connected to the flow path L6, the total amount of the total nitrogen sample liquid is sucked to the portion of the flow path L6 accommodated in the thermal decomposition tank 12 (preheated state), and the normally closed valve SV1 The normally closed valve SV2 is returned to the closed state, and the process waits while the total phosphorus sample adjustment is performed.

2.全りんサンプル調整
反応槽11内を洗浄した後、流路L2により、所定量の試料液を反応槽11に導入する。ここで、必要に応じて、流路L8から純水を反応槽11に導入して試料液を希釈する。次いで、流路L3により、全りん測定用の加熱分解試薬であるペルオキソ二硫酸カリウム溶液を反応槽11に導入する。その後流路L7にポンプをつないで、常閉弁SV3と常閉弁SV4を開とした状態で反応槽11内にバブリングすることにより、試料液と加熱分解試薬を混合し、全りんサンプル液とする。そして、流路L7につながれたポンプを駆動させることにより、全りんサンプル液の全量を流路L7の加熱分解槽12(余熱状態)に収容されている部分まで吸引して、常閉弁SV3と常閉弁SV4を閉状態に戻す。
2. Preparation of total phosphorus sample After the inside of the reaction tank 11 is washed, a predetermined amount of sample solution is introduced into the reaction tank 11 through the flow path L2. Here, if necessary, pure water is introduced into the reaction tank 11 from the flow path L8 to dilute the sample solution. Next, a potassium peroxodisulfate solution, which is a thermal decomposition reagent for measuring total phosphorus, is introduced into the reaction tank 11 through the flow path L3. Thereafter, a pump is connected to the flow path L7, and the sample solution and the thermal decomposition reagent are mixed by bubbling into the reaction tank 11 with the normally closed valve SV3 and the normally closed valve SV4 opened, and the total phosphorus sample solution and To do. Then, by driving the pump connected to the flow path L7, the entire amount of the total phosphorus sample liquid is sucked to the portion of the flow path L7 accommodated in the thermal decomposition tank 12 (preheated state), and the normally closed valve SV3. The normally closed valve SV4 is returned to the closed state.

3.加熱分解とCOD測定
流路L6にポンプをつないで、常閉弁SV2を開とした状態でエアを圧送し、その後常閉弁SV2を閉状態に戻すことにより、流路L6の加熱分解槽12に収容されている部分の圧力を高める。
同様に、常閉弁SV4を開とした状態でエアを圧送し、その後常閉弁SV4を閉状態に戻すことにより、流路L7の加熱分解槽12に収容されている部分の圧力を高める。
3. Thermal decomposition and COD measurement A pump is connected to the flow path L6, air is pumped in a state where the normally closed valve SV2 is opened, and then the normally closed valve SV2 is returned to the closed state, whereby the thermal decomposition tank 12 in the flow path L6. Increase the pressure in the part housed in.
Similarly, the pressure of the part accommodated in the thermal decomposition tank 12 of the flow path L7 is raised by pumping air with the normally closed valve SV4 opened, and then returning the normally closed valve SV4 to the closed state.

そして、加熱分解槽12の温度を120℃として、30分間、流路L6の全窒素サンプル液と流路L7の全りんサンプル液を加熱分解し、各々全窒素測定用の加熱分解液と全りん測定用の加熱分解液とする。
加熱分解により、試料液中の窒素化合物はすべて酸化されて硝酸イオンとなる。また、試料液中のリン化合物はすべて酸化されてリン酸イオンとなる。
Then, the temperature of the thermal decomposition tank 12 is set to 120 ° C., and the total nitrogen sample liquid in the flow path L6 and the total phosphorus sample liquid in the flow path L7 are thermally decomposed for 30 minutes, respectively. Use a thermal decomposition solution for measurement.
By the thermal decomposition, all the nitrogen compounds in the sample solution are oxidized to nitrate ions. In addition, all phosphorus compounds in the sample solution are oxidized to phosphate ions.

この加熱分解を行う30分の間に、COD測定を平行して行う。すなわち、反応槽11内を洗浄した後、流路L2により、所定量の試料液を反応槽11に導入する。ここで、必要に応じて、流路L8から純水を反応槽11に導入して試料液を希釈する。次いで、ポンプ14により、吸光光度計20のフローセルに反応槽11内の試料液を吸引して、吸光度を測定する。吸光度測定後、流路L1と反応槽11を洗浄する。   The COD measurement is performed in parallel during the 30 minutes of the thermal decomposition. That is, after the inside of the reaction tank 11 is washed, a predetermined amount of sample solution is introduced into the reaction tank 11 through the flow path L2. Here, if necessary, pure water is introduced into the reaction tank 11 from the flow path L8 to dilute the sample solution. Next, the sample solution in the reaction tank 11 is sucked into the flow cell of the absorptiometer 20 by the pump 14 to measure the absorbance. After measuring the absorbance, the flow path L1 and the reaction tank 11 are washed.

吸光度は、重水素ランプによる波長254nmとタングステンランプによる波長546nmの光をフローセル内の試料液に照射することにより測定される。フローセルを通過した光は、分光部で分光された後、リニアアレイ検出器で各々の波長毎に検出され、各々の波長毎の吸光度が求められる。254nmの吸光度はCODに対応するが、濁り成分の量の影響を受ける。546nmの吸光度は濁り成分の量に対応する。254nmの吸光度から546nmの吸光度を差し引いた値を、予め求めた検量線情報に基づき換算することによって、試料液のCOD値が求められる。   The absorbance is measured by irradiating the sample liquid in the flow cell with light having a wavelength of 254 nm by a deuterium lamp and a wavelength of 546 nm by a tungsten lamp. The light that has passed through the flow cell is spectrally separated by the spectroscopic unit, and then detected for each wavelength by the linear array detector, and the absorbance for each wavelength is obtained. The absorbance at 254 nm corresponds to COD, but is affected by the amount of turbid components. The absorbance at 546 nm corresponds to the amount of turbid components. By converting the value obtained by subtracting the absorbance at 546 nm from the absorbance at 254 nm based on the calibration curve information obtained in advance, the COD value of the sample solution is obtained.

4.全窒素測定
流路L6にポンプをつないで、常閉弁SV1と常閉弁SV2を開として、流路L6内の全窒素測定用の加熱分解液を反応槽11に圧送して戻す。ここに、流路L4により塩酸を導入してpHを2〜3に調整し、全窒素測定用の反応液を得る。
次いで、ポンプ14により、吸光光度計20のフローセルに反応槽11内の反応液を吸引して、吸光度を測定する。吸光度測定後、流路L1、L6と反応槽11を洗浄する。
4). Total nitrogen measurement A pump is connected to the flow path L6, the normally closed valve SV1 and the normally closed valve SV2 are opened, and the thermal decomposition solution for measuring total nitrogen in the flow path L6 is pumped back to the reaction tank 11. Here, hydrochloric acid is introduced through the flow path L4 to adjust the pH to 2 to 3 to obtain a reaction solution for measuring total nitrogen.
Next, the pump 14 sucks the reaction solution in the reaction tank 11 into the flow cell of the absorptiometer 20 and measures the absorbance. After measuring the absorbance, the flow paths L1, L6 and the reaction tank 11 are washed.

吸光度は、重水素ランプによる波長220nmと波長254nmの光をフローセル内の試料液に照射することにより測定される。フローセルを通過した光は、分光部で分光された後、リニアアレイ検出器で各々の波長毎に検出され、各々の波長毎の吸光度が求められる。220nmの吸光度は硝酸イオン濃度に対応するが、濁り成分の量の影響を受ける。254nmの吸光度は硝酸イオン濃度の吸収がないため、220nmの吸光度から254nmの吸光度を差し引いた値を、予め求めた検量線情報に基づき換算することによって、試料液の全窒素濃度が求められる。   The absorbance is measured by irradiating the sample liquid in the flow cell with light having a wavelength of 220 nm and a wavelength of 254 nm from a deuterium lamp. The light that has passed through the flow cell is spectrally separated by the spectroscopic unit, and then detected for each wavelength by the linear array detector, and the absorbance for each wavelength is obtained. The absorbance at 220 nm corresponds to the nitrate ion concentration, but is affected by the amount of turbid components. Since the absorbance at 254 nm does not absorb the nitrate ion concentration, the total nitrogen concentration of the sample solution can be obtained by converting a value obtained by subtracting the absorbance at 254 nm from the absorbance at 220 nm based on previously obtained calibration curve information.

5.全りん測定
流路L7にポンプをつないで、常閉弁SV3と常閉弁SV4を開として、流路L7内の全りん測定用の加熱分解液を反応槽11に圧送して戻す。ここに、流路L5によりL−アスコルビン酸溶液とモリブデン酸アンモニウム塩酸を導入してモリブデン青を生成させる。
次いで、ポンプ14により、吸光光度計20のフローセルに反応槽11内の反応液を吸引して、吸光度を測定する。吸光度測定後、流路L1、L7と反応槽11を洗浄する。
5). Total phosphorus measurement A pump is connected to the flow path L7, the normally closed valve SV3 and the normally closed valve SV4 are opened, and the thermal decomposition solution for measuring total phosphorus in the flow path L7 is pumped back to the reaction tank 11. Here, an L-ascorbic acid solution and ammonium molybdate hydrochloride are introduced through a flow path L5 to generate molybdenum blue.
Next, the pump 14 sucks the reaction solution in the reaction tank 11 into the flow cell of the absorptiometer 20 and measures the absorbance. After measuring the absorbance, the flow paths L1, L7 and the reaction tank 11 are washed.

吸光度は、タングステンランプによる波長880nmの光をフローセル内の試料液に照射することにより測定される。フローセルを通過した光は、分光部で分光された後、リニアアレイ検出器で検出され、880nmの波長の吸光度が求められる。この吸光度を、予め求めた検量線情報に基づき換算することによって、試料液の全りん濃度が求められる。   Absorbance is measured by irradiating the sample liquid in the flow cell with light having a wavelength of 880 nm from a tungsten lamp. The light that has passed through the flow cell is spectrally separated by the spectroscopic section, then detected by the linear array detector, and the absorbance at a wavelength of 880 nm is obtained. By converting this absorbance based on the calibration curve information obtained in advance, the total phosphorus concentration of the sample solution is obtained.

6.洗浄
反応槽11と各流路の洗浄を行う。ここまでの工程に要する時間は約60分である。
6). Cleaning The reaction tank 11 and each flow path are cleaned. The time required for the steps so far is about 60 minutes.

<校正>
分析装置において校正モードが選択された際に、演算制御部30は、以下のステップA1を含む処理を実行する。
校正モードは、操作者による入力指示によって選択されてもよいし、予めプログラムにされた所定のタイミングに従って選択されてもよい。所定のタイミングは、一定の期間毎でもよいし、試薬交換等、分析装置の使用状況が予め定めた条件を満たした時であってもよい。
<Calibration>
When the calibration mode is selected in the analyzer, the arithmetic control unit 30 executes processing including the following step A1.
The calibration mode may be selected by an input instruction from the operator, or may be selected according to a predetermined timing programmed in advance. The predetermined timing may be every certain period, or may be a time when a usage condition of the analyzer satisfies a predetermined condition such as reagent replacement.

[ステップA1]
反応部10と吸光光度計20を、校正液Zと校正液Sの各々を試料液として各々の反応液の吸光度データを得るように制御し、
校正液Zの既知濃度Cz及び校正液Sの既知濃度Cs(但しCz≠Cs)、並びに校正液Zを試料液とした際の吸光度データIz及び校正液Sを試料液とした際の吸光度データIsに基づき、吸光度を濃度に換算するための検量線情報を作成するステップ。
[Step A1]
The reaction unit 10 and the absorptiometer 20 are controlled so as to obtain absorbance data of each reaction solution using each of the calibration solution Z and the calibration solution S as sample solutions,
The known concentration Cz of the calibration solution Z, the known concentration Cs of the calibration solution S (where Cz ≠ Cs), the absorbance data Iz when the calibration solution Z is the sample solution, and the absorbance data Is when the calibration solution S is the sample solution Creating calibration curve information for converting absorbance to concentration based on the above.

校正液Zとしては、測定対象成分の濃度がゼロ、又は測定対象成分の濃度がゼロに近い既知濃度の校正液を用いることが好ましい。校正液Sとしては、測定対象成分の濃度がフルスケールの濃度、又はフルスケールの濃度に近い既知濃度の校正液を用いることが好ましい。
本実施形態では校正液Zとして純水を用いる。また、校正液Sとしては硝酸カリウム・りん酸二水素カリウム混合溶液が用いられる。この校正液Sは、全窒素、全りんの双方の校正液として共用できる。
校正液Zによる校正と校正液Sによる校正は、各々1回以上行えばよいが、高い精度を求める場合は、各々複数回行うことが好ましい。例えば、校正液Zによる校正と校正液Sによる校正を各々3回行う場合、校正に要する時間は、合計で約6時間となる。
As the calibration solution Z, it is preferable to use a calibration solution having a concentration of the measurement target component of zero or a known concentration in which the concentration of the measurement target component is close to zero. As the calibration solution S, it is preferable to use a calibration solution having a known concentration close to the full-scale concentration or a full-scale concentration.
In this embodiment, pure water is used as the calibration liquid Z. As the calibration solution S, a mixed solution of potassium nitrate and potassium dihydrogen phosphate is used. This calibration solution S can be shared as a calibration solution for both total nitrogen and total phosphorus.
The calibration with the calibration solution Z and the calibration with the calibration solution S may each be performed once or more, but when high accuracy is required, it is preferable to perform each of the calibrations a plurality of times. For example, when the calibration with the calibration liquid Z and the calibration with the calibration liquid S are each performed three times, the time required for calibration is about 6 hours in total.

全窒素測定においては、校正液Zを試料液とした際の220nmの吸光度から254nmの吸光度を差し引いた値が吸光度データIzとなる。また、校正液Sを試料液とした際の220nmの吸光度から254nmの吸光度を差し引いた値が吸光度データIsとなる。
校正液Zによる校正を複数回行った場合、検量線の作成には各吸光度データIzの平均値Izaを吸光度データIzとして用いる。また、校正液Sによる校正を複数回行った場合、検量線の作成には各吸光度データIsの平均値Isaを吸光度データIsとして用いる。
In the total nitrogen measurement, the absorbance data Iz is a value obtained by subtracting the absorbance at 254 nm from the absorbance at 220 nm when the calibration solution Z is used as the sample solution. Further, a value obtained by subtracting the absorbance at 254 nm from the absorbance at 220 nm when the calibration solution S is used as the sample solution is the absorbance data Is.
When calibration with the calibration solution Z is performed a plurality of times, the average value Iza of each absorbance data Iz is used as the absorbance data Iz for creating a calibration curve. Further, when calibration with the calibration solution S is performed a plurality of times, the average value Isa of each absorbance data Is is used as the absorbance data Is for creating a calibration curve.

吸光度データIz及び吸光度データIs、並びに校正液Zの既知濃度Cz及び校正液Sの既知濃度Csに基づき、検量線を作成することができる。検量線は、吸光度をX座標、濃度をY座標とした際に、点(Iz,Cz)と点(Is,Cs)の2点を通る直線である。
本発明における検量線情報は、吸光度データIz及び吸光度データIs、並びに既知濃度Cz及び既知濃度Csからなる情報でもよいし、これらから求めた検量線を示す式の情報でもよい。
検量線が作成されることにより、測定モードにおいて、試料液の反応液を得て吸光度を測定した際に、濃度未知の測定対象成分の濃度を検量線に基づき求めることができる。
A calibration curve can be created based on the absorbance data Iz and absorbance data Is, the known concentration Cz of the calibration solution Z, and the known concentration Cs of the calibration solution S. The calibration curve is a straight line passing through two points, the point (Iz, Cz) and the point (Is, Cs), when the absorbance is the X coordinate and the concentration is the Y coordinate.
The calibration curve information in the present invention may be information consisting of the absorbance data Iz and the absorbance data Is, the known concentration Cz and the known concentration Cs, or may be information of an equation indicating the calibration curve obtained from these.
By creating the calibration curve, the concentration of the measurement target component whose concentration is unknown can be obtained based on the calibration curve when the reaction liquid of the sample solution is obtained and the absorbance is measured in the measurement mode.

<ドリフト評価>
分析装置において校正モードが選択された際に、演算制御部30は、上記ステップA1と共に、下記のステップA2を含む処理を実行する。これにより、本発明のドリフト評価方法が実施される。
[ステップA2]
前回の校正モード時において作成した検量線情報に基づき、今回の校正モード時において得られた吸光度データIz及び吸光度データIsの一方又は両方を濃度に換算するステップ。
<Drift evaluation>
When the calibration mode is selected in the analyzer, the arithmetic control unit 30 executes a process including the following step A2 together with the step A1. Thereby, the drift evaluation method of this invention is implemented.
[Step A2]
A step of converting one or both of the absorbance data Iz and the absorbance data Is obtained in the current calibration mode into a concentration based on the calibration curve information created in the previous calibration mode.

校正液Zによる校正を複数回行う場合、ステップA2において濃度に換算する今回の吸光度データIzは、複数回の内の1回(例えば初回)において得られたデータでもよいし、複数回のデータの平均値でもよい。また、校正液Sによる校正を複数回行う場合、ステップA2において濃度に換算する今回の吸光度データIsは、複数回の内の1回(例えば初回)において得られたデータでもよいし、複数回のデータの平均値でもよい。
例えば初回のデータを用いる場合は、ステップA1が完了する前に、ステップA2を行うことも可能である。
When the calibration with the calibration solution Z is performed a plurality of times, the current absorbance data Iz converted into the concentration in step A2 may be data obtained in one of the plurality of times (for example, the first time), or a plurality of data It may be an average value. Further, when the calibration with the calibration solution S is performed a plurality of times, the current absorbance data Is converted into the concentration in step A2 may be data obtained in one of the plurality of times (for example, the first time), or a plurality of times It may be an average value of data.
For example, when using the first data, step A2 can be performed before step A1 is completed.

ステップA2では、前回の校正モード時において作成した検量線情報が、吸光度データIz及び吸光度データIs、並びに既知濃度Cz及び既知濃度Csからなる情報として記憶されていれば、これらの情報に基づき、今回の校正モード時において得られた吸光度データIz及び吸光度データIsの一方又は両方を濃度に換算する。前回の校正モード時において作成した検量線情報が、検量線を示す式として記憶されていれば、この式に基づき今回の校正モード時において得られた吸光度データIz及び吸光度データIsの一方又は両方を濃度に換算する。以下、前者の場合について換算方法を詳述するが、後者の場合も、下記の計算の一部を検量線情報作成時に行っているだけで、本質的な違いはない。   In step A2, if the calibration curve information created in the previous calibration mode is stored as information consisting of the absorbance data Iz and absorbance data Is, and the known concentration Cz and known concentration Cs, based on these information, One or both of the absorbance data Iz and the absorbance data Is obtained in the calibration mode are converted into concentrations. If the calibration curve information created in the previous calibration mode is stored as an equation indicating the calibration curve, one or both of the absorbance data Iz and the absorbance data Is obtained in the current calibration mode based on this equation are stored. Convert to concentration. Hereinafter, the conversion method will be described in detail for the former case. However, even in the latter case, only a part of the following calculation is performed when preparing the calibration curve information, and there is no essential difference.

今回の校正モード時において得られた吸光度データIzと吸光度データIsを、各々前回のものと区別するために吸光度データIz’と吸光度データIs’とすると、前回の検量線情報に基づいて、吸光度データIz’から求められる換算濃度Dzと、吸光度データIs’から求められる濃度Dsは、各々以下の式(1)、(2)で表される。
Dz=(Iz’−Iz)/(Is−Iz)*(Cs−Cz)+Cz ・・・(1)
Ds=(Is’−Is)/(Is−Iz)*(Cs−Cz)+Cs ・・・(2)
In order to distinguish the absorbance data Iz and absorbance data Is obtained in the current calibration mode from the previous one, the absorbance data Iz ′ and absorbance data Is ′ are respectively based on the previous calibration curve information. The converted concentration Dz obtained from Iz ′ and the concentration Ds obtained from the absorbance data Is ′ are represented by the following formulas (1) and (2), respectively.
Dz = (Iz′−Iz) / (Is−Iz) * (Cs−Cz) + Cz (1)
Ds = (Is′−Is) / (Is−Iz) * (Cs−Cz) + Cs (2)

なお、検量線情報が検量線を示す式の場合、上記式(1)、(2)は、以下の式(1)’、(2)’となる。
Dz=α*Iz’+β ・・・(1)’
Ds=α*Is’+β ・・・(2)’
但し、式(1)’、(2)’において、
α=(Cs−Cz)/(Is−Iz)
β=(Cz*Is−Cs*Iz)/(Is−Iz)
When the calibration curve information is a formula indicating a calibration curve, the above formulas (1) and (2) become the following formulas (1) ′ and (2) ′.
Dz = α * Iz ′ + β (1) ′
Ds = α * Is ′ + β (2) ′
However, in the formulas (1) ′ and (2) ′,
α = (Cs−Cz) / (Is−Iz)
β = (Cz * Is−Cs * Iz) / (Is−Iz)

演算制御部30が、式(1)及び式(2)の少なくとも一方を行うことにより、吸光度ではなく、濃度として扱える数値が得られる。そのため、操作者は、式(1)で得られた換算濃度Dzを、今回の校正モード時において用いた校正液Zの既知濃度Cz’と対比するか、式(2)で得られた換算濃度Dsを、今回の校正モード時において用いた校正液Sの既知濃度Cs’と対比することにより、ドリフト状況を直感的に認識することができる。   When the arithmetic control unit 30 performs at least one of the equations (1) and (2), a numerical value that can be handled as a concentration, not an absorbance, is obtained. Therefore, the operator compares the converted concentration Dz obtained by the equation (1) with the known concentration Cz ′ of the calibration solution Z used in the current calibration mode, or the converted concentration obtained by the equation (2). By comparing Ds with the known concentration Cs ′ of the calibration solution S used in the current calibration mode, the drift situation can be intuitively recognized.

演算制御部30は、前記式(1)及び式(2)に代えて、下記式(3)または式(4)を行ってもよい。この場合、ドリフト量を濃度換算で直接得られるので、操作者は、ドリフト状況をより直感的に認識することができる。
Dz−Cz’=(Iz’−Iz)/(Is−Iz)*(Cs−Cz)+Cz−Cz’
・・・(3)
Ds−Cs’=(Is’−Is)/(Is−Iz)*(Cs−Cz)+Cs−Cs’
・・・(4)
The arithmetic control unit 30 may perform the following formula (3) or formula (4) instead of the formula (1) and formula (2). In this case, since the drift amount can be obtained directly in terms of concentration, the operator can recognize the drift situation more intuitively.
Dz−Cz ′ = (Iz′−Iz) / (Is−Iz) * (Cs−Cz) + Cz−Cz ′
... (3)
Ds−Cs ′ = (Is′−Is) / (Is−Iz) * (Cs−Cz) + Cs−Cs ′
... (4)

なお、前回の校正時と今回の校正時に用いる校正液の既知濃度に変更がなければ(Cz=Cz’、Cs=Cs’)、式(3)と式(4)は、以下の式(5)と式(6)となる。
Dz−Cz=(Iz’−Iz)/(Is−Iz)*(Cs−Cz) ・・・(5)
Ds−Cs=(Is’−Is)/(Is−Iz)*(Cs−Cz) ・・・(6)
また、本実施形態のように、前回の校正時と今回の校正時に用いる校正液Zの既知濃度Czが共にゼロである場合(Cz=0)、式(5)と式(6)は、以下の式(7)と式(8)となる。
Dz=(Iz’−Iz)/(Is−Iz)*Cs ・・・(7)
Ds−Cs=(Is’−Is)/(Is−Iz)*Cs ・・・(8)
If there is no change in the known concentration of the calibration solution used during the previous calibration and the current calibration (Cz = Cz ′, Cs = Cs ′), the equations (3) and (4) are expressed by the following equation (5 ) And Equation (6).
Dz−Cz = (Iz′−Iz) / (Is−Iz) * (Cs−Cz) (5)
Ds−Cs = (Is′−Is) / (Is−Iz) * (Cs−Cz) (6)
Further, as in this embodiment, when the known concentration Cz of the calibration liquid Z used at the previous calibration and the current calibration is both zero (Cz = 0), the equations (5) and (6) are as follows: (7) and (8).
Dz = (Iz′−Iz) / (Is−Iz) * Cs (7)
Ds−Cs = (Is′−Is) / (Is−Iz) * Cs (8)

また、演算制御部30は、前記式(5)及び式(6)に代えて、下記式(9)または式(10)を行ってもよい。この場合、ドリフト量をフルスケール濃度(FS)における比率(%)として得られるので、操作者は、測定値に与えるドリフトの影響をさらに直感的に認識することができる。
[Dz−Cz](%)
=(Iz’−Iz)/(Is−Iz)*(Cs−Cz)/FS*100 ・・・(9)
[Ds−Cs](%)
=(Is’−Is)/(Is−Iz)*(Cs−Cz)/FS*100 ・・・(10)
前回の校正時と今回の校正時に用いる校正液Zの既知濃度Czが共にゼロであり、かつ校正液Sの既知濃度Csが共にフルスケール濃度(FS)である場合(Cz=Cz’=0、Cs=FS)、式(9)と式(10)は、以下の式(11)と式(12)となる。
[Dz](%)=(Iz’−Iz)/(Is−Iz)*100 ・・・(11)
[Ds−Cs](%)=(Is’−Is)/(Is−Iz)*100 ・・・(12)
Further, the arithmetic control unit 30 may perform the following formula (9) or formula (10) instead of the formula (5) and formula (6). In this case, since the drift amount is obtained as a ratio (%) in the full scale concentration (FS), the operator can more intuitively recognize the influence of the drift on the measurement value.
[Dz-Cz] (%)
= (Iz'-Iz) / (Is-Iz) * (Cs-Cz) / FS * 100 (9)
[Ds-Cs] (%)
= (Is'-Is) / (Is-Iz) * (Cs-Cz) / FS * 100 (10)
When the known concentration Cz of the calibration solution Z used at the previous calibration and the current calibration is both zero and the known concentration Cs of the calibration solution S is both full scale concentration (FS) (Cz = Cz ′ = 0, Cs = FS), Expressions (9) and (10) become Expressions (11) and (12) below.
[Dz] (%) = (Iz′−Iz) / (Is−Iz) * 100 (11)
[Ds−Cs] (%) = (Is′−Is) / (Is−Iz) * 100 (12)

演算制御部30が、上記の式(1)〜(12)の何れか1以上の演算を行うことにより、本発明のドリフト評価方法が完了する。ただし、演算制御部30が、上記の式(1)、式(2)の何れかの演算を行うところで、演算処理を終了する場合、操作者が換算濃度と既知濃度とを対比し、その差を求めることによって本発明のドリフト評価方法が完了する。   When the calculation control unit 30 performs one or more calculations of any of the above formulas (1) to (12), the drift evaluation method of the present invention is completed. However, when the calculation control unit 30 performs the calculation of either of the above formulas (1) and (2), when the calculation process is terminated, the operator compares the converted concentration with the known concentration, and the difference To complete the drift evaluation method of the present invention.

本発明のドリフト評価方法が完了すると、操作者は、ドリフトの状況を直感的に確認できる。
また、上記演算は、校正のために得たデータをそのまま転用して行えるので、ドリフト確認のため、試料液と試薬との反応をわざわざ行う必要がない。
また、上記演算を校正モードにおいて、校正液Zによる校正と校正液Sによる校正を各々複数回行う場合、初回の校正により得られたデータを用いて上記演算を行えば、校正の全工程の終了を待たずにドリフト状況の確認ができる。
そのため、ドリフト状況によっては、残りの校正工程を中止するなどの対処も可能となる。
When the drift evaluation method of the present invention is completed, the operator can intuitively confirm the state of drift.
In addition, since the above calculation can be performed by directly using the data obtained for calibration, there is no need to bother the reaction between the sample solution and the reagent in order to confirm the drift.
In the calibration mode, when the calibration with the calibration liquid Z and the calibration with the calibration liquid S are each performed a plurality of times, if the above computation is performed using the data obtained by the first calibration, the entire calibration process is completed. Drift status can be confirmed without waiting.
Therefore, depending on the drift situation, it is possible to take measures such as canceling the remaining calibration process.

なお、上記実施形態では、全窒素、全りん、CODの3項目をJIS法に準拠して求める分析装置を例にとって説明したが、分析装置の分析対象はこれに限られず、例えば、全窒素、全りんの2項目を求める分析装置であってもよい。また、六価クロム、全クロム、ニッケルマンガン、銅等を試料液と試薬を反応させて吸光度分析する装置であってもよい。また、水銀化合物を試薬との反応により水銀に変換した試料液から、気化させた水銀を原子吸光光度法によって求める水銀測定装置であってもよい。   In the above-described embodiment, the analysis apparatus for obtaining the three items of total nitrogen, total phosphorus, and COD according to the JIS method has been described as an example. However, the analysis target of the analysis apparatus is not limited to this, for example, total nitrogen, An analyzer that calculates two items of total phosphorus may be used. Further, an apparatus for performing an absorbance analysis by reacting a sample solution with a reagent of hexavalent chromium, total chromium, nickel manganese, copper, or the like may be used. Alternatively, a mercury measuring apparatus may be used that obtains vaporized mercury by atomic absorption spectrophotometry from a sample solution obtained by converting a mercury compound into mercury by reaction with a reagent.

また、反応部と、吸光光度計の具体的な構成、及び分析の手順は、分析対象成分に応じて適宜変更すればよく、特に限定はない。   Further, the specific configuration of the reaction unit, the absorptiometer, and the analysis procedure may be appropriately changed according to the analysis target component, and there is no particular limitation.

また、上記実施形態では、各ステップを実行させるためのプログラムが演算制御部30に組み込まれている態様としたが、演算制御部30の機能の一部または全部は、直接または通信システムを利用して接続された外部コンピュータに担わせてもよい。
その場合、プログラムは、予めコンピュータに記録されていてもよいし、コンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータに読み込ませてもよい。
また、予めコンピュータに記録されているプログラムと、コンピュータ読み取り可能な記録媒体に記録し、コンピュータに読み込ませるプログラムとを組み合わせてもよい。
Moreover, in the said embodiment, although the program for performing each step was taken as the aspect integrated in the calculation control part 30, a part or all of the function of the calculation control part 30 uses a communication system directly or. It may be carried by a connected external computer.
In this case, the program may be recorded in advance on a computer, or may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by the computer.
Further, a program recorded in advance in a computer and a program recorded in a computer-readable recording medium and read into the computer may be combined.

10…反応部、11…反応槽、12…加熱分解槽、13…温度センサー、
14…ポンプ、20…吸光光度計、30…演算制御部
DESCRIPTION OF SYMBOLS 10 ... Reaction part, 11 ... Reaction tank, 12 ... Thermal decomposition tank, 13 ... Temperature sensor,
14 ... Pump, 20 ... Absorptiometer, 30 ... Calculation control unit

Claims (5)

試料液に試薬を反応させて反応液を得る反応部と
得られた反応液の吸光度を測定する吸光光度計と、
前記反応部及び前記吸光光度計を制御すると共に、前記吸光光度計で得られる吸光度が入力される演算制御部を備え、
前記演算制御部は、校正モードにおいて、校正液Zの既知濃度Cz及び校正液Sの既知濃度Cs(但しCz≠Cs)、並びに校正液Zを試料液とした際の吸光度データIz及び校正液Sを試料液とした際の吸光度データIsに基づき、吸光度を濃度に換算するための検量線情報を作成すると共に、
前回の校正モード時において作成した検量線情報に基づき、今回の校正モード時において得られた吸光度データIz及び吸光度データIsの一方又は両方を濃度に換算することを特徴とする分析装置。
A reaction part for reacting a reagent with a sample solution to obtain a reaction solution, an absorptiometer for measuring the absorbance of the obtained reaction solution,
A control unit for controlling the reaction unit and the absorptiometer and inputting the absorbance obtained by the absorptiometer,
In the calibration mode, the arithmetic control unit performs the calibration solution Z with the known concentration Cz and the calibration solution S with the known concentration Cs (where Cz ≠ Cs), the absorbance data Iz when the calibration solution Z is used as the sample solution, and the calibration solution S. Based on the absorbance data Is when the sample solution is used, the calibration curve information for converting the absorbance into the concentration is created,
An analyzer characterized by converting one or both of absorbance data Iz and absorbance data Is obtained in the current calibration mode into a concentration based on calibration curve information created in the previous calibration mode.
前記演算制御部は、前記校正液Z及び前記校正液Sの一方又は両方について、前記換算した濃度と、今回の校正モード時における既知濃度との差を求める請求項1に記載の分析装置。   The analyzer according to claim 1, wherein the arithmetic control unit obtains a difference between the converted concentration and a known concentration in the current calibration mode for one or both of the calibration solution Z and the calibration solution S. 試料液に試薬を反応させて得られた反応液の吸光度を測定して試料液の濃度を求める分析装置のドリフト評価方法であって、
校正モード時に、校正液Zの既知濃度Cz及び校正液Sの既知濃度Cs(但しCz≠Cs)、並びに校正液Zを試料液とした際の吸光度データIz及び校正液Sを試料液とした際の吸光度データIsに基づき、吸光度を濃度に換算するための検量線情報を作成すると共に、
前記校正液Z及び前記校正液Sの一方又は両方について、前回の校正モード時において作成した検量線情報に基づき、今回の校正モード時において得られた吸光度データを濃度に換算し、前記換算した濃度と、今回の校正モード時における既知濃度との差を求めることを特徴とする分析装置のドリフト評価方法。
A drift evaluation method for an analyzer that measures the absorbance of a reaction solution obtained by reacting a reagent with a sample solution to determine the concentration of the sample solution,
In the calibration mode, when the calibration solution Z has the known concentration Cz, the calibration solution S has the known concentration Cs (where Cz ≠ Cs), and the absorbance data Iz when the calibration solution Z is the sample solution and the calibration solution S is the sample solution Based on the absorbance data Is, calibration curve information for converting the absorbance into a concentration is created,
For one or both of the calibration solution Z and the calibration solution S, the absorbance data obtained in the current calibration mode is converted into a concentration based on the calibration curve information created in the previous calibration mode, and the converted concentration And a drift evaluation method for an analyzer, wherein a difference between the measured concentration and the known concentration in the current calibration mode is obtained.
試料液に試薬を反応させて反応液を得る反応部と
得られた反応液の吸光度を測定する吸光光度計と、
前記反応部及び前記吸光光度計を制御すると共に、前記吸光光度計で得られる吸光度が入力される演算制御部を備える分析装置において校正モードが選択された際に、
前記演算制御部に以下のステップを含む処理を実行させるプログラム。
[ステップA1]
前記反応部と前記吸光光度計を、校正液Zと校正液Sの各々を試料液として各々の反応液の吸光度データを得るように制御し、
校正液Zの既知濃度Cz及び校正液Sの既知濃度Cs(但しCz≠Cs)、並びに校正液Zを試料液とした際の吸光度データIz及び校正液Sを試料液とした際の吸光度データIsに基づき、吸光度を濃度に換算するための検量線情報を作成するステップ。
[ステップA2]
前回の校正モード時において作成した検量線情報に基づき、今回の校正モード時において得られた吸光度データIz及び吸光度データIsの一方又は両方を濃度に換算するステップ。
A reaction part for reacting a reagent with a sample solution to obtain a reaction solution, an absorptiometer for measuring the absorbance of the obtained reaction solution,
When controlling the reaction unit and the absorptiometer, and when a calibration mode is selected in an analyzer having an operation control unit to which the absorbance obtained by the absorptiometer is input,
A program for causing the arithmetic control unit to execute processing including the following steps.
[Step A1]
The reaction unit and the absorptiometer are controlled so as to obtain absorbance data of each reaction solution using each of the calibration solution Z and the calibration solution S as sample solutions,
The known concentration Cz of the calibration solution Z, the known concentration Cs of the calibration solution S (where Cz ≠ Cs), the absorbance data Iz when the calibration solution Z is the sample solution, and the absorbance data Is when the calibration solution S is the sample solution Creating calibration curve information for converting absorbance to concentration based on the above.
[Step A2]
A step of converting one or both of the absorbance data Iz and the absorbance data Is obtained in the current calibration mode into a concentration based on the calibration curve information created in the previous calibration mode.
前記ステップA2が、さらに、前記校正液Z及び前記校正液Sの一方又は両方について、前記換算した濃度と、今回の校正モード時における既知濃度との差を求めるステップである請求項4に記載のプログラム。   The step A2 is a step of further obtaining a difference between the converted concentration and a known concentration in the current calibration mode for one or both of the calibration solution Z and the calibration solution S. program.
JP2015238678A 2015-12-07 2015-12-07 Analysis equipment Active JP6730579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015238678A JP6730579B2 (en) 2015-12-07 2015-12-07 Analysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015238678A JP6730579B2 (en) 2015-12-07 2015-12-07 Analysis equipment

Publications (2)

Publication Number Publication Date
JP2017106747A true JP2017106747A (en) 2017-06-15
JP6730579B2 JP6730579B2 (en) 2020-07-29

Family

ID=59059346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015238678A Active JP6730579B2 (en) 2015-12-07 2015-12-07 Analysis equipment

Country Status (1)

Country Link
JP (1) JP6730579B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112304882A (en) * 2019-07-30 2021-02-02 东亚Dkk株式会社 Analysis device
CN114384028A (en) * 2021-12-14 2022-04-22 安徽皖仪科技股份有限公司 Peak drift correction method for continuous flow analyzer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038657B2 (en) * 1980-08-25 1985-09-02 マツダ株式会社 Spectroscopic analysis method
JPS6263839A (en) * 1985-08-16 1987-03-20 Yokogawa Electric Corp Method and device for automatic calibration of gas analyzer
JPH0252239A (en) * 1988-08-15 1990-02-21 Nippon Steel Corp Analysis methode
JPH05133849A (en) * 1991-11-14 1993-05-28 Nippon Steel Corp Time series correcting method of analysis value
JPH10239237A (en) * 1997-02-28 1998-09-11 Ngk Insulators Ltd Method and device for duct concentration measurement
JPH10318916A (en) * 1997-05-14 1998-12-04 Sumitomo Metal Mining Co Ltd Determining method of nitrosyl ruthenium in tributyl phosphorate
JPH1183831A (en) * 1997-09-10 1999-03-26 Fuji Electric Co Ltd Method for analyzing cobalt of ion exchange resin ash
JP2002055049A (en) * 2000-08-14 2002-02-20 Horiba Ltd Continuous measuring apparatus
US20050107956A1 (en) * 2001-12-27 2005-05-19 Arkray, Inc. Concentration measuring method
JP2006275754A (en) * 2005-03-29 2006-10-12 Horiba Ltd Analyzer and calibration method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038657B2 (en) * 1980-08-25 1985-09-02 マツダ株式会社 Spectroscopic analysis method
JPS6263839A (en) * 1985-08-16 1987-03-20 Yokogawa Electric Corp Method and device for automatic calibration of gas analyzer
JPH0252239A (en) * 1988-08-15 1990-02-21 Nippon Steel Corp Analysis methode
JPH05133849A (en) * 1991-11-14 1993-05-28 Nippon Steel Corp Time series correcting method of analysis value
JPH10239237A (en) * 1997-02-28 1998-09-11 Ngk Insulators Ltd Method and device for duct concentration measurement
JPH10318916A (en) * 1997-05-14 1998-12-04 Sumitomo Metal Mining Co Ltd Determining method of nitrosyl ruthenium in tributyl phosphorate
JPH1183831A (en) * 1997-09-10 1999-03-26 Fuji Electric Co Ltd Method for analyzing cobalt of ion exchange resin ash
JP2002055049A (en) * 2000-08-14 2002-02-20 Horiba Ltd Continuous measuring apparatus
US20050107956A1 (en) * 2001-12-27 2005-05-19 Arkray, Inc. Concentration measuring method
JP2006275754A (en) * 2005-03-29 2006-10-12 Horiba Ltd Analyzer and calibration method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112304882A (en) * 2019-07-30 2021-02-02 东亚Dkk株式会社 Analysis device
CN112304882B (en) * 2019-07-30 2024-04-05 东亚Dkk株式会社 Analysis device
CN114384028A (en) * 2021-12-14 2022-04-22 安徽皖仪科技股份有限公司 Peak drift correction method for continuous flow analyzer
CN114384028B (en) * 2021-12-14 2023-10-24 安徽皖仪科技股份有限公司 Peak drift correction method for continuous flow analyzer

Also Published As

Publication number Publication date
JP6730579B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
Szabó et al. Equilibria and kinetics of chromium (VI) speciation in aqueous solution–A comprehensive study from pH 2 to 11
CN105190289A (en) Water hardness monitoring via fluorescence
CN101408515B (en) Method for measuring zirconium in steel
JP2017106747A (en) Analysis device, method of evaluating drift of the same, and program
JP6155509B2 (en) Measuring method of total organic carbon in heavy oxygen water
JP3578470B2 (en) Mixed acid concentration measuring device
EP3317644B1 (en) Calibration method for water hardness measurement
Lin et al. Calibration transfer from a scanning near-IR spectrophotometer to a FT-near-IR spectrophotometer
Horstkotte et al. Sequential injection analysis for automation of the Winkler methodology, with real-time SIMPLEX optimization and shipboard application
CN111948303B (en) Method for detecting concentration of hydroxyl free radicals by using probe compound
Amanatidou et al. An easy uncertainty evaluation of the COD titrimetric analysis in correlation with quality control and validation data. Method applicability region
JP2017106746A (en) Analysis device, method of evaluating repeatability of the same, and program
JP4075664B2 (en) Arsenic concentration measurement method and apparatus
JP6777915B2 (en) Analytical method and analyzer
Kirishima et al. Determination and comparison of the thermodynamic quantities of U (VI) complexation with “aliphatic” and “aromatic” di-carboxylic acids by calorimetry
JP4048139B2 (en) Concentration measuring device
US20110133099A1 (en) Silicon concentration measuring instrument
JP2010261895A (en) Method and apparatus for measuring concentration of trace constituent in solution
Bailly et al. Plutonium (IV) quantification in acidic process solutions using partial least-squares regression applied to UV–Vis spectrophotometry
Abouhiat et al. Automatic integrated system for catalytic spectrophotometric determination of vanadium in water samples
Savosina et al. Simultaneous quantification of Zr, Mo, U, Np and Pu in technological solutions of spent nuclear fuel reprocessing with a potentiometric multisensor system
CN107389567B (en) Gas phase molecular absorption spectrometer
JP2011117747A (en) Silica concentration measurement apparatus and silica concentration measurement method
Ramamohan et al. Modeling uncertainty due to instrument drift in clinical laboratories
RU2297620C1 (en) Method of determination of the composition of the extracting mixture of tributylphosphate and the solvent

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6730579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250