JPH05132734A - Composite material having wear resistance and corrosion resistance - Google Patents

Composite material having wear resistance and corrosion resistance

Info

Publication number
JPH05132734A
JPH05132734A JP31971091A JP31971091A JPH05132734A JP H05132734 A JPH05132734 A JP H05132734A JP 31971091 A JP31971091 A JP 31971091A JP 31971091 A JP31971091 A JP 31971091A JP H05132734 A JPH05132734 A JP H05132734A
Authority
JP
Japan
Prior art keywords
weight
wear
composite material
resistance
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31971091A
Other languages
Japanese (ja)
Inventor
Hideo Oyabu
英雄 大薮
Osamu Hida
修 肥田
Katsunori Monma
勝則 門馬
Tei Chimura
禎 千村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP31971091A priority Critical patent/JPH05132734A/en
Publication of JPH05132734A publication Critical patent/JPH05132734A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a composite material having excellent characteristics in corrosion resistance, wear resistance, and strength and suitable, e.g., for cylinder material and screw material for extruding machine and injection machine for resin working machine. CONSTITUTION:Hard phases composed essentially of carbide and boride are bound with Ni-base or Co-base matrix. The composition consists of, in total (by weight), 1.5-5% B, 5-15% Cr, 25-50% Mo, 10-25% W, 2-4% Fe, 0.5-24 C, and the balance Ni or Co with inevitable impurities and further contains, if necessary, 0.5-2% Cu. By this method, the wear- and corrosion-resistant composite material having sufficiently excellent characteristics in corrosion resistance, wear resistance, and strength can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高耐食性を持ち、か
つ高耐摩耗性を有する炭化物と硼化物とを主体とする硬
質相を、Ni 基またはCo 基マトリックスで結合した耐
摩耗耐食性複合材料に関するものである。例えば、腐食
性の強いプラスチックやゴムなどの可塑物の樹脂加工機
械用のシリンダ材やスクリュ材に適する。特に塩酸、弗
化水素酸に対する耐食性を必要とし、かつ耐摩耗性を要
求されるコンパウンド用樹脂加工機械用の耐食耐摩耗材
に好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear-corrosion-resistant composite material in which a hard phase mainly composed of a carbide and a boride having high corrosion resistance and high wear resistance is bound by a Ni group or a Co group matrix. It is about. For example, it is suitable as a cylinder material or a screw material for a resin processing machine of a plastic material such as highly corrosive plastic or rubber. In particular, it is suitable as a corrosion-resistant and wear-resistant material for a resin processing machine for a compound that requires corrosion resistance against hydrochloric acid and hydrofluoric acid and also requires wear resistance.

【0002】[0002]

【従来の技術】樹脂加工機械における押出機や射出機の
シリンダ、スクリュ材は、加工対象物による摩耗を受け
たり、金属間の接触摩耗を受けやすいため、耐摩耗性に
優れた材料で構成する必要がある。このため、上記材料
としては、従来、耐摩耗性に優れた自溶性耐摩耗Ni合
金やNi基自溶性合金にWCなどの硬質粒子を添加した
複合材料が使用されている。
2. Description of the Related Art Cylinders and screw materials of extruders and injection machines in resin processing machines are liable to be abraded by an object to be machined or contact-abraded between metals, and are therefore made of materials having excellent abrasion resistance. There is a need. Therefore, as the above-mentioned material, conventionally, a self-fluxing wear resistant Ni alloy excellent in wear resistance or a composite material obtained by adding hard particles such as WC to a Ni-based self-fluxing alloy has been used.

【0003】[0003]

【発明が解決しようとする課題】ところで、最近の成形
材料の高機能化により、樹脂加工機械が使用される環境
はより過酷になっており、例えば、高温条件下での成形
作業において樹脂から発生する腐食ガスにさらされて腐
食を受けやすい。したがって、従来のように、機械用材
料については、耐摩耗性だけを重視することはできず、
耐食性や強度にも優れた特性が要求されている。しか
し、前記した自溶性耐摩耗Ni 合金やWC添加複合材料
は、耐摩耗性は良好ではあるものの、耐食性や強度は十
分ではない。
By the way, recently, due to the high functionality of the molding material, the environment in which the resin processing machine is used is becoming more severe. For example, the resin is generated in the molding operation under high temperature conditions. Exposed to corrosive gases and susceptible to corrosion. Therefore, unlike conventional materials, it is not possible to focus only on wear resistance for mechanical materials,
Properties with excellent corrosion resistance and strength are required. However, although the self-fluxing wear-resistant Ni alloy and the WC-added composite material described above have good wear resistance, they do not have sufficient corrosion resistance or strength.

【0004】これに対し、耐食性に優れた材料として
は、Ni−Cr−Mo合金が知られており、実際に使用に
供される場合もある。しかし、この材料は、耐摩耗性が
十分ではなく、また部材同士の接触による凝着やカジリ
を生じやすいという欠点がある。 以上のように、従来
材においては、耐食性に優れた材料は耐摩耗性が十分で
なく、また、耐摩耗性に優れた材料は耐食性や強度が不
十分である。このため、耐摩耗性、耐食性、強度のいず
れの特性にも優れた材料の開発が進められているが、こ
れら特性の全てについて十分に満足できる材料の実現は
達成されていない。 この発明は、上記事情を背景とし
てなされたものであり、高耐食性を有し、かつ耐摩耗
性、強度にも優れており、条件の厳しい樹脂加工機械に
おける高腐食環境下での使用にも耐えることができ、現
行材料よりも高い強度をもった耐摩耗耐食性複合材料を
提供することを目的とする。
On the other hand, a Ni--Cr--Mo alloy is known as a material having excellent corrosion resistance, and it may be actually used. However, this material has drawbacks that it does not have sufficient wear resistance, and that it tends to cause adhesion and galling due to contact between members. As described above, in the conventional materials, the material excellent in corrosion resistance does not have sufficient abrasion resistance, and the material excellent in abrasion resistance has insufficient corrosion resistance and strength. For this reason, development of materials excellent in all properties of wear resistance, corrosion resistance, and strength has been progressed, but material satisfying all of these properties has not been achieved yet. The present invention has been made against the background of the above circumstances, has high corrosion resistance, and also has excellent wear resistance and strength, and can withstand use in a highly corrosive environment in severe resin processing machines. It is an object of the present invention to provide a wear-corrosion-resistant composite material which can be manufactured and has higher strength than existing materials.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
本願発明者らは、Mo−Cr系の硼化物を主体とする硬質
相と、W、Mo などの炭化物を分散させた硬質の合金に
着目した。さらに、本発明者らは、耐摩耗耐食材料の開
発過程において、この硼化物が高い硬さを持つだけでな
く、微細に分散させると、優れた耐摩耗耐食性や強度を
有することを見い出し、上記した硼化物と、W、Cr、
Mo の炭化物と、Ni基またはCo基合金との組合わせに
より、耐摩耗耐食性に優れた本発明の複合材料を得たも
のである。
In order to solve the above-mentioned problems, the inventors of the present invention have developed a hard phase mainly composed of Mo-Cr type boride and a hard alloy in which carbides such as W and Mo are dispersed. I paid attention. Furthermore, the present inventors have found that, in the process of developing an abrasion-corrosion-resistant material, this boride has not only high hardness but also fine abrasion to have excellent abrasion-corrosion resistance and strength. Boride and W, Cr,
By combining the Mo carbide and the Ni-based or Co-based alloy, the composite material of the present invention having excellent wear and corrosion resistance is obtained.

【0006】すなわち、本願発明の耐摩耗耐食性複合材
料は、炭化物および硼化物を主体とする硬質相がNi 基
またはCo 基のマトリックスで結合された複合材料であ
って、前記硬質相およびマトリックスは、総量で、B:
1.5〜5重量%、Cr:5〜15重量%、Mo:25〜
50重量%、W:10〜25重量%、Fe:2〜4重量
%、C:0.5〜2重量%を含有し、さらに、所望によ
りCu:0.5〜2重量%を含有し、残部がNiまたはC
oと不可避的不純物とからなることを特徴とするもので
ある。
That is, the wear-resistant and corrosion-resistant composite material of the present invention is a composite material in which a hard phase composed mainly of a carbide and a boride is bonded by a Ni-based or Co-based matrix, and the hard phase and the matrix are: In total, B:
1.5-5% by weight, Cr: 5-15% by weight, Mo: 25-
50% by weight, W: 10 to 25% by weight, Fe: 2 to 4% by weight, C: 0.5 to 2% by weight, and optionally Cu: 0.5 to 2% by weight, The balance is Ni or C
It is characterized by comprising o and unavoidable impurities.

【0007】上記硬質相では、添加合金のままで、また
は含有成分と反応した硼化物が主体となっており、硼化
物の多くは複合硼化物からなる。また、炭化物において
も、複合炭化物が生成される場合がある。なお、本発明
における組成物は粉末として提供し、これを焼結する粉
末冶金法により製造するのが望ましい。この方法によれ
ば、硬質物が均一に分散した複合材料が得られる。さら
に、HIP法を用いることにより、より高強度、高硬度
の複合材料が得られる。上記粉末冶金においては、W、
Cの全部または一部をWC粉末として提供し、Mo、C
r、Bの全部または一部をMoB、CrB粉末として提供
することができる。これら粉末は、微細な炭化物、硼化
物をマトリックス中に分散できるように、3〜10μm
の粒径のものを用いるのが望ましい。
In the above hard phase, the main component is the boride which remains in the additive alloy or reacts with the contained components, and most of the boride consists of complex boride. Further, also in carbides, composite carbides may be produced. The composition of the present invention is preferably provided as a powder and manufactured by a powder metallurgy method of sintering the composition. According to this method, a composite material in which hard materials are uniformly dispersed can be obtained. Further, by using the HIP method, a composite material having higher strength and higher hardness can be obtained. In the above powder metallurgy, W,
Providing all or part of C as WC powder, Mo, C
All or part of r, B can be provided as MoB, CrB powder. These powders have a particle size of 3 to 10 μm so that fine carbides and borides can be dispersed in the matrix.
It is desirable to use those having a particle size of.

【0008】上記粉末を用いた場合に、母合金粉末に
は、発明の範囲内において必要に応じた組成を有するも
のが使用される。例えば、Cr:15〜16%、Mo:1
5〜17%、W:3〜4%のものや、Cr:15〜16
%、Mo:31〜32%のもので残部が実質的にNi か
らなる母合金が使用される。上記母合金粉末は、焼結
性、組織の均一性のため、アトマイズ法で製造するのが
望ましい。WC粉末、硼化物、母合金粉末は、ボ−ルミ
ルなどによって所定量を混合し、この混合粉を成形した
後、焼結する。例えば液相焼結によって行う場合には、
1000〜1300℃で10〜90分間焼結する。な
お、焼結方法はこれに限定されるものではなく、普通焼
結法の他に、HIP、ホットプレス法などの他の焼結法
を採用することも可能である。
When the above powder is used, a master alloy powder having a composition as required within the scope of the invention is used. For example, Cr: 15 to 16%, Mo: 1
5 to 17%, W: 3 to 4%, Cr: 15 to 16
%, Mo: 31-32%, and a master alloy having the balance substantially Ni. The mother alloy powder is preferably manufactured by the atomization method because of its sinterability and uniformity of structure. A predetermined amount of WC powder, boride, and mother alloy powder are mixed by a ball mill or the like, and the mixed powder is molded and then sintered. For example, when performing by liquid phase sintering,
Sinter at 1000 to 1300 ° C. for 10 to 90 minutes. The sintering method is not limited to this, and other sintering methods such as HIP and hot pressing can be adopted in addition to the normal sintering method.

【0009】[0009]

【作用】すなわち、本願発明の複合材料によれば、各種
実験の結果、摺動時に硼化物(主として複硼化物)は潤
滑材の役割を果たし、相手材に対する攻撃性を緩和する
ことが確認されている。また、複硼化物は、適度な耐摩
耗性を発揮するとともに、耐食性を向上させる。さら
に、複硼化物にWやCrの炭化物を組み合わせることに
より、金属同士の凝着摩耗を軽減し、かつ高硬度である
炭化物のもつ耐摩耗性によりアブレシブ摩耗に対しても
有効に作用する。したがって、本願発明により、耐食
性、耐摩耗性、強度の全ての特性が十分に優れている材
料が得られる。
In other words, according to the composite material of the present invention, as a result of various experiments, it was confirmed that the boride (mainly the compound boride) plays a role of a lubricant during sliding, and alleviates the aggressiveness to the mating material. ing. Further, the compound boride exhibits appropriate wear resistance and improves corrosion resistance. Further, by combining W and Cr carbides with the compound boride, adhesion wear between metals is reduced, and due to the wear resistance of carbides having high hardness, it effectively acts on abrasive wear. Therefore, according to the present invention, it is possible to obtain a material having excellent corrosion resistance, wear resistance and strength.

【0010】次いで、本発明成分の限定理由を述べる。
Bは、硬質相となるM32型の複硼化物(電子線マイク
ロアナライザ−による面分析、X線回折による調査の結
果確認)を形成するために、必要不可欠な元素である。
B含有量が1.5%未満になると耐摩耗性が悪くなる。
一方、5%を超えると硬質相の量が多くなり、強度の低
下が生ずるため上記範囲とする。Moは、Bと反応して
複硼化物を生成する。また、弗化水素酸などの還元性雰
囲気に対する腐食抵抗を増大させる作用があり、耐食性
を増すために、25%以上のMo量が必要である。しか
し、50%を超えると、脆弱な金属間化合物を形成し耐
食性の低下をもたらすので上記範囲とする。
Next, the reasons for limiting the components of the present invention will be described.
B is an essential element for forming an M 3 B 2 type double boride (a surface analysis by an electron beam microanalyzer, confirmation of a result of an examination by X-ray diffraction) which becomes a hard phase.
If the B content is less than 1.5%, the wear resistance becomes poor.
On the other hand, if it exceeds 5%, the amount of the hard phase increases and the strength decreases, so the above range is set. Mo reacts with B to form a double boride. Further, it has the effect of increasing the corrosion resistance to a reducing atmosphere such as hydrofluoric acid, and a Mo amount of 25% or more is required to increase the corrosion resistance. However, if it exceeds 50%, a brittle intermetallic compound is formed and corrosion resistance is deteriorated, so the above range is made.

【0011】Crは、焼結時に反応して炭化物を生成し
たり、硼化物として硬質相を構成するだけでなく結合相
にも固溶して、耐食性、耐摩耗性、耐熱性、耐酸化性を
向上させる働きを持つ。5%未満では、耐食性が不十分
であり、15%を超えると、靱性が低下するために上記
範囲とする。Wは、Ni基またはCo基合金に分散させる
硬質相を構成させるもので、他成分との反応によって複
硼化物を生成したり、炭化物を生成する。その含有量
は、10%未満では耐摩耗性の付与が不十分となり、2
5%を越えると、材料強度が劣化するために上記範囲と
した。
[0011] Cr reacts during sintering to form a carbide, forms a hard phase as a boride, and also forms a solid solution in the binder phase, resulting in corrosion resistance, wear resistance, heat resistance, and oxidation resistance. Has the function of improving. If it is less than 5%, the corrosion resistance is insufficient, and if it exceeds 15%, the toughness decreases, so the above range is made. W constitutes a hard phase to be dispersed in a Ni-based or Co-based alloy, and forms a double boride or a carbide by reacting with other components. If the content is less than 10%, the abrasion resistance cannot be sufficiently imparted, and 2
If it exceeds 5%, the material strength deteriorates, so the above range was made.

【0012】Cは、Wと同様にNi基またはCo基合金に
分散させる硬質相を構成させるもので、W、Mo、Crと
反応して炭化物を形成し、耐摩耗性の向上に寄与する。
その含有量は、0.5%未満では耐摩耗性向上は不十分
であり、2%を越えると、炭化物が過度となり、相手材
攻撃性が増すとともに機械的特性を損なうので上記範囲
とする。Feは、低温における強度を向上させるために
添加させる。但し、添加量が多いと耐食性が低下するの
で、上記範囲とする。
C, like W, constitutes a hard phase dispersed in a Ni-based or Co-based alloy, reacts with W, Mo, and Cr to form a carbide, which contributes to improvement of wear resistance.
If the content is less than 0.5%, the improvement in wear resistance is insufficient, and if it exceeds 2%, carbides become excessive, the attacking property of the mating material increases, and the mechanical properties are impaired, so the content is in the above range. Fe is added to improve the strength at low temperature. However, if the addition amount is large, the corrosion resistance decreases, so the above range is set.

【0013】Cuは、Ni合金であるモネル合金に代表さ
れるように、Ni基合金の耐食性の向上に寄与するので
0.5%以上添加する。しかし、添加量が多くなると合
金が軟化して耐摩耗性が悪くなるので、含有量は2%以
下とした。なお、耐摩耗性を重視する場合には、無添加
とすることができる。NiまたはCoは、耐食性の向上に
効果のある元素であり、Bとともに硬質の硼化物を形成
して耐摩耗性を向上させる効果があるので、残部をNi
またはCoとした。なお、残部のNiまたはCoには不可
避的不純物が存在するが、それらは、本発明の効果を損
なわない範囲で許容される。
Since Cu contributes to the improvement of the corrosion resistance of the Ni-based alloy, as represented by the Monel alloy which is a Ni alloy, Cu is added in an amount of 0.5% or more. However, if the amount of addition is large, the alloy will soften and the wear resistance will deteriorate, so the content was made 2% or less. In addition, when importance is attached to abrasion resistance, no addition can be made. Ni or Co is an element effective in improving the corrosion resistance, and has the effect of forming a hard boride together with B to improve the wear resistance, so the balance is Ni.
Or Co. In addition, inevitable impurities are present in the balance Ni or Co, but they are permissible as long as the effects of the present invention are not impaired.

【0014】[0014]

【実施例】以下に、この発明の実施例を、比較材(従来
例)と比較しつつ説明する。先ず、表1に示す成分の合
金とWC、MoB、Cuとを、下記の粒径でそれぞれ原料
粉末の一部として用意し、表2に示す混合比で各粉末を
秤量して試験用混合粉末をそれぞれ調製した。 (粒径) 合金A :10〜44μm WC :8μm(平均粒径) MoB :3.5μm(平
均粒径) Cu :44μm未満
EXAMPLES Examples of the present invention will be described below in comparison with comparative materials (conventional examples). First, the alloys of the components shown in Table 1 and WC, MoB, and Cu were prepared as a part of the raw material powders with the following particle sizes, and each powder was weighed at the mixing ratio shown in Table 2 to prepare a test mixed powder. Were prepared respectively. (Particle size) Alloy A: 10 to 44 μm WC: 8 μm (average particle size) MoB: 3.5 μm (average particle size) Cu: less than 44 μm

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】各混合粉末には、さらにパラフィン系、ワ
ックス+樹脂系、または樹脂系からなるバインダーを所
定量加え、有機溶媒中でボ−ルミルによって24時間湿
式混合した後、乾燥させて250〜500μmの粒径に
造粒した。この造粒粉をゴム型を用いてCIP成形
(圧:1〜4トン/cm2 )した。得られた成形体を不
活性ガス雰囲気下において、350〜500℃で2〜4
時間加熱して脱脂を行った。そして脱脂後の成形体を、
真空雰囲気下(10-3Torr以下)において、1000℃
で1時間保持した後、1180〜1270℃で30分間
保持して本発明の焼結体を得た。さらに、この焼結体を
切断加工して、所定形状の試験片(実施例1〜4)を切
り出した。また、比較のために、従来材からなる試験片
(比較材1〜3)を用意した。比較材1は、市販のNi
基耐食合金からなり、比較材2は、Ni基自溶性合金か
らなり、比較材3は、Ni基自溶性合金に平均粒径60
μmのWC粒子を40重量%分散させたものであり、い
ずれも粉末冶金によることなく溶製により得たものであ
る。なお、実施例1〜4および比較材1〜3の成分の総
量を表3に示す。
A predetermined amount of paraffin-based, wax + resin-based, or resin-based binder is added to each mixed powder, and the mixture is wet-mixed in an organic solvent by a ball mill for 24 hours, and then dried to 250 to 500 μm. Granulated to a particle size of. This granulated powder was subjected to CIP molding (pressure: 1 to 4 ton / cm 2 ) using a rubber mold. The obtained molded body is heated at 350 to 500 ° C. for 2 to 4 in an inert gas atmosphere.
Degreasing was performed by heating for a time. And the molded body after degreasing,
1000 ° C in a vacuum atmosphere (10 -3 Torr or less)
After holding for 1 hour, the temperature was held at 1180 to 1270 ° C for 30 minutes to obtain a sintered body of the present invention. Furthermore, this sintered body was cut and processed, and test pieces (Examples 1 to 4) having a predetermined shape were cut out. For comparison, test pieces (comparative materials 1 to 3) made of conventional materials were prepared. Comparative material 1 is a commercially available Ni
Comparative material 2 is made of a Ni-base self-fluxing alloy, and Comparative material 3 is made of a Ni-base self-fluxing alloy having an average particle size of 60.
It was obtained by dispersing 40 μm of WC particles having a size of μm, and all were obtained by melting without powder metallurgy. Table 3 shows the total amounts of the components of Examples 1 to 4 and Comparative Materials 1 to 3.

【0018】[0018]

【表3】 [Table 3]

【0019】上記実施例について、EPMAによって面
分析して組織観察を行ったところ、図1の写真に示すよ
うに、マトリックスとして Ni−Fe−Cu−Mo の組成
物が形成されており、硬質相として、(Mo、Cr、B)
よりなる複硼化物と、(W、Mo、C)よりなる炭化物
とが生成されていた。次に、各試験片の特性評価を行う
ため、それぞれの硬さ、抗折力を測定するとともに、腐
食試験および摩耗試験を行った。腐食試験は、1%塩酸
を煮沸し、これに試験片を5時間浸漬して、試験片の腐
食減量を測定して耐食性を評価した。
When the surface of the above example was analyzed by EPMA and the structure was observed, a Ni-Fe-Cu-Mo composition was formed as a matrix as shown in the photograph of FIG. As (Mo, Cr, B)
And a carbide composed of (W, Mo, C). Next, in order to evaluate the characteristics of each test piece, its hardness and transverse rupture strength were measured, and a corrosion test and a wear test were performed. In the corrosion test, 1% hydrochloric acid was boiled, the test piece was immersed in this for 5 hours, and the corrosion weight loss of the test piece was measured to evaluate the corrosion resistance.

【0020】また、摩耗試験は、金属同士の凝着摩耗を
シュミレ−トするため大越式摩耗試験機を用い、相手材
にSKD11相当材(HRC61)を使用し、最終荷重
18.7kgf、摩擦速度2.37m/s、摩擦距離2
00mの条件下で試験を行い、試験片の摩擦体積を測定
して耐摩耗性を評価した。さらに、樹脂中の硬質添加剤
による摩耗をシミュレ−トするために、アブレシブ摩耗
試験を行った。具体的には、相手材に320番SiC研
磨紙を用いて、荷重2kgf、速度3.6m/s(60
往復/分)で試験を行い、試験片の摩擦量を測定した。
なお、摩擦量には、400回毎の平均値を採用した。
In the wear test, an Ogoshi-type wear tester was used to simulate adhesion wear between metals, a mating material equivalent to SKD11 (HRC61) was used, and final load was 18.7 kgf and friction speed. 2.37m / s, friction distance 2
The test was performed under the condition of 00 m, and the friction volume of the test piece was measured to evaluate the wear resistance. Further, an abrasive wear test was conducted in order to simulate the wear caused by the hard additive in the resin. Specifically, No. 320 SiC polishing paper was used as the mating material, and the load was 2 kgf and the speed was 3.6 m / s (60
The test was carried out at a reciprocating rate / minute, and the friction amount of the test piece was measured.
The average value for every 400 times was adopted as the friction amount.

【0021】これらの試験の結果を表4に示す。その結
果、比較材1(Ni基耐食合金)は、耐食性には優れて
いるものの、耐摩耗性に劣っており、例えば、樹脂にガ
ラス繊維などを添加した複合材料の成形に対しては好適
な材料ではない。また、比較材2(Ni基自溶性合金)
は、耐摩耗性は、十分とはいえないものの、ある程度の
特性は確保されているが、耐食性は十分ではない。ま
た、比較材3(Ni基自溶性合金+WC)は、耐摩耗性
は良好であるが、耐食性および強度は劣っている。
The results of these tests are shown in Table 4. As a result, Comparative Material 1 (Ni-based corrosion resistant alloy) is excellent in corrosion resistance but inferior in wear resistance, and is suitable for molding a composite material in which glass fiber or the like is added to resin, for example. Not a material. Comparative material 2 (Ni-based self-fluxing alloy)
Wear resistance is not sufficient, but some properties are secured, but corrosion resistance is not sufficient. Further, Comparative Material 3 (Ni-based self-fluxing alloy + WC) has good wear resistance, but poor corrosion resistance and strength.

【0022】これに対し、実施例1〜4の試験片は、
W、Moの炭化物によって耐アブレシブ摩耗性が向上し
ており、例えば、樹脂中の硬質添加剤による摩耗を防止
する。また、大越式摩耗試験では、複硼化物が潤滑材と
しての効力を発揮しており、試験片自身の摩耗量は小さ
い。さらに、腐食試験における腐食量も少なく、例え
ば、樹脂中から発生するガスによる高腐食環境下でも、
生成した硬質物が高い耐食性を示す。 また、微細な硬
質物が緻密に分散しているため、Ni基自溶性合金より
も高い抗折力を示す。以上のように、本発明の複合材料
は、比較材と異なり、耐摩耗性、耐食性および強度のい
ずれにおいても優れた結果が得られた。
On the other hand, the test pieces of Examples 1 to 4 were
The abrasive wear resistance is improved by the carbides of W and Mo, and for example, wear due to the hard additive in the resin is prevented. Further, in the Ogoshi-type wear test, the compound boride is effective as a lubricant, and the amount of wear of the test piece itself is small. Furthermore, the amount of corrosion in the corrosion test is small, for example, even in a highly corrosive environment due to gas generated from the resin,
The generated hard material exhibits high corrosion resistance. Further, since fine hard materials are densely dispersed, it exhibits higher transverse rupture strength than the Ni-based self-fluxing alloy. As described above, the composite material of the present invention, unlike the comparative material, has excellent results in terms of wear resistance, corrosion resistance and strength.

【0023】[0023]

【表4】 [Table 4]

【0024】[0024]

【発明の効果】以上説明したように、本願発明の複合材
料によれば、特定成分の基に、炭化物と硼化物とを主体
とする硬質相をNi基またはCo基合金で結合したので、
耐摩耗性だけでなく、高強度の耐食性材料として優れた
特性が得られる効果がある。したがって、過酷な成形条
件下で使用される樹脂加工機械用のシリンダ、スクリュ
などの構成摺動材料として最適な複合材料が得られる効
果がある。
As described above, according to the composite material of the present invention, the hard phase mainly composed of carbide and boride is bonded to the base of the specific component by the Ni-based or Co-based alloy.
Not only wear resistance but also excellent properties as a high strength corrosion resistant material can be obtained. Therefore, there is an effect that the optimum composite material can be obtained as a constituent sliding material such as a cylinder and a screw for a resin processing machine used under severe molding conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2の焼結体の金属組織写真である。1 is a photograph of a metal structure of a sintered body of Example 2. FIG.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭化物および硼化物を主体とする硬質相
がNi基のマトリックスで結合された複合材料であっ
て、前記硬質相およびマトリックスは、総量で、B:
1.5〜5重量%、Cr:5〜15重量%、Mo:25〜
50重量%、W:10〜25重量%、Fe:2〜4重量
%、C:0.5〜2重量%、Cu:0.5〜2重量%を
含有し、残部がNiと不可避的不純物とからなる耐摩耗
耐食性複合材料
1. A composite material in which a hard phase mainly composed of a carbide and a boride is bound by a Ni-based matrix, and the hard phase and the matrix are contained in a total amount of B:
1.5-5% by weight, Cr: 5-15% by weight, Mo: 25-
50% by weight, W: 10 to 25% by weight, Fe: 2 to 4% by weight, C: 0.5 to 2% by weight, Cu: 0.5 to 2% by weight, and the balance Ni and inevitable impurities. Wear and corrosion resistant composite material consisting of
【請求項2】 炭化物および硼化物を主体とする硬質相
がNi基のマトリックスで結合された複合材料であっ
て、前記硬質相およびマトリックスは、総量で、B:
1.5〜5重量%、Cr:5〜15重量%、Mo:25〜
50重量%、W:10〜25重量%、Fe:2〜4重量
%、C:0.5〜2重量%を含有し、残部がNiと不可
避的不純物とからなる耐摩耗耐食性複合材料
2. A composite material in which a hard phase mainly composed of a carbide and a boride is bound by a Ni-based matrix, and the hard phase and the matrix are contained in a total amount of B:
1.5-5% by weight, Cr: 5-15% by weight, Mo: 25-
Wear-corrosion-resistant composite material containing 50% by weight, W: 10 to 25% by weight, Fe: 2 to 4% by weight, C: 0.5 to 2% by weight, and the balance being Ni and inevitable impurities.
【請求項3】 炭化物および硼化物を主体とする硬質相
がCo基のマトリックスで結合された複合材料であっ
て、前記硬質相およびマトリックスは、総量で、B:
1.5〜5重量%、Cr:5〜15重量%、Mo:25〜
50重量%、W:10〜25重量%、Fe:2〜4重量
%、C:0.5〜2重量%、Cu:0.5〜2重量%を
含有し、残部がCoと不可避的不純物とからなる耐摩耗
耐食性複合材料
3. A composite material in which a hard phase mainly composed of carbide and boride is bound by a Co-based matrix, and the hard phase and the matrix are in a total amount of B:
1.5-5% by weight, Cr: 5-15% by weight, Mo: 25-
50% by weight, W: 10 to 25% by weight, Fe: 2 to 4% by weight, C: 0.5 to 2% by weight, Cu: 0.5 to 2% by weight, and the balance Co and unavoidable impurities Wear and corrosion resistant composite material consisting of
【請求項4】 炭化物および硼化物を主体とする硬質相
がCo基のマトリックスで結合された複合材料であっ
て、前記硬質相およびマトリックスは、総量で、B:
1.5〜5重量%、Cr:5〜15重量%、Mo:25〜
50重量%、W:10〜25重量%、Fe:2〜4重量
%、C:0.5〜2重量%を含有し、残部がCoと不可
避的不純物とからなる耐摩耗耐食性複合材料
4. A composite material in which a hard phase mainly composed of a carbide and a boride is bound by a Co-based matrix, and the hard phase and the matrix are contained in a total amount of B:
1.5-5% by weight, Cr: 5-15% by weight, Mo: 25-
Abrasion-corrosion-resistant composite material containing 50% by weight, W: 10 to 25% by weight, Fe: 2 to 4% by weight, C: 0.5 to 2% by weight, and the balance being Co and inevitable impurities.
JP31971091A 1991-11-08 1991-11-08 Composite material having wear resistance and corrosion resistance Pending JPH05132734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31971091A JPH05132734A (en) 1991-11-08 1991-11-08 Composite material having wear resistance and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31971091A JPH05132734A (en) 1991-11-08 1991-11-08 Composite material having wear resistance and corrosion resistance

Publications (1)

Publication Number Publication Date
JPH05132734A true JPH05132734A (en) 1993-05-28

Family

ID=18113317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31971091A Pending JPH05132734A (en) 1991-11-08 1991-11-08 Composite material having wear resistance and corrosion resistance

Country Status (1)

Country Link
JP (1) JPH05132734A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136466A (en) * 2005-11-15 2007-06-07 Nippon Steel Corp Metallic mold for semi-melted/semi-solidified casting of iron-based alloy
CN106086568A (en) * 2016-07-26 2016-11-09 中国科学院兰州化学物理研究所 A kind of wide vacuum high-temp. resistant self-lubricating compound material and preparation method thereof
WO2021045183A1 (en) * 2019-09-06 2021-03-11 日立金属株式会社 Ni-BASED ALLOY, Ni-BASED ALLOY POWDER, NI-BASED ALLOY MEMBER, AND PRODUCT PROVIDED WITH Ni-BASED ALLOY MEMBER
CN116121579A (en) * 2022-11-25 2023-05-16 西安近代化学研究所 Preparation method of MoCoB-WCoB based composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007136466A (en) * 2005-11-15 2007-06-07 Nippon Steel Corp Metallic mold for semi-melted/semi-solidified casting of iron-based alloy
CN106086568A (en) * 2016-07-26 2016-11-09 中国科学院兰州化学物理研究所 A kind of wide vacuum high-temp. resistant self-lubricating compound material and preparation method thereof
WO2021045183A1 (en) * 2019-09-06 2021-03-11 日立金属株式会社 Ni-BASED ALLOY, Ni-BASED ALLOY POWDER, NI-BASED ALLOY MEMBER, AND PRODUCT PROVIDED WITH Ni-BASED ALLOY MEMBER
JP6866964B1 (en) * 2019-09-06 2021-04-28 日立金属株式会社 Products with Ni-based alloys, Ni-based alloy powders, Ni-based alloy members, and Ni-based alloy members.
US11821059B2 (en) 2019-09-06 2023-11-21 Proterial, Ltd. Ni-based alloy, Ni-based alloy powder, Ni-based alloy member, and product including Ni-based alloy member
CN116121579A (en) * 2022-11-25 2023-05-16 西安近代化学研究所 Preparation method of MoCoB-WCoB based composite material

Similar Documents

Publication Publication Date Title
US5778301A (en) Cemented carbide
US4029000A (en) Injection pump for injecting molten metal
JPH055152A (en) Hard heat resisting sintered alloy
JPH07290186A (en) Tungsten carbide composite lining material and layer for centrifugal casting
JPH05132734A (en) Composite material having wear resistance and corrosion resistance
CN104004952B (en) A kind of titanium based hard alloy and preparation method thereof
JP3487935B2 (en) High corrosion and wear resistant composite material
JPH04337047A (en) Composite material having high corrosion resistance and wear resistance
JP4282298B2 (en) Super fine cemented carbide
JPH0860278A (en) Corrosion and wear resistant material excellent in cavitation erosion resistance
JP4140928B2 (en) Wear resistant hard sintered alloy
JPH07268524A (en) High corrosion resistant and wear resistant composite material
JP2004238660A (en) Chromium-containing cemented carbide
JP4121694B2 (en) Sintered body Ni-based cermet and parts for plastic molding machine and die casting machine using the same
JPS62273820A (en) Composite cylinder for plastic molding apparatus
JPS6240340A (en) Diamond-type sintered material for cutting tool
JPS63143236A (en) Composite boride sintered body
JPH07138691A (en) Sintered hard alloy for aluminum working
JP3373372B2 (en) Si-added NiW2B base alloy and mechanical structural member
JPH08319530A (en) Composite material with high wear resistance and corrosion resistance
JP3519152B2 (en) WC particle-dispersed W-reinforced Ni-based alloy and composite material using the same
JP2005290530A (en) Metal boride-dispersed sintered compact
JPH1036935A (en) Nickel-tungsten2-boron2-alloy, and member for machine structure use
JPS60131867A (en) High abrasion resistance superhard material
JP3607039B2 (en) High strength corrosion resistant wear resistant alloy