JPH05132780A - Method for forming thin film and device therefor - Google Patents

Method for forming thin film and device therefor

Info

Publication number
JPH05132780A
JPH05132780A JP29460291A JP29460291A JPH05132780A JP H05132780 A JPH05132780 A JP H05132780A JP 29460291 A JP29460291 A JP 29460291A JP 29460291 A JP29460291 A JP 29460291A JP H05132780 A JPH05132780 A JP H05132780A
Authority
JP
Japan
Prior art keywords
thin film
gas
chamber
vacuum chamber
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29460291A
Other languages
Japanese (ja)
Inventor
Munehiro Shibuya
宗裕 澁谷
Masatoshi Kitagawa
雅俊 北川
Takeshi Kamata
健 鎌田
Takashi Hirao
孝 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29460291A priority Critical patent/JPH05132780A/en
Publication of JPH05132780A publication Critical patent/JPH05132780A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To stably form a uniform thin film on a substrate in a vacuum chamber by chemical vapor deposition by removing the gas remaining in the vacuum chamber immediately after the thin film forming reaction is finished. CONSTITUTION:A substrate 33 of polysilicon, etc., is fixed to a holder 34 in the vacuum chamber 21 of a chemical vapor deposition device and heated to a specified temp. by a heater 35, the chamber 21 is evacuated by a first exhaust pipe 23, and the liq. material in an ampule 25 is heated in a thermostatic bath 26 and vaporized. An inert gas such as Ar is blown into the liq. material from a cylinder 27 and bubbled, the vapor is introduced into the chamber 21 through a pipe 32, and O2 gas is simultaneously supplied to the chamber 21 from a cylinder 29 through a pipe 32 to form the thin film of the oxide of the raw material on the substrate 33 by a vapor-phase reaction. The waste gas is removed from the first exhaust pipe 23 during the thin film forming reaction, the supply of gases from the cylinders 27 and 29 is stopped immediately after the reaction is finished, the unreacted gas in the chamber 21 is rapidly removed from a second exhaust pipe 24 to prevent the further growth of the thin film, and an oxide film uniform in thickness is formed at all times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はCVD(化学気相成長
法)において蒸気圧の低い材料(液体材料)を用いて薄
膜を形成する場合の薄膜形成装置及び薄膜形成方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film forming apparatus and a thin film forming method for forming a thin film using a material (liquid material) having a low vapor pressure in CVD (chemical vapor deposition).

【0002】[0002]

【従来の技術】従来の、液体材料としてTa(OC
255を用いて酸化タンタル薄膜を形成する場合につ
いて示す。酸化タンタル薄膜は図2に示すような構成の
装置によって形成されてきた。真空室5は真空排気装置
9によって真空に排気される。ポリシリコン、WSi等
の基板10はヒータ12によって適当な温度(200−
650℃)に加熱された基板ホルダ11に固定される。
流量制御装置1によって流量制御されたHe、Ar等の
不活性ガス2(流量100−10000sccm)は恒
温槽3によって温度制御(80−200℃)されたアン
プル4内のTa(OC 255をバブリングし、ヒータ
8によって加熱(80−400℃)されたガス導入管1
3を通って真空室5内に導入される。他方、流量制御装
置6によって流量制御された酸素等の酸素含有ガス7
(100−10000sccm)も同時に、ヒータ8に
よって加熱(80−400℃)されたガス導入管13を
通って真空室5に導入され、その原料ガスは加熱された
基板10付近で反応し、基板10上に酸化タンタル薄膜
が形成される。真空室5内に導入されたガスは真空排気
装置9によって排気され、適当な圧力(0.5−10T
orr)に調整されている。
2. Description of the Related Art As a conventional liquid material, Ta (OC)
2HFive)FiveWhen forming a tantalum oxide thin film using
I will show you. The tantalum oxide thin film has the structure shown in FIG.
Has been formed by the device. The vacuum chamber 5 is a vacuum exhaust device.
Evacuated to vacuum by 9. Polysilicon, WSi, etc.
Substrate 10 is heated to a suitable temperature (200-
It is fixed to the substrate holder 11 heated to 650 ° C.
He, Ar, etc., whose flow rate is controlled by the flow rate control device 1,
The inert gas 2 (flow rate 100-10000 sccm) is constant.
The temperature is controlled (80-200 ° C) by the hot bath 3.
Ta (OC in pull 4 2HFive)FiveBubbling the heater
Gas introduction tube 1 heated by 8 (80-400 ° C.)
It is introduced into the vacuum chamber 5 through 3. On the other hand, the flow control device
Oxygen-containing gas 7 such as oxygen whose flow rate is controlled by the device 6.
(100-10000 sccm) is also applied to the heater 8 at the same time.
Therefore, the gas introduction pipe 13 heated (80-400 ° C.)
It was introduced into the vacuum chamber 5 and the raw material gas was heated.
Reacts in the vicinity of the substrate 10 and forms a tantalum oxide thin film on the substrate 10.
Is formed. The gas introduced into the vacuum chamber 5 is evacuated.
It is evacuated by the device 9 and the appropriate pressure (0.5-10T
orr).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来例
による薄膜形成装置では、液体等の蒸気圧の低い材料を
原料ガスとして用いる場合、薄膜形成を終了させるため
にガスの導入を停止してもガス導入口やガス導入パイプ
内にわずかに付着した液体材料が真空室内に導入されて
しまうため薄膜の堆積が進行してしまう。よって制御性
よく均一な薄膜を形成することができないという課題が
あった。
However, in the thin film forming apparatus according to the conventional example, when a material having a low vapor pressure such as a liquid is used as the raw material gas, even if the introduction of the gas is stopped in order to complete the thin film formation, the gas is stopped. The liquid material that slightly adheres to the introduction port or the gas introduction pipe is introduced into the vacuum chamber, so that the deposition of the thin film proceeds. Therefore, there is a problem that a uniform thin film cannot be formed with good controllability.

【0004】本発明は、このような従来の薄膜形成装置
の課題を考慮し、制御性良く均一な薄膜を形成できる薄
膜形成装置を提供することを目的とするものである。
An object of the present invention is to provide a thin film forming apparatus capable of forming a uniform thin film with good controllability in consideration of the problems of the conventional thin film forming apparatus.

【0005】[0005]

【課題を解決するための手段】本発明による装置は、堆
積中に真空室内に導入されたガスを排気するためのガス
排気口とは別に、堆積が終了すると同時またはその前後
にガス導入口から真空室を真空に排気するためのガス排
気用配管をガス導入管に接続する。
The apparatus according to the present invention is provided with a gas introduction port at the same time as or after the completion of the deposition from the gas introduction port, separately from the gas exhaust port for exhausting the gas introduced into the vacuum chamber during the deposition. A gas exhaust pipe for exhausting the vacuum chamber to a vacuum is connected to the gas introduction pipe.

【0006】[0006]

【作用】本発明では、ガス導入口から真空室内を排気で
き、ガス導入管およびガス導入口内部を、試料のある真
空室を介さずに直接真空に排気できるために、ガスの導
入を停止した瞬間に薄膜の堆積を停止できる。
In the present invention, the vacuum chamber can be evacuated from the gas inlet, and the gas inlet tube and the inside of the gas inlet can be directly evacuated to a vacuum without passing through the vacuum chamber containing the sample. The deposition of the thin film can be stopped at an instant.

【0007】[0007]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0008】図1に本発明による薄膜形成装置の一実施
例の概略図を示す。
FIG. 1 is a schematic view of an embodiment of a thin film forming apparatus according to the present invention.

【0009】真空室21の上壁には第1真空排気管23
が接続され、また、底壁には、ガス導入管32が接続さ
れ、さらにそのガス導入管32の途中に、第2真空排気
管24が接続されている。それらの第1真空排気管23
と第2真空排気管24は、真空排気装置22に接続され
ている。また、真空室21内には、基板ホルダ34と、
その基板ホルダ34によって保持される、ポリシリコ
ン、WSi等の基板33と、その基板ホルダ34を加熱
するヒータ35が上壁から垂下して配設されている。ま
た、上記ガス導入管32は原料の液体のTa(OC
255が貯液したアンプル25に接続されている。ま
た、そのアンプル25の底部には、流量制御装置28を
介して、Ar等の不活性ガスを入れたボンベ27から出
た管が入り込んでいる。アンプル25は恒温槽26によ
って気化しやすい温度に加熱されるようになっている。
そして、このアンプル25内の液体は、ボンベ27から
送られてきた不活性ガスによってバブリングされる様に
なっている。
A first vacuum exhaust pipe 23 is provided on the upper wall of the vacuum chamber 21.
And a gas introduction pipe 32 is connected to the bottom wall, and a second vacuum exhaust pipe 24 is connected in the middle of the gas introduction pipe 32. Those first vacuum exhaust pipe 23
The second vacuum exhaust pipe 24 is connected to the vacuum exhaust device 22. In the vacuum chamber 21, a substrate holder 34,
A substrate 33 made of polysilicon, WSi or the like held by the substrate holder 34, and a heater 35 for heating the substrate holder 34 are arranged so as to hang from the upper wall. In addition, the gas introduction pipe 32 is used as a raw material liquid Ta (OC).
2 H 5 ) 5 is connected to the stored ampoule 25. In addition, a tube from a cylinder 27 containing an inert gas such as Ar is inserted into the bottom of the ampoule 25 via a flow rate control device 28. The ampoule 25 is heated by a constant temperature bath 26 to a temperature at which it is easily vaporized.
The liquid in the ampoule 25 is bubbled by the inert gas sent from the cylinder 27.

【0010】さらに、O2等の酸素含有ガスを入れたボ
ンベ29は、流量制御装置30を介してガス導入管32
へ接続され、真空室21に接続されている。31はそれ
ら不活性ガスや気化した原料を加熱するためのヒータで
ある。
Further, the cylinder 29 containing an oxygen-containing gas such as O 2 has a gas introduction pipe 32 through a flow control device 30.
Connected to the vacuum chamber 21. Reference numeral 31 is a heater for heating the inert gas and the vaporized raw material.

【0011】次に、本実施例の動作を説明する。Next, the operation of this embodiment will be described.

【0012】真空室21は真空排気装置22によって第
1真空排気管23、第2真空排気管24を通して真空に
排気される。アンプル25内のTa(OC255は恒
温槽26によって気化しやすい温度に加熱される。ボン
ベ27内のAr等の不活性ガスは流量制御装置28によ
って流量制御される。流量制御された不活性ガスはアン
プル内のTa(OC255をバブリングし、気化した
Ta(OC255と一緒に、ヒータ31によって加熱
されたガス導入管32を通って真空室21に導入され
る。
The vacuum chamber 21 is evacuated to a vacuum by a vacuum exhaust device 22 through a first vacuum exhaust pipe 23 and a second vacuum exhaust pipe 24. Ta (OC 2 H 5 ) 5 in the ampoule 25 is heated by the constant temperature bath 26 to a temperature at which it easily vaporizes. The flow rate of the inert gas such as Ar in the cylinder 27 is controlled by the flow rate control device 28. The inert gas whose flow rate was controlled bubbled Ta (OC 2 H 5 ) 5 in the ampoule and passed through the gas introduction pipe 32 heated by the heater 31 together with vaporized Ta (OC 2 H 5 ) 5. It is introduced into the vacuum chamber 21.

【0013】他方、ボンベ29内のO2等の酸素含有ガ
スは流量制御装置30によって流量制御されたのち真空
室21に導入される。ポリシリコン、WSi等の基板3
3は基板ホルダ34に固定され、ヒータ35によって堆
積に適する温度に加熱される。真空室21内に導入され
たガスは基板33表面付近で熱により分解反応し、基板
33上に酸化タンタル薄膜が形成される。堆積中、導入
されたガスは第1真空排気管23より排気し、堆積を終
了すると同時に、ガス導入後部近くに接続された第2真
空排気管24から残留ガスを排気する。
On the other hand, the oxygen-containing gas such as O 2 in the cylinder 29 is introduced into the vacuum chamber 21 after the flow rate is controlled by the flow rate control device 30. Substrate 3 made of polysilicon, WSi, etc.
3 is fixed to the substrate holder 34 and heated by the heater 35 to a temperature suitable for deposition. The gas introduced into the vacuum chamber 21 undergoes a thermal decomposition reaction near the surface of the substrate 33, and a tantalum oxide thin film is formed on the substrate 33. During the deposition, the introduced gas is exhausted from the first vacuum exhaust pipe 23, and at the same time as the deposition is completed, the residual gas is exhausted from the second vacuum exhaust pipe 24 connected near the rear part of the gas introduction.

【0014】表1に従来例および本発明による薄膜形成
装置によって酸化タンタル薄膜を形成した場合の膜厚の
差を示す。
Table 1 shows the difference in film thickness when a tantalum oxide thin film is formed by the conventional example and the thin film forming apparatus according to the present invention.

【0015】[0015]

【表1】 [Table 1]

【0016】表中条件1は酸化タンタル薄膜形成直後に
基板33温度を急激に下げた場合、条件2は酸化タンタ
ル薄膜形成後、ガスの導入を停止してから30分そのま
ま放置してから基板33温度を下げた場合である。従来
例による酸化タンタル薄膜の場合、条件1では膜厚が1
030Åであるのに対し、条件2の場合には1240Å
になっている。しかしながら本発明による酸化タンタル
の場合は条件1の場合膜厚が1020Åであり、条件2
の場合1040Åとなりほとんど変化していないことが
わかる。
In condition 1 in the table, the temperature of the substrate 33 is drastically reduced immediately after the tantalum oxide thin film is formed. In condition 2, after the tantalum oxide thin film is formed, the gas introduction is stopped and the substrate 33 is left as it is for 30 minutes and then the substrate 33. This is the case when the temperature is lowered. In the case of the tantalum oxide thin film according to the conventional example, the film thickness is 1 under the condition 1.
030Å, whereas in case of condition 2, 1240Å
It has become. However, in the case of tantalum oxide according to the present invention, the film thickness is 1020Å under the condition 1, and the condition 2
In the case of, it turns out to be 1040Å, which is almost unchanged.

【0017】本実施例では真空排気装置を兼用したが、
堆積中にガスを排気するための真空排気装置と堆積終了
後に真空室を排気するための真空排気装置を各々設置し
ても同様の効果が得られる。
In this embodiment, the vacuum exhaust device is also used, but
The same effect can be obtained by installing a vacuum exhaust device for exhausting gas during deposition and a vacuum exhaust device for exhausting the vacuum chamber after completion of deposition.

【0018】[0018]

【発明の効果】以上説明したところから明らかなよう
に、本発明は、ガス導入管内に付着した残留ガス等が基
板が設置されている真空室を介さずに排気できるため、
制御性よく薄膜を形成することができるという長所を有
する。
As is apparent from the above description, according to the present invention, the residual gas and the like adhering to the gas introducing pipe can be exhausted without passing through the vacuum chamber in which the substrate is installed.
It has an advantage that a thin film can be formed with good controllability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における薄膜形成装置の概略
を示す断面図である。
FIG. 1 is a sectional view showing an outline of a thin film forming apparatus according to an embodiment of the present invention.

【図2】従来の酸化タンタル薄膜形成装置の概略を示す
断面図である。
FIG. 2 is a sectional view showing an outline of a conventional tantalum oxide thin film forming apparatus.

【符号の説明】[Explanation of symbols]

1 流量制御装置 2 ボンベ 3 恒温槽 4 アンプル 5 真空室 6 流量制御装置 7 ボンベ 8 ヒータ 9 真空排気装置 10 基板 11 基板ホルダ 12 ヒータ 13 ガス導入管 21 真空室 22 真空排気装置 23 第1真空排気管 24 第2真空排気管 25 アンプル 26 恒温槽 27 ボンベ 28 流量制御装置 29 ボンベ 30 流量制御装置 31 ヒータ 32 ガス導入口 33 基板 34 基板ホルダ 35 ヒータ 1 Flow Control Device 2 Cylinder 3 Constant Temperature Tank 4 Ampoule 5 Vacuum Chamber 6 Flow Control Device 7 Cylinder 8 Heater 9 Vacuum Exhaust Device 10 Substrate 11 Substrate Holder 12 Heater 13 Gas Introducing Tube 21 Vacuum Chamber 22 Vacuum Exhaust Device 23 First Vacuum Exhaust Pipe 24 Second Vacuum Exhaust Pipe 25 Ampoule 26 Constant Temperature Tank 27 Cylinder 28 Flow Control Device 29 Cylinder 30 Flow Control Device 31 Heater 32 Gas Inlet 33 Substrate 34 Substrate Holder 35 Heater

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平尾 孝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Hirao 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空室内に原料ガスを導入し外部より熱
を加え、熱分解することによって薄膜を形成する薄膜形
成装置において、少なくとも真空室に直接接続された第
1真空排気管と、前記真空室にガスを導入するためのガ
ス導入用配管に連接された第2真空排気管とを有するこ
とを特徴とする薄膜形成装置。
1. A thin film forming apparatus for forming a thin film by introducing a raw material gas into a vacuum chamber, applying heat from the outside, and thermally decomposing it, and at least a first vacuum exhaust pipe directly connected to the vacuum chamber; A thin film forming apparatus comprising: a second vacuum exhaust pipe connected to a gas introducing pipe for introducing gas into the chamber.
【請求項2】 真空装置内に原料ガスを導入し、外部よ
り熱を加え、熱分解することによって薄膜を形成する薄
膜の形成方法において、真空室内へのガスの導入中は第
1真空排気管よりガスを排気し、ガス導入終了と同時又
はその前後に第1真空排気管からの排気を停止するとと
もに、前記真空室にガスを導入するためのガス導入用配
管に連接された第2真空排気管からガスを排気すること
を特徴とする薄膜の形成方法。
2. A thin film forming method for forming a thin film by introducing a raw material gas into a vacuum apparatus, applying heat from the outside, and thermally decomposing the first gas, while the gas is being introduced into the vacuum chamber. The second vacuum exhaust connected to a gas introduction pipe for introducing gas into the vacuum chamber while exhausting the gas, stopping the exhaust from the first vacuum exhaust pipe at the same time as or before and after the end of the gas introduction. A method for forming a thin film, characterized in that gas is exhausted from a tube.
JP29460291A 1991-11-11 1991-11-11 Method for forming thin film and device therefor Pending JPH05132780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29460291A JPH05132780A (en) 1991-11-11 1991-11-11 Method for forming thin film and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29460291A JPH05132780A (en) 1991-11-11 1991-11-11 Method for forming thin film and device therefor

Publications (1)

Publication Number Publication Date
JPH05132780A true JPH05132780A (en) 1993-05-28

Family

ID=17809887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29460291A Pending JPH05132780A (en) 1991-11-11 1991-11-11 Method for forming thin film and device therefor

Country Status (1)

Country Link
JP (1) JPH05132780A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106381479A (en) * 2016-10-10 2017-02-08 无锡宏纳科技有限公司 Wafer chemical vapor phase deposition reaction device
CN106381478A (en) * 2016-10-10 2017-02-08 无锡宏纳科技有限公司 Air inlet structure of wafer chemical vapor deposition reaction device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106381479A (en) * 2016-10-10 2017-02-08 无锡宏纳科技有限公司 Wafer chemical vapor phase deposition reaction device
CN106381478A (en) * 2016-10-10 2017-02-08 无锡宏纳科技有限公司 Air inlet structure of wafer chemical vapor deposition reaction device

Similar Documents

Publication Publication Date Title
TW505989B (en) Apparatus and method for forming ultra-thin film of semiconductor device
US5234540A (en) Process for etching oxide films in a sealed photochemical reactor
JP2002008995A (en) Method and device for forming thin film
KR960001167A (en) Ferroelectric thin film manufacturing apparatus and manufacturing method
JPH11140652A (en) Method for cleaning stuck metallic film in thin film forming treating device
JP2002009072A (en) Method and apparatus for forming silicon nitride film
JP2004343094A5 (en)
JPH05132780A (en) Method for forming thin film and device therefor
JPH0641631B2 (en) Chemical vapor deposition method and chemical vapor deposition apparatus for tantalum oxide film
JP2006132003A (en) Thin film deposition apparatus
JPH05221644A (en) Production of thin tantalum oxide film
JPS592374B2 (en) Plasma vapor phase growth equipment
JP2002121673A (en) Thermal cvd system for depositing graphite nanofiber thin film
JP2904958B2 (en) Tantalum oxide thin film manufacturing equipment
JPH05102422A (en) Formation of tantalum oxide thin film
JPH04180566A (en) Thin film forming device
JP2000000444A (en) Alcohol vapor stop-off film in gas phase
JP2728806B2 (en) Tantalum oxide thin film forming equipment
JPH09296269A (en) Forming method of copper thin film
JP2002121668A (en) Thermal cvd apparatus for forming graphite nanofiber thin film
JPH0661450A (en) Formation method of tantalum oxide thin film
JP4627861B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films
JPH01312833A (en) Vapor phase growth device
JPH05291144A (en) Chemical vapor deposition equipment and its vaporiser
JP4627860B2 (en) Thermal CVD equipment for forming graphite nanofiber thin films