JPH04337047A - Composite material having high corrosion resistance and wear resistance - Google Patents

Composite material having high corrosion resistance and wear resistance

Info

Publication number
JPH04337047A
JPH04337047A JP13701091A JP13701091A JPH04337047A JP H04337047 A JPH04337047 A JP H04337047A JP 13701091 A JP13701091 A JP 13701091A JP 13701091 A JP13701091 A JP 13701091A JP H04337047 A JPH04337047 A JP H04337047A
Authority
JP
Japan
Prior art keywords
weight
composite material
wear
hard phase
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13701091A
Other languages
Japanese (ja)
Inventor
Hideo Oyabu
大藪 英雄
Osamu Hida
肥田 修
Katsunori Monma
門馬 勝則
Tei Chimura
禎 千村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP13701091A priority Critical patent/JPH04337047A/en
Publication of JPH04337047A publication Critical patent/JPH04337047A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a composite material excellent in wear resistance as well as in corrosion resistance and suitable for material for cylinder, screw, etc., for extruder and injection machine in fat processing machinery. CONSTITUTION:Hard phases composed principally of borides or these borides and carbides are bound with Ni-base matrix. The composition consists, in total as a typical sample, of 2-6% B, 22-33% Cr, 7-10% Mo, 9-25% W, 3-6% Fe, 0.5-2% C, 0-2% Cu, and the balance Ni with inevitable impurities. By this method, the material excellent in wear resistance, such as adhesive wear resistance and abrasive wear resistance, as well as in corrosion resistance can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、高耐食性を持ち、か
つ高耐摩耗性を有するほう化物または、このほう化物と
炭化物とを主体とする硬質相を、Ni 基マトリックス
で結合した高耐食耐摩耗性複合材料に関するものである
。 例えば、腐食性の強いプラスチックやゴムなどの可塑物
を対象とする樹脂加工機械用のシリンダやスクリュ材に
適しており、特に塩酸、弗化水素酸に対する耐食性を必
要とし、かつ耐摩耗性を要求されるコンパウンド用樹脂
加工機械用の耐食耐摩耗材に好適である。
[Industrial Application Field] The present invention provides a highly corrosion-resistant material that combines a hard phase mainly composed of a boride, which has high corrosion resistance and high wear resistance, or this boride and carbide, with a Ni-based matrix. It concerns abradable composite materials. For example, it is suitable for cylinders and screw materials for resin processing machines that target highly corrosive plastics such as plastics and rubber, and requires corrosion resistance, especially against hydrochloric acid and hydrofluoric acid, as well as wear resistance. It is suitable as a corrosion-resistant and wear-resistant material for resin processing machines for compounding.

【0002】0002

【従来の技術】樹脂加工機械における押出機や射出機の
シリンダ、スクリュ材は、加工対象物による摩耗を受け
たり、金属間の接触摩耗を受けやすいため、耐摩耗性に
優れた材料で構成する必要がある。このため、上記材料
としては、従来、耐摩耗性に優れた自溶性耐摩耗Ni 
合金やNi 基自溶性合金にWCの硬質粒子を添加した
複合材料が使用されている。
[Prior art] The cylinders and screw materials of extruders and injection machines in resin processing machines are easily subject to wear from the workpiece and contact wear between metals, so they are constructed of materials with excellent wear resistance. There is a need. For this reason, the above-mentioned material has conventionally been self-fusing wear-resistant Ni with excellent wear resistance.
Composite materials are used in which hard particles of WC are added to alloys or Ni-based self-fusing alloys.

【0003】0003

【発明が解決しようとする課題】ところで、最近の成形
材料の高機能化により、樹脂加工機械が使用される環境
はより過酷になっており、例えば、高温条件下での成形
作業において樹脂から発生する腐食ガスにさらされて腐
食を受けやすい。したがって、従来のように、機械用材
料について、耐摩耗性だけを重視することはできず、耐
食性にも優れた特性が要求されている。しかし、前記し
た自溶性耐摩耗Ni 合金、WC添加複合材料は、耐摩
耗性は良好ではあるが、耐食性は十分ではない。
[Problems to be Solved by the Invention] By the way, with the recent advancement in the functionality of molding materials, the environment in which resin processing machines are used has become more harsh. susceptible to corrosion due to exposure to corrosive gases. Therefore, it is no longer possible to place importance only on wear resistance for mechanical materials as in the past, and excellent corrosion resistance is also required. However, although the above-described self-fusing wear-resistant Ni alloy and WC-added composite material have good wear resistance, they do not have sufficient corrosion resistance.

【0004】これに対し、耐食性に優れた材料としては
、Ni −Cr−Mo合金が知られており、実際に使用
に供される場合もある。しかし、この材料は、耐摩耗性
が十分ではなく、例えば、部材同士の接触による凝着や
カジリを生じやすいという欠点がある。以上のように、
従来材においては、耐食性に優れた材料は耐摩耗性が十
分でなく、また、耐摩耗性に優れた材料は耐食性が不十
分である。このため、耐摩耗性、耐食性のいずれにも優
れた特性を有する材料の開発が進められているが、両方
の優れた特性を十分に合わせ持つ材料の実現は達成され
ていない。この発明は、上記事情を背景としてなされた
ものであり、高耐食性を有し、かつ耐摩耗性にも優れて
おり、条件の厳しい樹脂加工機械における高腐食環境下
での使用にも耐える高耐食耐摩耗性複合材料を提供する
ことを目的とする。
On the other hand, Ni-Cr-Mo alloy is known as a material with excellent corrosion resistance, and is sometimes actually used. However, this material does not have sufficient abrasion resistance, and has the drawback that, for example, members are likely to adhere or gallize due to contact with each other. As mentioned above,
In conventional materials, materials with excellent corrosion resistance do not have sufficient wear resistance, and materials with excellent wear resistance have insufficient corrosion resistance. For this reason, efforts are being made to develop materials that have excellent properties in both wear resistance and corrosion resistance, but a material that has both of these excellent properties has not yet been achieved. This invention was made against the background of the above circumstances, and has high corrosion resistance and excellent wear resistance, and can withstand use in highly corrosive environments in resin processing machines under severe conditions. The purpose is to provide wear-resistant composite materials.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
本願発明者らは、W−Mo−Cr−Ni 系またはMo
−Cr−Ni 系のほう化物を主体とする硬質相と、W
、Crなどの炭化物を分散させた硬質の合金に着目した
。さらに、本発明者らは、耐食性を具備した耐摩耗材料
の開発過程において、このほう化物が高い硬さを持つだ
けでなく、優れた耐食性を有することを見出し、上記し
たほう化物、WやCrの炭化物、Ni 基合金の組合わ
せにより、耐食耐摩耗性に優れた本発明の複合材料を得
たものである。
[Means for Solving the Problems] In order to solve the above problems, the inventors of the present application have developed a W-Mo-Cr-Ni system or Mo
-Hard phase mainly composed of Cr-Ni boride and W
, focused on hard alloys in which carbides such as Cr are dispersed. Furthermore, in the process of developing wear-resistant materials with corrosion resistance, the present inventors discovered that this boride not only has high hardness but also has excellent corrosion resistance. The composite material of the present invention, which is excellent in corrosion and wear resistance, is obtained by combining the carbide and the Ni-based alloy.

【0006】すなわち、本願発明の高耐食耐摩耗性複合
材料のうち第1、第2の発明は、ほう化物を主体とする
硬質相がNi 基マトリックスで結合された複合材料で
あって、前記硬質相およびマトリックスは、総量で、B
:2〜6重量%、Cr:22〜33重量%、Mo:7〜
10重量%、W:9〜25重量%、Fe :3〜6重量
%、C:0.5〜2重量%、Cu :0〜2重量%、残
部がNi および不可避的不純物からなることを特徴と
するものである。
That is, the first and second inventions of the highly corrosion-resistant and wear-resistant composite materials of the present invention are composite materials in which a hard phase mainly composed of boride is bonded with a Ni-based matrix, The phase and matrix are, in total, B
: 2-6% by weight, Cr: 22-33% by weight, Mo: 7-
10% by weight, W: 9-25% by weight, Fe: 3-6% by weight, C: 0.5-2% by weight, Cu: 0-2% by weight, the balance consisting of Ni and inevitable impurities. That is.

【0007】次に、第3、第4の発明は、ほう化物を主
体とする硬質相がNi 基マトリックスで結合された複
合材料であって、前記硬質相およびマトリックスは、総
量で、B:2〜6重量%、Cr:22〜33重量%、M
o:17〜22重量%、W:9〜25重量%、C:0.
5〜2重量%、Cu :0〜2重量%、Si :0.0
1〜3重量%、残部がNi および不可避的不純物から
なることを特徴とするものである。
Next, the third and fourth inventions provide a composite material in which a hard phase mainly composed of boride is bonded with a Ni-based matrix, wherein the hard phase and the matrix have a total amount of B:2. ~6% by weight, Cr: 22-33% by weight, M
o: 17-22% by weight, W: 9-25% by weight, C: 0.
5-2% by weight, Cu: 0-2% by weight, Si: 0.0
It is characterized in that it contains 1 to 3% by weight, with the remainder consisting of Ni and unavoidable impurities.

【0008】さらに第5、第6の発明は、ほう化物を主
体とする硬質相がNi 基マトリックスで結合された複
合材料であって、前記硬質相およびマトリックスは、総
量で、B:2〜4重量%、Fe :3〜7重量%、Cr
:22〜33重量%、Mo:10〜13重量%、W:1
〜4重量%、Cu :0〜2重量%、Si :0.01
〜3重量%、残部がNi および不可避的不純物からな
ることを特徴とするものである。
Further, the fifth and sixth inventions provide a composite material in which a hard phase mainly composed of boride is bonded with a Ni-based matrix, wherein the hard phase and the matrix have a total amount of B: 2 to 4. Weight%, Fe: 3-7% by weight, Cr
:22-33% by weight, Mo: 10-13% by weight, W: 1
~4% by weight, Cu: 0-2% by weight, Si: 0.01
~3% by weight, with the remainder consisting of Ni and unavoidable impurities.

【0009】上記硬質相では、添加合金のままで、また
は含有成分と反応したほう化物が主体となっており、ほ
う化物の多くは複ほう化物からなる。また、炭化物にお
いても、複炭化物が生成される場合がある。なお、本発
明における組成物は粉末として提供し、これを焼結する
粉末冶金法により製造するのが望ましい。この方法によ
れば、硬質物が均一に分散した複合材料が得られる。さ
らに、HIP法を用いることにより、より高強度、高硬
度の複合材料が得られる。
[0009] The hard phase is mainly composed of borides either as they are in the added alloy or reacted with the contained components, and most of the borides are compound borides. Also, among carbides, double carbides may be generated. The composition of the present invention is preferably provided as a powder and manufactured by a powder metallurgy method in which the powder is sintered. According to this method, a composite material in which hard substances are uniformly dispersed can be obtained. Furthermore, by using the HIP method, a composite material with higher strength and higher hardness can be obtained.

【0010】上記粉末冶金において、W、Cの全部また
は一部をWC粉末として提供し、Cr、Mo、Bの全部
または一部をCrB、MoB粉末として提供することが
できる。これら粉末を用いた場合に、母合金粉末は、発
明の範囲内において必要に応じた組成を有するものが使
用される。例えば、Cr:15〜16%、Mo:15〜
17%、W:3〜4%のものや、Cr:15〜16%、
Mo:31〜32%、Si :3〜4%のもので残部が
実質的にNi からなる母合金が使用される。上記母合
金粉末は、焼結性、組織の均一性のためにアトマイズ法
で製造するのが望ましい。WC粉末、ほう化物粉末、母
合金粉末は、ボ−ルミルなどによって所定量を混合し、
この混合粉を成形した後、焼結する。例えば液相焼結に
よって行う場合には、1000〜1400℃で10〜9
0分間焼結する。なお、焼結方法はこれに限定されるも
のではなく、普通焼結法の他に、熱間静水圧プレス、ホ
ットプレス法などの他の焼結法を採用することも可能で
ある。
In the above powder metallurgy, all or part of W and C can be provided as WC powder, and all or part of Cr, Mo, and B can be provided as CrB or MoB powder. When these powders are used, the master alloy powder has a composition as required within the scope of the invention. For example, Cr: 15-16%, Mo: 15-16%
17%, W: 3-4%, Cr: 15-16%,
A master alloy containing 31 to 32% Mo, 3 to 4% Si, and the remainder substantially Ni is used. The above-mentioned master alloy powder is desirably manufactured by an atomization method for the sake of sinterability and uniformity of structure. WC powder, boride powder, and master alloy powder are mixed in predetermined amounts using a ball mill, etc.
After shaping this mixed powder, it is sintered. For example, in the case of liquid phase sintering, 10 to 9
Sinter for 0 minutes. Note that the sintering method is not limited to this, and in addition to the normal sintering method, other sintering methods such as hot isostatic pressing and hot pressing can also be employed.

【0011】なお、焼結温度を十分に高くして、例えば
1100℃以上で焼結する場合には、WCおよびCrB
は、他の成分と相互に反応してそれぞれ複炭化物および
複ほう化物を生成する。具体例として、1200℃以上
で焼結した場合には、硬質相として、W、Mo、Ni 
、Cr、Bを成分としたM3 B2 型複ほう化物が生
成され、さらに、Cを含有するものでは、Cr炭化物が
生成される。また、例えば、HIP法により成形体をキ
ャンニングし、焼結と緻密化処理を行う場合のように、
焼結材料を1100℃未満で焼結した場合には、添加し
たWCは、一部が未分解のままで残存し、耐アブレシブ
摩耗特性が向上する。
[0011] In addition, when sintering is performed at a sufficiently high sintering temperature, for example, 1100°C or higher, WC and CrB
react with other components to form double carbides and double borides, respectively. As a specific example, when sintered at 1200°C or higher, W, Mo, and Ni are used as hard phases.
, Cr, and B are produced, and in those containing C, Cr carbide is produced. In addition, for example, when a molded body is canned by the HIP method and subjected to sintering and densification treatment,
When the sintered material is sintered at a temperature below 1100° C., a portion of the added WC remains undecomposed, and the abrasive wear resistance is improved.

【0012】0012

【作用】すなわち、本願発明の複合材料によれば、各種
実験の結果、摺動時にほう化物(主として複ほう化物)
は潤滑材の役割を果し、相手材に対する攻撃性を緩和す
る。また、複ほう化物は、適度な耐摩耗性を発揮すると
ともに、耐食性を向上させる。さらに、複ほう化物にW
やCrの炭化物を組み合わせることにより、金属同士の
凝着摩耗を軽減し、かつ高硬度である炭化物のもつ耐摩
耗性によりアブレシブ摩耗に対しても有効に作用する。 したがって、本願発明により、耐食性、耐摩耗性の両特
性が十分に優れている材料が得られる。
[Operation] That is, according to the composite material of the present invention, as a result of various experiments, borides (mainly double borides) are formed during sliding.
plays the role of a lubricant and alleviates the aggressiveness of the other material. Further, compound borides exhibit appropriate wear resistance and improve corrosion resistance. Furthermore, W
By combining carbides such as and Cr, adhesive wear between metals can be reduced, and the high hardness of the carbide has abrasion resistance that effectively acts against abrasive wear. Therefore, according to the present invention, a material having sufficiently excellent corrosion resistance and wear resistance can be obtained.

【0013】次いで、本発明の成分の限定理由を述べる
。Bは、硬質相となるM3 B2 型の複ほう化物(電
子線マイクロアナライザ−による面分析、X線回折によ
る調査の結果確認)を形成するために、必要不可欠な元
素である。B含有量が2%未満になると耐摩耗性が悪く
なり、一方、6%を超えると硬質相の量が過多となり、
強度の低下が生ずるため上記範囲とする。なお、第5、
第6の発明では、材料の強度向上のため上限を4%とす
る。Crは、焼結時に反応して炭化物を生成したり、ほ
う化物として硬質相を構成するだけでなく結合相にも固
溶して、耐食性、耐摩耗性、耐熱性、耐酸化性を向上さ
せる働きを持つ。その含有量が22%以下では、耐食性
が不十分であり、33%を超えると、添加量増加に見合
う耐食性の向上が認められず、また、靭性も低下するた
め上記範囲とする。
Next, the reasons for limiting the components of the present invention will be described. B is an indispensable element in order to form a M3 B2 type double boride (as confirmed by surface analysis using an electron beam microanalyzer and investigation by X-ray diffraction), which becomes a hard phase. If the B content is less than 2%, the wear resistance will deteriorate, while if it exceeds 6%, the amount of hard phase will be excessive,
The above range is set because strength decreases. In addition, the fifth
In the sixth invention, the upper limit is set to 4% in order to improve the strength of the material. Cr reacts during sintering to generate carbides, forms a hard phase as a boride, and also solidly dissolves in the binder phase, improving corrosion resistance, wear resistance, heat resistance, and oxidation resistance. have a function. If the content is less than 22%, the corrosion resistance will be insufficient, and if it exceeds 33%, the corrosion resistance will not improve commensurately with the increase in the amount added, and the toughness will also decrease, so the above range is set.

【0014】Moは、Bと反応して複ほう化物を生成す
る。また、弗化水素酸などの還元性雰囲気に対する腐食
抵抗を増大させる作用があり、耐食性を増すために、7
%以上の含有が必要である。しかし、22%を超えると
、脆弱な金属間化合物を形成し、耐食性の低下をもたら
す。なお、第1、第2の発明では耐摩耗性を重視してお
り、高度な耐食性の向上は必要とされないので上限を1
0%とする。第3、第4の発明では、耐食性を重視する
ので、Mo含有量を17〜22%の範囲とする。また、
第5、第6の発明では、材料の強度向上のため10〜1
3%の範囲とする。
[0014] Mo reacts with B to produce a double boride. It also has the effect of increasing corrosion resistance against reducing atmospheres such as hydrofluoric acid, and in order to increase corrosion resistance, 7
% or more is required. However, when it exceeds 22%, brittle intermetallic compounds are formed, resulting in a decrease in corrosion resistance. Note that the first and second inventions emphasize wear resistance and do not require a high degree of improvement in corrosion resistance, so the upper limit is set to 1.
Set to 0%. In the third and fourth inventions, since corrosion resistance is important, the Mo content is set in the range of 17 to 22%. Also,
In the fifth and sixth inventions, 10 to 1
The range shall be 3%.

【0015】Wは、Ni 基合金に分散させる硬質相を
構成させるもので、他成分との反応によって複ほう化物
を生成する。その含有量は、9%未満では耐摩耗性の付
与が不十分となり、25%を越えると、材料強度が劣化
するため上記範囲とした。なお、発明5、6では、耐食
性を重視するため1〜4%の範囲としたが、さらに2〜
3%の範囲が望ましい。Cは、Wと同様にNi 基合金
に分散させる硬質相を構成させるもので、Crと反応し
て炭化物を形成し、耐摩耗性の向上に寄与する。その含
有量は、0.5%未満では耐摩耗性向上は不十分であり
、2%を越えると、炭化物が過度となり、相手材攻撃性
が増すとともに機械的特性を損なうので上記範囲とする
。また、発明5、6では、耐食性を重視するため、含有
量は0.15%以下で、さらには含有させないのが望ま
しい。
[0015] W constitutes a hard phase to be dispersed in the Ni-based alloy, and forms a double boride by reaction with other components. If the content is less than 9%, the provision of wear resistance becomes insufficient, and if it exceeds 25%, the strength of the material deteriorates, so the content was set in the above range. In addition, in inventions 5 and 6, the range was set at 1 to 4% to emphasize corrosion resistance, but the range was set at 1 to 4%.
A range of 3% is desirable. Like W, C constitutes a hard phase dispersed in the Ni-based alloy, reacts with Cr to form carbide, and contributes to improving wear resistance. If the content is less than 0.5%, the improvement in wear resistance is insufficient, and if it exceeds 2%, the carbide becomes excessive, which increases the aggressiveness of the mating material and impairs the mechanical properties, so it is set in the above range. Furthermore, in inventions 5 and 6, since emphasis is placed on corrosion resistance, the content is preferably 0.15% or less, and furthermore, it is desirable not to contain it.

【0016】Fe は、低温における強度を向上させる
ために添加させる。但し、添加量が多いと耐食性が低下
するので、上記範囲とする。発明5、6では耐食性重視
の理由で上限を7%とした。Si は、合金表面に緻密
なSi O2 の皮膜を形成して凝着摩耗を防止する効
果がある。しかし、添加量が多くなると、他の元素と反
応して金属珪化物を生成し、靭性が悪くなるので、十分
な効果を得ることも考慮して上記範囲とした。但し、強
度を重視する発明1、2では、無添加とする。Cu は
、Ni 合金であるモネル合金に代表されるように、N
i 基合金の耐食性の向上に寄与する。しかし、添加量
が多くなると合金が軟化して耐摩耗性が悪くなるので、
含有量は2%以下とした。なお、耐摩耗性を重視する場
合には、無添加とすることができる。Ni は、耐食性
の向上に効果のある元素であり、Bとともに硬質のほう
化物を形成して耐摩耗性を向上させる効果があるので、
残部をNiとした。なお、残部のNi には不可避的不
純物が存在するが、それらは、本発明の効果を損なわな
い範囲で許容される。
[0016] Fe is added to improve the strength at low temperatures. However, if the amount added is too large, the corrosion resistance will decrease, so the amount should be within the above range. In inventions 5 and 6, the upper limit was set to 7% because of the emphasis on corrosion resistance. Si has the effect of forming a dense SiO2 film on the alloy surface to prevent adhesive wear. However, if the amount added is too large, it will react with other elements to form metal silicides and the toughness will deteriorate, so the above range was set in consideration of obtaining sufficient effects. However, in inventions 1 and 2 where strength is important, no additive is used. Cu is N, as typified by Monel alloy, which is a Ni alloy.
Contributes to improving the corrosion resistance of i-based alloys. However, if the amount added becomes too large, the alloy will soften and its wear resistance will deteriorate.
The content was 2% or less. Note that if wear resistance is important, no additives can be used. Ni is an element that is effective in improving corrosion resistance, and together with B it forms a hard boride and has the effect of improving wear resistance.
The remainder was made of Ni. Incidentally, although there are unavoidable impurities in the remaining Ni, these are allowed as long as they do not impair the effects of the present invention.

【0017】[0017]

【実施例】以下に、この発明の実施例を、比較材(従来
例)と比較しつつ説明する。なお、以下の説明では、成
分量はすべて重量%で示す。先ず、表1に示す合金を原
料粉末の一部として用意し、表2に示す成分比で、各粉
末を秤量して試験用混合粉末をそれぞれ調製した。なお
、各原料粉末の粒径は以下に示すとおりである。 (粒径) 合金A :10〜44μm      合金B :44
μm未満WC   :8μm(平均粒径)  CrB 
:9μm(平均粒径) CrB2:9μm(平均粒径)  Cu    :44
μm未満各混合粉末には、さらにパラフィン系、ワック
ス+樹脂系、または樹脂系からなるバインダを所定量加
え、有機溶媒中でボ−ルミルによって24時間湿式混合
した後、乾燥して250〜500μmの粒径に造粒した
[Examples] Examples of the present invention will be described below while comparing them with comparative materials (conventional examples). In addition, in the following description, all component amounts are expressed in weight %. First, the alloys shown in Table 1 were prepared as part of raw material powders, and each powder was weighed to prepare mixed powders for testing at the component ratios shown in Table 2. In addition, the particle size of each raw material powder is as shown below. (Particle size) Alloy A: 10 to 44 μm Alloy B: 44
WC less than μm: 8 μm (average particle size) CrB
: 9 μm (average particle size) CrB2: 9 μm (average particle size) Cu: 44
A predetermined amount of a paraffin-based, wax + resin-based, or resin-based binder is further added to each mixed powder, and after wet-mixing in an organic solvent with a ball mill for 24 hours, it is dried to a size of 250 to 500 μm. Granulated to particle size

【0018】この粒状物をゴム型を用いてCIP成形(
1〜4トン/cm2 )した。得られた成形体を不活性
ガス雰囲気下において、350〜500℃で2〜4時間
加熱して脱脂を行った。そして脱脂後の成形体を、真空
雰囲気下において液相反応によって焼結させた。具体的
には、10−3torr以下の雰囲気下において、10
00℃で1時間保持し、さらに1180〜1350℃で
30分間保持して本発明の焼結体を得た。さらに、この
焼結体を切断加工して、所定形状の試験片(実施例1〜
4)を切り出した。また、比較のために、従来材からな
る試験片(比較材1、2)を用意した。比較材1は、市
販のNi 基耐食合金からなり、比較材2は、Ni 基
自溶性合金からなるものである。なお、実施例1〜4お
よび比較材1、2の成分の総量を表3に示す。
[0018] This granular material is subjected to CIP molding (
1 to 4 tons/cm2). The obtained molded body was degreased by heating at 350 to 500° C. for 2 to 4 hours in an inert gas atmosphere. The degreased molded body was then sintered by liquid phase reaction in a vacuum atmosphere. Specifically, in an atmosphere of 10-3 torr or less, 10
The sintered body was held at 00°C for 1 hour and further held at 1180-1350°C for 30 minutes to obtain a sintered body of the present invention. Furthermore, this sintered body was cut into test pieces of a predetermined shape (Examples 1 to 3).
4) was cut out. In addition, for comparison, test pieces made of conventional materials (comparative materials 1 and 2) were prepared. Comparative material 1 is made of a commercially available Ni-based corrosion-resistant alloy, and comparative material 2 is made of a Ni-based self-fusing alloy. Table 3 shows the total amounts of the components of Examples 1 to 4 and Comparative Materials 1 and 2.

【0019】上記実施例2について、EPMAによって
面分析して組織観察を行ったところ、図1の写真に示す
ように、マトリックスとしてNi −Fe −Cu −
Cr−Siの組成物が形成されており、硬質相として、
W−Mo−Ni −Crよりなる複ほう化物、W−Mo
−Ni よりなる珪化物、CrCからなる炭化物が生成
されていた。
Regarding Example 2, when the structure was observed by surface analysis using EPMA, as shown in the photograph of FIG. 1, the matrix was Ni - Fe - Cu -
A composition of Cr-Si is formed, and as a hard phase,
Double boride consisting of W-Mo-Ni-Cr, W-Mo
A silicide made of -Ni and a carbide made of CrC were produced.

【0020】[0020]

【表1】[Table 1]

【0021】[0021]

【表2】[Table 2]

【0022】[0022]

【表3】[Table 3]

【0023】次ぎに、各試験片の特性評価を行うため、
それぞれ硬さを測定するとともに、腐食試験および摩耗
試験を行った。腐食試験は、室温で、5%弗化水素酸中
に30時間浸漬し、腐食減量を測定して耐食性を評価し
た。また、摩耗試験は、金属同士の凝着摩耗をシュミレ
−トするため、大越式摩耗試験機を用い、相手材にSK
D11相当材(HRC61)を使用し、最終荷重18.
7Kgf、摩擦速度2.37m/s、摩擦距離200m
の条件下で試験を行い、摩擦体積を測定して耐摩耗性を
評価した。さらに、樹脂中の硬質添加剤による摩耗をシ
ミュレ−トするためアブレシブ摩耗試験を行った。具体
的には、相手材に320番Si C研磨紙を用いて、荷
重2Kgf、速度3.6m/s(60往復/分)で試験
を行った。摩擦量には、400回毎の平均値を採用した
Next, in order to evaluate the characteristics of each test piece,
In addition to measuring the hardness, a corrosion test and an abrasion test were conducted. In the corrosion test, the sample was immersed in 5% hydrofluoric acid at room temperature for 30 hours, and the corrosion weight loss was measured to evaluate the corrosion resistance. In addition, in the wear test, in order to simulate adhesive wear between metals, an Okoshi type wear tester was used, and SK was applied to the mating material.
Using D11 equivalent material (HRC61), final load 18.
7Kgf, friction speed 2.37m/s, friction distance 200m
The test was conducted under the following conditions, and the friction volume was measured to evaluate the wear resistance. Furthermore, an abrasive wear test was conducted to simulate wear caused by hard additives in the resin. Specifically, the test was conducted at a load of 2 kgf and a speed of 3.6 m/s (60 reciprocations/min) using No. 320 Si C abrasive paper as the mating material. The average value of every 400 times was used as the amount of friction.

【0024】これら試験の結果を表4に示す。その結果
、比較材1(Ni 基耐食合金)は、耐食性には優れて
いるものの耐摩耗性に劣っており、例えば、樹脂にガラ
ス繊維などを添加した複合材料の成形に対しては好適な
材料ではない。また、比較材2(Ni 基自溶性合金)
は、耐摩耗性は十分とはいえないものの、ある程度の特
性は確保されているが、耐食性は著しく劣っていた。こ
れに対し、実施例1〜4の試験片は、W、Crの炭化物
によって耐アブレシブ摩耗性が向上しており、例えば、
樹脂中の硬質添加材による摩耗を防止する。また、大越
式摩耗試験では、複ほう化物が潤滑剤としての効力を発
揮しており、自身(固定試験片)および相手材(回転試
験片)のいずれの摩耗量も小さく、構成部材の金属同士
の接触により起こる摩耗において、相手材に対する攻撃
性をやわらげ、かつ金属同士の凝着摩耗をやわらげる。 さらに、腐食試験における腐食量も少なく、例えば、樹
脂中から発生するガスによる高腐食環境下でも高Crの
べ−ス合金と複ほう化物が高い耐食性を示す。以上のよ
うに、本発明の複合材料は、比較材と異なり、耐摩耗性
および耐食性のいずれにおいても優れた結果が得られた
The results of these tests are shown in Table 4. As a result, Comparative Material 1 (Ni-based corrosion-resistant alloy) has excellent corrosion resistance but poor wear resistance. For example, it is a material suitable for molding composite materials made of resin with glass fiber added. isn't it. In addition, comparative material 2 (Ni-based self-fusing alloy)
Although the wear resistance was not sufficient, some characteristics were secured, but the corrosion resistance was significantly inferior. On the other hand, the test pieces of Examples 1 to 4 have improved abrasive wear resistance due to the carbides of W and Cr, for example,
Prevents wear due to hard additives in resin. In addition, in the Okoshi type wear test, compound boride exerts its effectiveness as a lubricant, and the amount of wear on both itself (fixed test piece) and the other material (rotating test piece) is small, and the metal of the component parts In wear caused by contact between metals, it softens the aggressiveness of the mating material and also reduces adhesive wear between metals. Furthermore, the amount of corrosion in corrosion tests is small, and for example, high Cr base alloys and double borides exhibit high corrosion resistance even in highly corrosive environments due to gases generated from resin. As described above, unlike the comparative materials, the composite material of the present invention achieved excellent results in both wear resistance and corrosion resistance.

【0025】[0025]

【表4】 なお、表中の比較材1、2において、回転試験片の摩耗
量が負の値を示しているのは、凝着により固定試験片の
材料が回転試験片に付着したためである。
[Table 4] In comparison materials 1 and 2 in the table, the wear amount of the rotating test piece shows a negative value because the material of the fixed test piece adhered to the rotating test piece due to adhesion. .

【0026】[0026]

【発明の効果】以上説明したように、本願発明の複合材
料によれば、ほう化物またはほう化物と炭化物とを主体
とする硬質相をNi 基合金で結合したので、高耐食性
だけでなく、耐凝着、耐アブレシブ摩耗の両特性を具備
する耐摩耗材料として優れた特性が得られる効果がある
。 したがって、過酷な成形条件下で使用される樹脂加工機
械用のシリンダ、スクリュなどの構成摺動材料として最
適な複合材料が得られる効果がある。
As explained above, according to the composite material of the present invention, the hard phase mainly composed of borides or borides and carbides is bonded with a Ni-based alloy, so it has not only high corrosion resistance but also high corrosion resistance. It has the effect of providing excellent properties as a wear-resistant material that has both adhesion and abrasive wear resistance properties. Therefore, it is possible to obtain a composite material that is optimal as a sliding material for cylinders, screws, etc. for resin processing machines used under severe molding conditions.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例の焼結体の金属組織写真である。FIG. 1 is a photograph of the metallographic structure of a sintered body of an example.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  炭化物およびほう化物を主体とする硬
質相がNi 基マトリックスで結合された複合材料であ
って、前記硬質相およびマトリックスは、総量で、B:
2〜6重量%、Cr:22〜33重量%、Mo:7〜1
0重量%、W:9〜25重量%、Fe :3〜6重量%
、C:0.5〜2重量%、残部がNi および不可避的
不純物からなることを特徴とする高耐食耐摩耗性複合材
1. A composite material in which a hard phase mainly composed of carbides and borides is bonded with a Ni-based matrix, wherein the hard phase and matrix have a total amount of B:
2-6% by weight, Cr: 22-33% by weight, Mo: 7-1
0% by weight, W: 9-25% by weight, Fe: 3-6% by weight
, C: 0.5 to 2% by weight, the balance being Ni and unavoidable impurities.
【請求項2】  炭化物およびほう化物を主体とする
硬質相がNi 基マトリックスで結合された複合材料で
あって、前記硬質相およびマトリックスは、総量で、B
:2〜6重量%、Cr:22〜33重量%、Mo:7〜
10重量%、W:9〜25重量%、Fe :3〜6重量
%、C:0.5〜2重量%、Cu :2重量%以下、残
部がNi および不可避的不純物からなることを特徴と
する高耐食耐摩耗性複合材料
2. A composite material in which a hard phase mainly composed of carbides and borides is bonded with a Ni-based matrix, wherein the hard phase and the matrix contain a total amount of B.
: 2-6% by weight, Cr: 22-33% by weight, Mo: 7-
10% by weight, W: 9-25% by weight, Fe: 3-6% by weight, C: 0.5-2% by weight, Cu: 2% by weight or less, the balance consisting of Ni and inevitable impurities. Highly corrosion resistant and wear resistant composite material
【請求項3】  炭化物およびほう化物を主体とする硬
質相がNi 基マトリックスで結合された複合材料であ
って、前記硬質相およびマトリックスは、総量で、B:
2〜6重量%、Cr:22〜33重量%、Mo:17〜
22重量%、W:9〜25重量%、C:0.5〜2重量
%、Si :0.01〜3重量%、残部がNi および
不可避的不純物からなることを特徴とする高耐食耐摩耗
性複合材料
3. A composite material in which a hard phase mainly composed of carbides and borides is bonded with a Ni-based matrix, wherein the hard phase and matrix have a total amount of B:
2-6% by weight, Cr: 22-33% by weight, Mo: 17-
22% by weight, W: 9 to 25% by weight, C: 0.5 to 2% by weight, Si: 0.01 to 3% by weight, the balance being Ni and unavoidable impurities. Highly corrosion resistant and wear resistant. composite material
【請求項4】  炭化物およびほう化物を主体とする硬
質相がNi 基マトリックスで結合された複合材料であ
って、前記硬質相およびマトリックスは、総量で、B:
2〜6重量%、Cr:22〜33重量%、Mo:17〜
22重量%、W:9〜25重量%、C:0.5〜2重量
%、Cu :2重量%以下、Si :0.01〜3重量
%、残部がNi および不可避的不純物からなることを
特徴とする高耐食耐摩耗性複合材料
4. A composite material in which a hard phase mainly composed of carbides and borides is bonded with a Ni-based matrix, wherein the hard phase and matrix have a total amount of B:
2-6% by weight, Cr: 22-33% by weight, Mo: 17-
22% by weight, W: 9-25% by weight, C: 0.5-2% by weight, Cu: 2% by weight or less, Si: 0.01-3% by weight, the balance consisting of Ni and inevitable impurities. Features a highly corrosion-resistant and wear-resistant composite material
【請求項5】  ほう化物を主体とする硬質相がNi 
基マトリックスで結合された複合材料であって、前記硬
質相およびマトリックスは、総量で、B:2〜4重量%
、Fe :3〜7重量%、Cr:22〜33重量%、M
o:10〜13重量%、W:1〜4重量%、Si :0
.01〜3重量%、残部がNi および不可避的不純物
からなることを特徴とする高耐食耐摩耗性複合材料【請
求項6】  ほう化物を主体とする硬質相がNi 基マ
トリックスで結合された複合材料であって、前記硬質相
およびマトリックスは、総量で、B:2〜4重量%、F
e :3〜7重量%、Cr:22〜33重量%、Mo:
10〜13重量%、W:1〜4重量%、Cu :2重量
%以下、Si :0.01〜3重量%、残部がNi お
よび不可避的不純物からなることを特徴とする高耐食耐
摩耗性複合材料
[Claim 5] The hard phase mainly composed of boride is Ni.
A composite material bonded by a base matrix, wherein the hard phase and the matrix have a total amount of B: 2 to 4% by weight.
, Fe: 3-7% by weight, Cr: 22-33% by weight, M
o: 10-13% by weight, W: 1-4% by weight, Si: 0
.. A highly corrosion-resistant and wear-resistant composite material characterized by comprising 01 to 3% by weight, the balance consisting of Ni and unavoidable impurities.Claim 6: A composite material in which a hard phase mainly composed of boride is bonded with a Ni-based matrix. The hard phase and matrix have a total amount of B: 2 to 4% by weight, F
e: 3 to 7% by weight, Cr: 22 to 33% by weight, Mo:
High corrosion and wear resistance characterized by 10 to 13% by weight, W: 1 to 4% by weight, Cu: 2% by weight or less, Si: 0.01 to 3% by weight, and the balance consisting of Ni and inevitable impurities. composite material
JP13701091A 1991-05-14 1991-05-14 Composite material having high corrosion resistance and wear resistance Pending JPH04337047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13701091A JPH04337047A (en) 1991-05-14 1991-05-14 Composite material having high corrosion resistance and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13701091A JPH04337047A (en) 1991-05-14 1991-05-14 Composite material having high corrosion resistance and wear resistance

Publications (1)

Publication Number Publication Date
JPH04337047A true JPH04337047A (en) 1992-11-25

Family

ID=15188707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13701091A Pending JPH04337047A (en) 1991-05-14 1991-05-14 Composite material having high corrosion resistance and wear resistance

Country Status (1)

Country Link
JP (1) JPH04337047A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140682A (en) * 1991-11-15 1993-06-08 Kobe Steel Ltd Corrosion resistant and wear resistant alloy
WO2005068672A1 (en) * 2003-12-22 2005-07-28 Caterpillar Inc. Chrome composite materials
CN104895903A (en) * 2015-05-27 2015-09-09 含山县恒翔机械制造有限公司 Anti-theft screw of sports car hub
CN104889687A (en) * 2015-05-27 2015-09-09 含山县恒翔机械制造有限公司 Method for manufacturing sports car hub anti-theft screw
WO2021045183A1 (en) * 2019-09-06 2021-03-11 日立金属株式会社 Ni-BASED ALLOY, Ni-BASED ALLOY POWDER, NI-BASED ALLOY MEMBER, AND PRODUCT PROVIDED WITH Ni-BASED ALLOY MEMBER

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140682A (en) * 1991-11-15 1993-06-08 Kobe Steel Ltd Corrosion resistant and wear resistant alloy
WO2005068672A1 (en) * 2003-12-22 2005-07-28 Caterpillar Inc. Chrome composite materials
CN104895903A (en) * 2015-05-27 2015-09-09 含山县恒翔机械制造有限公司 Anti-theft screw of sports car hub
CN104889687A (en) * 2015-05-27 2015-09-09 含山县恒翔机械制造有限公司 Method for manufacturing sports car hub anti-theft screw
WO2021045183A1 (en) * 2019-09-06 2021-03-11 日立金属株式会社 Ni-BASED ALLOY, Ni-BASED ALLOY POWDER, NI-BASED ALLOY MEMBER, AND PRODUCT PROVIDED WITH Ni-BASED ALLOY MEMBER
JP6866964B1 (en) * 2019-09-06 2021-04-28 日立金属株式会社 Products with Ni-based alloys, Ni-based alloy powders, Ni-based alloy members, and Ni-based alloy members.
US11821059B2 (en) 2019-09-06 2023-11-21 Proterial, Ltd. Ni-based alloy, Ni-based alloy powder, Ni-based alloy member, and product including Ni-based alloy member

Similar Documents

Publication Publication Date Title
JPH055152A (en) Hard heat resisting sintered alloy
JP2004052112A (en) Molybdenum alloy
JP3916465B2 (en) Molten metal member made of sintered alloy having excellent corrosion resistance and wear resistance against molten metal, method for producing the same, and machine structure member using the same
JPH07290186A (en) Tungsten carbide composite lining material and layer for centrifugal casting
JPH04337047A (en) Composite material having high corrosion resistance and wear resistance
JPH0835027A (en) Copper alloy excellent in high temperature wear resistance
JP6814758B2 (en) Sputtering target
JPH05132734A (en) Composite material having wear resistance and corrosion resistance
JPH07179967A (en) Cobalt-based alloy excellent in corrosion and wear resistance and high-temperature strength
JP3487935B2 (en) High corrosion and wear resistant composite material
JPH0860278A (en) Corrosion and wear resistant material excellent in cavitation erosion resistance
JPH07268524A (en) High corrosion resistant and wear resistant composite material
JPS6342346A (en) High-strength sintered hard alloy
JP2629332B2 (en) Cu alloy for plastic molds
JP3490978B2 (en) Cluster diamond composite material and manufacturing method thereof
JPS62273820A (en) Composite cylinder for plastic molding apparatus
JPS63143236A (en) Composite boride sintered body
JPH07138691A (en) Sintered hard alloy for aluminum working
JPH08319530A (en) Composite material with high wear resistance and corrosion resistance
JP2006265634A (en) Ni-BASED ALLOY RESISTANT TO CORROSION AT HIGH TEMPERATURE
JPH1150183A (en) Composite sintered alloy for molten nonferrous metal, and its production
JP2642347B2 (en) Manufacturing method of high hardness member
Morishita et al. Corrosion-and Wear-Resistant Alloys for Cylinders of Fluoroplastic Shaping Machines
JP3519152B2 (en) WC particle-dispersed W-reinforced Ni-based alloy and composite material using the same
JPH02258948A (en) Ceramic grain reinforced titanium composite material