JPH0252239A - Analysis methode - Google Patents

Analysis methode

Info

Publication number
JPH0252239A
JPH0252239A JP20283888A JP20283888A JPH0252239A JP H0252239 A JPH0252239 A JP H0252239A JP 20283888 A JP20283888 A JP 20283888A JP 20283888 A JP20283888 A JP 20283888A JP H0252239 A JPH0252239 A JP H0252239A
Authority
JP
Japan
Prior art keywords
calibration curve
absorbance
analysis
sample
results
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20283888A
Other languages
Japanese (ja)
Inventor
Kengo Senoo
妹尾 健吾
Kunio Shiratori
白取 久仁雄
Kenichiro Nishimura
西村 研一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINNITSUTETSU JOHO TSUSHIN SYST KK
Nippon Steel Corp
Nippon Steel Information and Communication Systems Inc
Original Assignee
SHINNITSUTETSU JOHO TSUSHIN SYST KK
Nippon Steel Corp
Nippon Steel Information and Communication Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINNITSUTETSU JOHO TSUSHIN SYST KK, Nippon Steel Corp, Nippon Steel Information and Communication Systems Inc filed Critical SHINNITSUTETSU JOHO TSUSHIN SYST KK
Priority to JP20283888A priority Critical patent/JPH0252239A/en
Publication of JPH0252239A publication Critical patent/JPH0252239A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To prevent the degradation of analysis accuracy by external factors such as atmospheric temp. so that an exact analysis is enabled and quality is improved by remeasuring the absorbance or emission intensity of a standard sample in accordance with the change in external factor and setting a fresh calibration curve. CONSTITUTION:The standard sample soln. is introduced from a sample soln. tank 1 into a reaction vessel 2 and reagents are introduced from reagent tanks 3a-3e into the vessel 2. While the sample soln. (chromatic ion) is kept heated by a heater 4 and is circulated and moved to a flow cell 6 by suction from an air suction pipe 5, light is emitted from a luminous body 7 and the absorbance of the chromatic ion coloration region is measured by a photocell 8. The average value is computed by a computing element 9. The color forming reagents are then introduced from the reagent tanks 3a-3e to the reaction vessel and while the reagents are moved as color forming ions to the flow cell 6, the light is emitted from the luminous body 7. The absorbance is measured by the photocell 8 and the average value is computed by the computing device 9. The ion concn. of the standard sample is changed in this way and several kinds are measured, then the calibration curve is set. The ion quantity of the sample (object to be analyzed) is analyzed in accordance with the calibration curve and is displayed on a printer 10.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は鉄、非鉄金属等の金属中の成分分析又は水溶液
中の金属を分析する分析方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an analysis method for analyzing components in metals such as iron and non-ferrous metals, or for analyzing metals in aqueous solutions.

(従来の技術) 上記のごときは金属の分析方法としては、例えば、特開
昭48−31987号公報に開示されているごくと標準
試料の測定に基いて標準検量線を設定し、試料の測定結
果をもとにして該検量線からイオン量を分析している。
(Prior art) In the above metal analysis method, for example, a standard calibration curve is set based on the measurement of a standard sample disclosed in JP-A-48-31987, and the sample is measured. Based on the results, the amount of ions is analyzed from the calibration curve.

(発明が解決しようとする課題) ところが、このような分析方法においては、常時検量線
が一定であり、種々の外的要因の変化に基く検量線の変
更修正がなされず、分析値に誤差が生ずる等の欠点をと
もなうものである。
(Problem to be Solved by the Invention) However, in such an analysis method, the calibration curve is always constant, and the calibration curve is not changed or corrected based on changes in various external factors, resulting in errors in the analytical values. However, it comes with disadvantages such as:

(課題を解決するための手段) 本発明は、このような欠点を解決するためなされたもの
で、イオン濃度の異なる標準試料の吸光度又は発光強度
を測定してその結果をもとに検量線を設定し、該検量線
に基き試料の成分分析を行うようにした分析方法におい
て、前記標準試料の吸光度又は発光強度を外的要因の変
化に応じ再測定し、その結果を演算器へ導いて新たな検
量線を設定して該検量線に基き以後の試料成分分析を行
うことを特徴とする分析方法と、この種の分析方法によ
る分析精度をより高めるため、さらに前記分析方法によ
り分析すると同時に前記した前後の検量線設定時刻間に
行った試料成分分析結果を前後の測定結果から推定して
設定される検量線に基き修正するようにした分析方法と
、前記分析方法により分析したうえ以後の試料成分分析
を前後の測定結果から予測して設定される予測検量線に
基き行うようにした分析方法とよりなるものである本発
明は、分析誤差について発明者等が検討した結果、春、
夏、秋、冬の気温の変化、又これら時期の1日の内、午
前と午後、昼間と夜間には気温の変化があり、更に昼間
と夜間においては電力使用量増減にともなう電圧の変化
等の外的要因の変化により吸光度、発光度等が変化し、
分析誤差になることが明らかになった。そこで、本発明
においては、例えば、分析誤差が生ずるおそれのある上
記のごとき外的要因の変化が起きる毎に検量線を設定す
る、つまり、初期検量線設定から一定時間経過後再度検
量線を設定し、その時の検量線に基き試料成分分析を行
い、外的要因の変化による分析誤差を解消するものであ
る。
(Means for Solving the Problems) The present invention was made to solve these drawbacks, and it measures the absorbance or luminescence intensity of standard samples with different ion concentrations and creates a calibration curve based on the results. In this analysis method, the absorbance or luminescence intensity of the standard sample is remeasured in response to changes in external factors, and the results are led to a computer to perform a new analysis. An analysis method characterized by setting a standard calibration curve and performing subsequent sample component analysis based on the calibration curve, and in order to further improve the analysis accuracy by this type of analysis method, the analysis method An analysis method that corrects the sample component analysis results performed between the calibration curve setting times before and after the calibration curve is estimated from the measurement results before and after the calibration curve is set, and a sample that has been analyzed using the above analysis method and then The present invention consists of an analysis method in which component analysis is performed based on a predicted calibration curve that is set by predicting from the previous and subsequent measurement results.As a result of the inventors' study on analysis errors, the present invention was developed in the spring.
Temperature changes in summer, autumn, and winter, as well as temperature changes in the morning and afternoon, daytime and nighttime during these seasons, and voltage changes during the daytime and nighttime due to increases and decreases in electricity usage, etc. Absorbance, luminescence intensity, etc. change due to changes in external factors,
It became clear that this was an analysis error. Therefore, in the present invention, for example, a calibration curve is set every time a change in external factors such as those described above that may cause analysis errors occurs, that is, a calibration curve is set again after a certain period of time has passed from the initial calibration curve setting. Then, sample component analysis is performed based on the calibration curve at that time to eliminate analysis errors caused by changes in external factors.

検量線の設定方法としては、単一標準試料に基く検量線
設定では正確な設定が困難であり、従って、イオン量の
異なる標準試料種類が多い程精度は向上するが、作業能
率等の関係から2〜4種類が好ましく、例えば溶液循環
型自動吸光分析法、原子吸光分析法、赤外線吸収分析法
の場合は吸光度を、また、高周波誘導結合プラズマ発光
分析法(I CP分析法)、スパーク発光分析法(カン
トハック分析法)、グロー放電発光分析法(GD3分析
法)の場合は発光強度を測定し、その結果を演算器へ導
き、現在時刻の検量線を設定し、これに基き試料成分の
分析を続ける。しかして、一定時間経過後、即ち、外的
要因の変動により分析誤差が生ずるおそれがきたとき、
上記のごとく吸光度又は発光強度を再度測定し、現在時
刻の新たな検量線を設定し、以後、新たな検量線に基き
試料成分の分析を続けることにより分析誤差を解消する
ものである。このようにして外的要因の変動に応じて順
次新たな検量線を設定するものである。
As for how to set the calibration curve, it is difficult to set the calibration curve accurately by setting the calibration curve based on a single standard sample.Therefore, the more types of standard samples with different ion amounts are used, the higher the accuracy will be, but due to work efficiency etc. Two to four types are preferable, for example, absorbance in the case of solution circulation type automatic absorption spectrometry, atomic absorption spectrometry, infrared absorption spectrometry, high frequency inductively coupled plasma emission spectrometry (I CP analysis), spark emission spectrometry. (Canthack analysis method) and glow discharge optical emission spectrometry (GD3 analysis method), the luminescence intensity is measured, the results are sent to a calculator, a calibration curve for the current time is set, and the sample components are analyzed based on this. Continue. However, after a certain period of time has elapsed, that is, when there is a risk that analysis errors may occur due to fluctuations in external factors,
As described above, the absorbance or luminescence intensity is measured again, a new calibration curve for the current time is set, and thereafter analysis of sample components is continued based on the new calibration curve to eliminate analysis errors. In this way, new calibration curves are sequentially set in response to changes in external factors.

更に、分析精度を向上するためには、上記のごとく複数
回の検量線を設定しても検量線設定間において厳密には
外的要因の変動が生しているから、それぞれの検量線設
定値を演算器へ導き、検量線設定間の検量線を推定設定
し、この推定検量線によりその間の成分分析値を修正す
れば一層分析精度を向上することができる。
Furthermore, in order to improve analysis accuracy, even if the calibration curve is set multiple times as described above, strictly speaking, fluctuations due to external factors occur between the calibration curve settings, so it is necessary to set the calibration curve setting value for each calibration curve. The analysis accuracy can be further improved by guiding the calculation unit to a calculator, estimating a calibration curve between the calibration curve settings, and correcting the component analysis values between the calibration curves using this estimated calibration curve.

このような検量線設定間に推定検量線を設定する演算式
としては、例えば、 fcx)−ax’″−’ + b x ’−’ + c
 x ”−’−f (x) :吸光度又は発光強度、 a、bXc:定数、X:時間、n:標準試料測定回数、 f(y)=Ay’″−1+ B ym−2+CyII−
J・・・f(y):吸光度又は発光強度、 A、B、C:定数、m:イオン水準、y:イオン量、 で、検量線設定間のほぼ中間点時刻の検量線を設定し、
これに基き分析済の分析値を補正する。
As an arithmetic expression for setting an estimated calibration curve between such calibration curve settings, for example, fcx)-ax'''-' + b x '-' + c
x"-'-f (x): Absorbance or emission intensity, a, bXc: constant, X: time, n: number of standard sample measurements, f(y)=Ay'"-1+B ym-2+CyII-
J...f(y): absorbance or emission intensity, A, B, C: constant, m: ion level, y: ion amount, Set a calibration curve at approximately the midpoint time between the calibration curve settings,
Based on this, the analyzed value is corrected.

更にまた、分析精度を向上するためには、上記のごとく
前後の検量線を設定後は前後の測定結果からその後の予
測検量線を予測設定し、以後の試料成分分析はこの予測
検量線に基き行うようにしてもよい。
Furthermore, in order to improve analysis accuracy, after setting the previous and subsequent calibration curves as described above, a subsequent predicted calibration curve should be set based on the previous and subsequent measurement results, and subsequent sample component analysis should be based on this predicted calibration curve. You may also do so.

このような本発明方法による分析は、例えば、鉄(鋼)
中の成分(P、Mn、■、A1、Si、C,S等)、非
鉄金属中の成分、各種溶液中の成分等を分析することが
できる。
Analysis by such a method of the present invention can be performed, for example, on iron (steel).
Components (P, Mn, ■, A1, Si, C, S, etc.), components in nonferrous metals, components in various solutions, etc. can be analyzed.

次に本発明を図面により説明する。Next, the present invention will be explained with reference to the drawings.

(溶液循環型自動吸光分析) 第1図において試料溶液槽(1)から標準試料溶液を反
応槽(2)へ導入し、一方、試薬槽(3a)、(3b)
、(3c)、(3d)、(3e)から試薬を反応槽(2
)へ導き、ヒーター(4)で加熱しつつ、p e :l
+をFe2+へ還元した後、試料溶液(有色イオン)を
空気吹込管(5)からの空気吹込みによりフローセル(
6)へ循環移動させつつ該フローセル(6)に発光体(
7)から発光し、ホトマル(8)で有色イオン呈色域の
吸光度を複数回測定してその結果を演算器(9)へ導入
し平均値を演算する。次いで、試薬槽(3a)、(3b
)、(3c)、(3d)、(3e)から発色試薬を反応
槽(2)へ導き、発色イオンとしこれを上記同様にフロ
ーセル(6)へ循環移動させつつ発光体(7)から発光
し、ホトマル(8)で発光域の吸光度を複数回測定し、
その結果を上記演算器(9)へ導き、その平均値を演算
して前記有色イオン呈色域の測定結果と合わせる。
(Solution circulation type automatic absorption analysis) In Fig. 1, the standard sample solution is introduced from the sample solution tank (1) into the reaction tank (2), while the reagent tanks (3a) and (3b)
, (3c), (3d), and (3e) into the reaction tank (2
) and while heating it with the heater (4), p e :l
After reducing + to Fe2+, the sample solution (colored ions) is transferred to the flow cell (
The luminescent material (
7), the absorbance of the colored ion color region is measured multiple times using a photomultiplier (8), and the results are introduced into a calculator (9) to calculate an average value. Next, reagent tanks (3a) and (3b
), (3c), (3d), and (3e) are led to the reaction tank (2), where they are converted into colored ions and circulated to the flow cell (6) in the same manner as described above, while being emitted from the luminescent body (7). , the absorbance of the luminescent region was measured multiple times with Photomar (8),
The results are led to the arithmetic unit (9), and the average value thereof is calculated and combined with the measurement results of the colored ion color range.

このようにして、前記標準試料のイオン濃度を変化させ
たもの数種類を同様に測定し、その結果を演算器(9)
に導いて現在時刻の検量線を設定する。この検量線に基
き、試料(被分析体)のイオン量を分析し、その結果を
プリンター00)へ表示するしかして、このような分析
を継続して外的要因により分析誤差が生ずる事態が予想
されるとき、つまり一定時間経過後に上記のごとく操作
して新たな検量線を設定し、以後この検量線に基き分析
を行い、外的要因による分析誤差を解消するものである
In this way, several types of standard samples with different ion concentrations are measured in the same way, and the results are sent to the computer (9).
and set the calibration curve for the current time. Based on this calibration curve, the amount of ions in the sample (analyte) is analyzed and the results are displayed on the printer (00).However, if this type of analysis is continued, it is expected that analysis errors will occur due to external factors. In other words, after a certain period of time has elapsed, a new calibration curve is set by operating as described above, and subsequent analysis is performed based on this calibration curve to eliminate analysis errors caused by external factors.

更に、より一層分析精度を向上する場合は前記設定検量
線と上記新たな設定検量線から両者間の試料測定時刻に
おける検量線を測定試料毎に推定し、この検量線に基き
前記検量線設定時がら新たな検量線設定後迄に分析した
分析値を各々修正する。
Furthermore, in order to further improve the analysis accuracy, estimate a calibration curve between the set calibration curve and the new set calibration curve at the sample measurement time for each measurement sample, and use this calibration curve to estimate the calibration curve at the time of setting the calibration curve. However, each analytical value analyzed up to the time of setting a new calibration curve is corrected.

(原子吸光分析) 第2図において、試料溶液槽(1)から標準試料溶液を
噴霧室(11)へ噴霧し、導入管(12)から可燃ガス
、導入管(12a)から助燃ガスを噴霧室(11)へ混
合導入し、燃焼して炎(13)を生成する。一方、中空
陰極ランプ(14)から発光し、分光器(15)を経て
ホトマル(16)で吸光度を測定し、この値を演算器(
9)へ導入し、更にイオン濃度の異なる標準試料を上記
のごとく測定し、これに基き検量線を設定する。検量線
設定後、上記標準試料溶液を分析すべき試料溶液に変更
して、上記のごとく吸光度を測定し、その結果を演算器
(9)へ導いて検量線に基きイオン量を分析し、プリン
ター00)へ表示する。
(Atomic absorption spectrometry) In Fig. 2, the standard sample solution is sprayed from the sample solution tank (1) into the spray chamber (11), the combustible gas is supplied from the introduction pipe (12), and the auxiliary combustion gas is supplied from the introduction pipe (12a) to the spray chamber. (11) and burns to produce a flame (13). On the other hand, light is emitted from a hollow cathode lamp (14), the absorbance is measured by a photomultiplier (16) through a spectrometer (15), and this value is calculated by a calculator (
9), and further measure standard samples with different ion concentrations as described above, and set a calibration curve based on this. After setting the calibration curve, change the above standard sample solution to the sample solution to be analyzed, measure the absorbance as described above, send the result to the calculator (9), analyze the ion amount based on the calibration curve, and print it to the printer. 00).

このようにして分析を継続し、外的要因により分析精度
が低下するおそれのある事態になったとき、即ち一定時
間経過後、上記のごとく操作して新たな検量線を設定し
、以後この検量線に基き分析を行うことにより外的要因
による分析誤差を解消するものである。更に、分析精度
を向上するためには、前記設定検量線と上記新たな検量
線から両者間の試料測定時刻における検量線を測定試料
毎に推定し、この検量線に基き、前記検量線設定時から
新たな検量線設定時まで分析した分析値を各々修正する
If analysis continues in this way and a situation arises in which the analytical accuracy is likely to decrease due to external factors, that is, after a certain period of time has elapsed, a new calibration curve is set by operating as described above. By performing analysis based on lines, analysis errors caused by external factors are eliminated. Furthermore, in order to improve analysis accuracy, a calibration curve at the time of sample measurement between the set calibration curve and the new calibration curve is estimated for each measurement sample, and based on this calibration curve, the calibration curve at the time of setting the calibration curve is estimated. Correct each analysis value from the time of setting the new calibration curve.

(高周波誘導結合プラズマ発光分光分析)第3図におい
て、標準試料槽(1)から噴霧用アルゴンガス(17)
により標準試料溶液を噴霧室(11)へ噴霧し、プラズ
マガス(18)、冷却ガス(19)を誘導コイル(20
)により形成したプラズマ炎(21)に導入して標準試
料溶液中に含有される元素を発光させこの光を分光器(
22)にて含有元素特有の単色光に分光して元素毎の発
光強度を演算器(9)へ導入する。このようにしてイオ
ン濃度の異なる標準試料溶液を数種類測定して、検量線
を設定する。設定後、標準試料溶液を分析すべき試料溶
液に変え上記のごとく測定し、検量線に基きイオン量を
測定することにより元素濃度を算出してプリンター00
)へ表示する。しかして外的要因等により分析精度が低
下するおそれのある事態に至ったとき、上記のごとくイ
オン濃度の異なる標準試料溶液により新たな検量線を設
定し、以後この検量線に基き上記のごとく分析を行い外
的要因による分析誤差を解消するものである。更に分析
精度を向上するためには、前記設定検量線と上記新たな
設定検量線から両者間の試料測定時刻における検量線を
測定試料毎に推定し、この検量線に基き前記検量線設定
時から新たな検量線設定時までに分析した分析値を各々
修正するとともに、以後の試料成分分析を前後の測定結
果から予測される予測検量線に基き行う。
(High-frequency inductively coupled plasma emission spectroscopy) In Figure 3, the argon gas for spraying (17) flows from the standard sample tank (1).
The standard sample solution is sprayed into the spray chamber (11), and the plasma gas (18) and cooling gas (19) are sprayed into the induction coil (20).
) is introduced into the plasma flame (21) formed by the standard sample solution to emit light from the elements contained in the standard sample solution.
At step 22), the light is separated into monochromatic lights specific to the contained elements, and the emission intensity of each element is introduced into a computing unit (9). In this way, several types of standard sample solutions with different ion concentrations are measured and a calibration curve is set. After setting, change the standard sample solution to the sample solution to be analyzed, measure as above, calculate the element concentration by measuring the amount of ions based on the calibration curve, and print the printer 00.
). However, when a situation arises where the analysis accuracy may be reduced due to external factors, etc., a new calibration curve is set using standard sample solutions with different ion concentrations as described above, and subsequent analysis is performed as described above based on this calibration curve. This is to eliminate analysis errors caused by external factors. In order to further improve the analysis accuracy, a calibration curve at the sample measurement time between the above set calibration curve and the above newly set calibration curve is estimated for each measurement sample, and based on this calibration curve, the calibration curve is calculated from the time when the above calibration curve was set. Each analysis value analyzed up to the time of setting a new calibration curve is corrected, and subsequent sample component analysis is performed based on the predicted calibration curve predicted from the previous and subsequent measurement results.

(実施例) 次に、本発明の実施例を比較例とともに上げる実施例1 (溶液循環型自動吸光分析法による鋼中Pの分析例) 鋼の切削試料0.1 gと硝酸5cc、過塩素酸(60
%)6ccを加えて加熱溶解し、白煙処理して過塩素酸
の残量をI cc以下にする。これに水を加え塩類を溶
解した後、全容を25 ccとして、これを標準試料溶
液(検量線設定用)とする。
(Example) Next, an example of the present invention will be described together with a comparative example. Example 1 (Example of analysis of P in steel by solution circulation type automatic absorption spectrometry) 0.1 g of cut steel sample, 5 cc of nitric acid, and perchlorine Acid (60
Add 6 cc of perchloric acid, heat and dissolve, and treat with white smoke to reduce the remaining amount of perchloric acid to below I cc. After adding water and dissolving the salts, the total volume is made up to 25 cc, and this is used as a standard sample solution (for setting a calibration curve).

次に、上記標準試料溶液(イオン量=1.0μg/ 2
5 cc )を反応槽へ移し、亜硫酸水素ナトリウム溶
液(20%)10ccを加え、Fe”をFe2すへ還元
した後、ニッケル、クロム等による有色イオンの吸光度
を測定間隔1回/秒で5回測定したところ、このときの
吸光度(A)は0. OO7,0゜007.0.006
.0.010.0. OO7であった次いで発色試薬と
してモリブデン酸アンモニウム(2,5%)10ccと
、硫酸ヒドラジン溶液(3%)14ccを加え呈色が完
結した後、吸光度を測定間隔1回/秒で5回測定したと
ころ、このときの吸光度(B)は0.034.0.03
4.0.0350、033.0.036であった。
Next, the above standard sample solution (ion amount = 1.0 μg/2
5 cc) was transferred to a reaction tank, 10 cc of sodium bisulfite solution (20%) was added to reduce Fe'' to Fe2, and the absorbance of colored ions such as nickel and chromium was measured 5 times at a measurement interval of 1 time/second. When measured, the absorbance (A) at this time was 0.OO7,0°007.0.006
.. 0.010.0. Next, 10 cc of ammonium molybdate (2.5%) and 14 cc of hydrazine sulfate solution (3%) were added as coloring reagents, and after color development was completed, the absorbance was measured 5 times at a measurement interval of 1 time/second. However, the absorbance (B) at this time is 0.034.0.03
They were 4.0.0350 and 033.0.036.

次に標準試料溶液のイオン濃度を変化させ、上記に準じ
て吸光度を測定したところ、 (1)イオン量:3.0μg / 25 ccの標準試
料溶液吸光度(A) 0.006 0.007 0.0
060.010 0.008 吸光度(B ) 0.094 0.090 0.099
0.094.0.093 (2)イオン量:5.0 μg / 25 ccの標準
試料溶液吸光度(A)0.007 0.007 0.0
060.009 0.008 吸光度(B)0.151 0.154.0.1520.
155.0.152 (3)イオン量ニア、0μg / 25 ccの標準試
料溶液吸光度(A) 0.007 0.009 0.0
050.008   0.007 吸光度(B ) 0.208.0.205.0.210
0.207 .0.20に のようにしてイオン量の異なる標準試料の吸光度を合計
4回測定した結果を演算器へ導き、これらの値を平均化
して第4図に出すごとき、検量線A(気温18°C)を
設定した。次いで、前記標準試料溶液に変え被分析体の
試料溶液に変え同様に吸光度を測定したところ 吸光度(A) 0.006 0.007 0.0060
.009 0.007 吸光度(B ) 0.064.0.062.0.066
0.065.0.064 これらの平均値を求め、弐B−AK (K :液量補正
係数)で演算した値(補正吸光度)を上記検量線Aを設
定した演算器へ導き鋼中リン含有率P=20.0ppm
 と決定した。
Next, the ion concentration of the standard sample solution was changed and the absorbance was measured according to the above method. 0
060.010 0.008 Absorbance (B) 0.094 0.090 0.099
0.094.0.093 (2) Ion amount: 5.0 μg / 25 cc standard sample solution absorbance (A) 0.007 0.007 0.0
060.009 0.008 Absorbance (B) 0.151 0.154.0.1520.
155.0.152 (3) Ion content near, 0 μg/25 cc standard sample solution absorbance (A) 0.007 0.009 0.0
050.008 0.007 Absorbance (B) 0.208.0.205.0.210
0.207. The results of measuring the absorbance of standard samples with different ion contents four times in total as shown in Figure 4 are calculated by averaging these values and plotting them as shown in Figure 4. C) was set. Next, the absorbance was measured in the same manner using the sample solution of the analyte instead of the standard sample solution. Absorbance (A) 0.006 0.007 0.0060
.. 009 0.007 Absorbance (B) 0.064.0.062.0.066
0.065.0.064 Calculate these average values and send the value (corrected absorbance) calculated using 2B-AK (K: liquid volume correction coefficient) to the calculator where the above calibration curve A is set to determine the phosphorus content in the steel. Rate P=20.0ppm
It was decided.

次に上記検量線A設定10時間後(気温25゛C)に同
様の標準試料溶液で、同条件で合計4回吸光度を設定し
たところ、 (1)イオン量=1.0μg / 25 ccの標準試
料溶液吸光度(A) 0.007 0.009 0.0
080.010   0.006 吸光度(B ) 0.059 0.060 0.057
0.062 .0.058 (2)イオン量:3.0 μg / 25 ccの標準
試料溶液吸光度(A) 0.009.0.010.0.
0090.011   0.009 吸光度(B)0.092 0.090 0.095Q、
095 .0.093 (3)イオン量;5.0gg / 25 ccの標準試
料溶液吸光度(A)0.010 0.00g  0.0
090.008 0.010 吸光度(B)0.120 0.121 0.119’ 
 0.119 .0.122 (4)イオン量=7.0 μg / 25 ccの標準
試料溶液吸光度(A) 0.00B  0.010 0
.0100.008   0.008 吸光度(B)0.150 0.151 0.1490.
150   0.151 これらの値を平均化して第4図に示すごとき検量線(B
)を設定した。
Next, 10 hours after setting the above calibration curve A (at a temperature of 25°C), absorbance was measured a total of 4 times under the same conditions using the same standard sample solution. (1) Ion amount = 1.0 μg / 25 cc standard Sample solution absorbance (A) 0.007 0.009 0.0
080.010 0.006 Absorbance (B) 0.059 0.060 0.057
0.062. 0.058 (2) Ion amount: 3.0 μg/25 cc standard sample solution absorbance (A) 0.009.0.010.0.
0090.011 0.009 Absorbance (B) 0.092 0.090 0.095Q,
095. 0.093 (3) Ion amount; 5.0 gg / 25 cc standard sample solution absorbance (A) 0.010 0.00 g 0.0
090.008 0.010 Absorbance (B) 0.120 0.121 0.119'
0.119. 0.122 (4) Ion amount = 7.0 μg / 25 cc standard sample solution absorbance (A) 0.00B 0.010 0
.. 0100.008 0.008 Absorbance (B) 0.150 0.151 0.1490.
150 0.151 By averaging these values, a calibration curve (B
)It was set.

次いで標準試料溶液に変え前記同様に吸光度を測定した
ところ、 吸光度(A)0.0090.008 0.0080.0
10.0.009 吸光度(B )0.075.0.077.0.0760
.074 .0.07に れらの平均値を求め、弐B−AK(Kn液量補正係数)
で演算した値(補正吸光度)を上記検量線Bを設定した
演算器へ導き鋼中リン含有率P= 19.9ppm と
決定した。
Next, when the standard sample solution was used and the absorbance was measured in the same manner as above, the absorbance (A) was 0.0090.008 0.0080.0
10.0.009 Absorbance (B) 0.075.0.077.0.0760
.. 074. Find the average value of these to 0.07, and calculate 2B-AK (Kn liquid volume correction coefficient).
The calculated value (corrected absorbance) was led to a calculator set with the above calibration curve B, and the phosphorus content in the steel was determined to be P = 19.9 ppm.

実施例2 上記実施例1において、検量線(A)と検量線(B)の
中間時刻の検量線(C)を推定設定し、この検量線(C
)に基き、検量線(A)から検量線(B)の設定時刻迄
に分析した値の修正を施した。
Example 2 In Example 1 above, a calibration curve (C) at an intermediate time between the calibration curve (A) and the calibration curve (B) is estimated and set, and this calibration curve (C
), the values analyzed from the calibration curve (A) to the set time of the calibration curve (B) were corrected.

比較例1 実施例1において、検量線(B)を設定することなく、
検量線(A)により分析した。これらの結果を次表に示
す。
Comparative Example 1 In Example 1, without setting the calibration curve (B),
Analysis was performed using a calibration curve (A). These results are shown in the table below.

標準値 20.0ppm 実施例3 (高周波誘導結合プラズマ発光分光分析を用いた鋼中S
i、Mnの分析例) 鋼の切削試料1.0gに6N塩酸15cc及び硝酸5 
ccを加えて加熱溶解し、これに水を加え全容を100
 ccとして標準試料溶液(検量線設定用)とする。
Standard value 20.0 ppm Example 3 (S in steel using high frequency inductively coupled plasma emission spectroscopy
i, Mn analysis example) 15 cc of 6N hydrochloric acid and 5 cc of nitric acid to 1.0 g of cut steel sample
Add cc and heat to dissolve, add water and bring the total volume to 100
Use the standard sample solution (for setting the calibration curve) as cc.

次に、標準試料溶液(イオン量:1mg/10Qcc)
を噴霧室へ移しプラズマ炎に導入し、標準試料溶液に含
有されている元素(S i、Mn)を発光させ、この発
光強度を測定した。更にイオン量3mg/ 100cc
、 5mg/ 100cc、7mg/ 100 ccの
合計4種類の標準試料溶液を上記のごとく発光強度を測
定し、これに基き、第4図に示すごとき検量線(A)(
気温18°C)を設定した。次いで、標準試料溶液をC
: 0.12%、Si: 0.25%、Mn:0.35
%、P : 0.001%、S : 0.001%、A
 I : 0.003%を含有する鋼を上記標準試料溶
液と同様の処理を施して調製した分析用試料溶液に変え
同様に発光強度を測定し、設定検量線に基き鋼中含有率
5i=0.251%Mn=0.352%と決定した。
Next, standard sample solution (ion amount: 1mg/10Qcc)
was transferred to a spray chamber and introduced into a plasma flame to cause the elements (Si, Mn) contained in the standard sample solution to emit light, and the intensity of this emitted light was measured. Furthermore, the amount of ions is 3mg/100cc
, 5 mg/100 cc, 7 mg/100 cc of total four types of standard sample solutions were measured for luminescence intensity as described above, and based on this, a calibration curve (A) as shown in Figure 4 was calculated.
The temperature was set at 18°C. Then, the standard sample solution was
: 0.12%, Si: 0.25%, Mn: 0.35
%, P: 0.001%, S: 0.001%, A
I: Change the steel containing 0.003% to an analysis sample solution prepared by performing the same treatment as the standard sample solution above, measure the luminescence intensity in the same way, and based on the set calibration curve, the content in steel 5i = 0 It was determined that .251%Mn=0.352%.

次に、上記検量線(A)設定10時間後(気温25°C
)に同様の標準試料溶液で、同条件により合計4回の発
光強度を測定し、第4図に示すごとき検量線(B)を設
定し、分析用試料溶液に変えて、同様に発光強度を測定
し、検量線(B)に基き鋼中含有率5i=0.251%
、Mn=0.351%と決定した。
Next, 10 hours after setting the above calibration curve (A) (temperature 25°C
), the luminescence intensity was measured a total of four times under the same conditions using the same standard sample solution, and a calibration curve (B) as shown in Figure 4 was set. Measured and based on the calibration curve (B) content in steel 5i = 0.251%
, Mn=0.351%.

実施例4 上記実施例3において、検量線(A)と検量線(B)か
ら第5図及び第6図に示すごとき検量線(C)を推定設
定し、この検量線(C)に基き検量線(A)から検量線
(B)の設定時刻迄に分析した値の修正を施した。
Example 4 In Example 3 above, a calibration curve (C) as shown in Figures 5 and 6 is estimated from the calibration curve (A) and the calibration curve (B), and the calibration is performed based on this calibration curve (C). The values analyzed from the curve (A) to the set time of the calibration curve (B) were corrected.

比較例2 実施例3において検量線(B)を設定することなく検量
線(A)により分析した。
Comparative Example 2 In Example 3, analysis was performed using the calibration curve (A) without setting the calibration curve (B).

これらの結果を下表に示す。These results are shown in the table below.

第1図、第2図及び第3図は本発明方法の説明図、第4
図、第5図及び第6図は本発明の実施例による設定検量
線を示す説明図表である。
Figures 1, 2, and 3 are explanatory diagrams of the method of the present invention;
5 and 6 are explanatory charts showing set calibration curves according to embodiments of the present invention.

(発明の効果) 本発明によれば、気温等の外的要因による分析精度の低
下を防止し、正確な分析ができるので、品質を向上する
ことができ、また、−旦分析した値を修正し正確な分析
値が得られる等の優れた効果が得られる。
(Effects of the Invention) According to the present invention, it is possible to prevent a decrease in analysis accuracy due to external factors such as temperature and perform accurate analysis, thereby improving quality. Excellent effects such as accurate analytical values can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1、イオン濃度の異なる標準試料の吸光度又は発光強度
を測定してその結果をもとに検量線を設定し、該検量線
に基き試料の成分分析を行うようにした分析方法におい
て、前記標準試料の吸光度又は発光強度を外的要因の変
化に応じ再測定し、その結果を演算器へ導いて新たな検
量線を設定して該検量線に基き以後の試料成分分析を行
うことを特徴とする分析方法。 2、イオン濃度の異なる標準試料の吸光度又は発光強度
を測定してその結果をもとに検量線を設定し、該検量線
に基き試料の成分分析を行うようにした分析方法におい
て、前記標準試料の吸光度又は発光強度を外的要因の変
化に応じ再測定し、その結果を演算器へ導いて新たな検
量線を設定して該検量線に基き以後の試料成分分析を行
い、且つ、前記した前後の検量線設定時刻間に行った試
料成分分析結果を前後の測定結果から推定して設定され
る推定検量線に基き修正することを特徴とする分析方法
。 3、イオン濃度の異なる標準試料の吸光度又は発光強度
を測定してその結果をもとに検量線を設定し、該検量線
に基き試料の成分分析を行うようにした分析方法におい
て、前記標準試料の吸光度又は発光強度を外的要因の変
化に応じ再測定し、その結果を演算器へ導いて新たな検
量線を設定して該検量線に基き試料成分分析を行い、且
つ、前記した前後の検量線設定時刻間に行った試料成分
分析結果を前後の測定結果から推定して設定される推定
検量線に基き修正するとともに、以後の試料成分分析を
前後の測定結果から予測して設定される予測検量線に基
き行うことを特徴とする分析方法。
[Claims] 1. Analysis in which the absorbance or luminescence intensity of standard samples with different ion concentrations is measured, a calibration curve is set based on the results, and the component analysis of the sample is performed based on the calibration curve. In this method, the absorbance or luminescence intensity of the standard sample is remeasured according to changes in external factors, the results are led to a computer, a new calibration curve is set, and subsequent sample component analysis is performed based on the calibration curve. An analysis method characterized by: 2. In an analysis method in which the absorbance or luminescence intensity of standard samples with different ion concentrations is measured, a calibration curve is set based on the results, and component analysis of the sample is performed based on the calibration curve. The absorbance or luminescence intensity of the sample is remeasured in accordance with changes in external factors, the results are led to a computer, a new calibration curve is set, and subsequent sample component analysis is performed based on the calibration curve. An analysis method characterized by correcting the sample component analysis results performed between the previous and subsequent calibration curve setting times based on an estimated calibration curve that is set by estimating the sample component analysis results from the previous and subsequent measurement results. 3. In an analysis method in which the absorbance or luminescence intensity of standard samples with different ion concentrations is measured, a calibration curve is set based on the results, and component analysis of the sample is performed based on the calibration curve, the standard sample The absorbance or luminescence intensity of The calibration curve is set based on the estimated calibration curve, which is set by estimating the sample component analysis results performed during the time period from the previous and subsequent measurement results, and is set by predicting the subsequent sample component analysis from the previous and subsequent measurement results. An analysis method characterized by being performed based on a predicted calibration curve.
JP20283888A 1988-08-15 1988-08-15 Analysis methode Pending JPH0252239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20283888A JPH0252239A (en) 1988-08-15 1988-08-15 Analysis methode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20283888A JPH0252239A (en) 1988-08-15 1988-08-15 Analysis methode

Publications (1)

Publication Number Publication Date
JPH0252239A true JPH0252239A (en) 1990-02-21

Family

ID=16464026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20283888A Pending JPH0252239A (en) 1988-08-15 1988-08-15 Analysis methode

Country Status (1)

Country Link
JP (1) JPH0252239A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127058A (en) * 1990-09-19 1992-04-28 Nippon Steel Corp Method and apparatus for automatically analyzing acid value and saponification value of oil
JP2004294205A (en) * 2003-03-26 2004-10-21 Kurabo Ind Ltd Measuring method and measuring device of metal content in acid solution
JP2017106747A (en) * 2015-12-07 2017-06-15 東亜ディーケーケー株式会社 Analysis device, method of evaluating drift of the same, and program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920665U (en) * 1982-07-30 1984-02-08 富士通テン株式会社 Printed board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920665U (en) * 1982-07-30 1984-02-08 富士通テン株式会社 Printed board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127058A (en) * 1990-09-19 1992-04-28 Nippon Steel Corp Method and apparatus for automatically analyzing acid value and saponification value of oil
JP2004294205A (en) * 2003-03-26 2004-10-21 Kurabo Ind Ltd Measuring method and measuring device of metal content in acid solution
JP2017106747A (en) * 2015-12-07 2017-06-15 東亜ディーケーケー株式会社 Analysis device, method of evaluating drift of the same, and program

Similar Documents

Publication Publication Date Title
Amos et al. Carbon rod atomizer in atomic absorption and fluorescence spectrometry and its clinical application
CN106841062A (en) The detection method of total phosphorus content in water quality
WO2020087894A1 (en) Outer tube injection-based atomic fluorescence analysis method and atomic fluorescence analyzer
US20100330694A1 (en) bromate ion measurement method and apparatus
CN102661924A (en) Method for measuring chromium content in silicon iron inoculant
JPH0252239A (en) Analysis methode
Agazzi Determination of Tin in Hydrogen Peroxide Solutions by Atomic Absorption Spectrometry.
Lacy Automatic procedures for the determination of calcium, potassium, magnesium and phosphorus in soil extracts
Butcher Determination of fluorine, chlorine, and bromine by molecular absorption spectrometry
Kuemmel et al. Flame photometric determination of alkali and alkaline earth elements in cast iron
JPH07294509A (en) Analysis of mixed acid and control of pickling solution
CN109187849A (en) Method for measuring concentration of total iron ions in chemical cleaning solution containing strong complex
Belcher et al. Molecular emission cavity analysis (meca)—a new flame analytical technique: Part III. The determination of boron
JP2019113357A (en) Analysis method and analysis device
Bucker et al. Determination of fluorine by molecular absorption spectrometry of AlF using a high-resolution continuum source spectrometer and a C2H2/N2O flame
CN100489519C (en) Detecting method of minim fluorine in quasi-molecule laser gas
Lopez-Molinero et al. Chemical vapor generation for sample introduction into inductively coupled plasma atomic emission spectroscopy: vaporization of antimony (III) with bromide
Bartkiewicz et al. Rapid method for the determination of fluoride in liquids
Komárek et al. Determination of cadmium by electrothermal atomic absorption spectrometry
CN107807086A (en) A kind of method of Ti content in quick measure titanium alloy blueness etchant solution
Andersen et al. Magnesium determination by flame photometry
JPH04109166A (en) Quantification method for silica
Kujirai et al. Determination of Trace Quantities of Lead and Bismuth in Heat-Resisting Alloys by Atomic Absorption Spectrometry with Heated Graphite Atomizer
JP6869511B2 (en) Analysis method and pretreatment method
CN118671051A (en) Method for improving measurement precision of emission spectrometer