JPH10147852A - Wc-co type thermal spraying material and its production - Google Patents

Wc-co type thermal spraying material and its production

Info

Publication number
JPH10147852A
JPH10147852A JP8309518A JP30951896A JPH10147852A JP H10147852 A JPH10147852 A JP H10147852A JP 8309518 A JP8309518 A JP 8309518A JP 30951896 A JP30951896 A JP 30951896A JP H10147852 A JPH10147852 A JP H10147852A
Authority
JP
Japan
Prior art keywords
thermal spraying
alloy
coating
spraying material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8309518A
Other languages
Japanese (ja)
Inventor
Hiroshi Ito
普 伊藤
Hiroshi Haraguchi
博 原口
Hiroki Hayashi
宏樹 林
Osamu Nakano
修 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOEI SEIKO KK
Nippon Tungsten Co Ltd
Original Assignee
KOEI SEIKO KK
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOEI SEIKO KK, Nippon Tungsten Co Ltd filed Critical KOEI SEIKO KK
Priority to JP8309518A priority Critical patent/JPH10147852A/en
Publication of JPH10147852A publication Critical patent/JPH10147852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a means capable of obtaining a WC-Co type sprayed coating having an excellent density, wear resistance, and adhesion to a base material without further treatment. SOLUTION: This thermal spraying material is prepared by mixing an Ni-P alloy powder containing 5-15wt.% P with a WC-Co type powder. In this thermal spraying material, a liquid phase of Ni-P alloy appears at 950-1050 deg.C. Accordingly, at the time of sintering the thermal spraying material, WC grains are allowed to enter into solid solution in a binding phase consisting of Co, Ni, and P and a firmly bound WC-Co type thermal spraying material can be formed. Further, the liquid phase of Ni-P alloy exists even after plasma thermal spraying, and pores in the coating are reduced and binding among the grains can be strengthened. As a result, the coating, having satisfactory denseness characteristic in an as-thermally-sprayed state without densification treatment after thermal spraying and also having sufficient water resistance, can be formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、耐摩耗性溶射皮
膜を形成するためのWC−Co系溶射材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sprayed WC-Co material for forming a thermal sprayed wear-resistant coating.

【0002】この発明でWC−Co系とは、基本的に、
硬質粒子を形成するWC粒子と、この硬質粒子間を結合
する結合相を形成するCoからなる合金系を意味し、こ
の基本構成に加えて、硬質粒子であるWC粒子の一部を
他のTiC、TaC、NbCなどの炭化物粒子と置換す
ることができ、結合相を形成するCoの一部をFe、N
iなどの鉄属金属と置換することができる。
[0002] In the present invention, the WC-Co system basically means
It means an alloy system composed of WC particles forming hard particles and Co forming a binder phase that binds between the hard particles. In addition to this basic structure, part of the WC particles that are hard particles is replaced with another TiC. , TaC, NbC, or other carbide particles, and a part of Co forming a binder phase is replaced with Fe, N
It can be replaced with an iron group metal such as i.

【0003】[0003]

【従来の技術】従来から、WC−Co系材料を用いてプ
ラズマ溶射によって耐摩耗性皮膜を形成すること自体は
広く知られているが、通常、その溶射皮膜の緻密化のた
めに、溶射後、1000°C以上に加熱して緻密化処理
が行われれいる。ところが、その緻密化処理は余分な工
程を付加することになるので製造効率が低く、また、基
材に対する熱影響が大きく、その適用範囲が限定される
という欠点がある。
2. Description of the Related Art Conventionally, it has been widely known that a wear-resistant film is formed by plasma spraying using a WC-Co-based material, but usually, after spraying, the density of the sprayed film is increased. , 1000 ° C. or more to perform the densification treatment. However, the densification treatment involves an extra step, so that the production efficiency is low, and the thermal influence on the base material is large, so that its application range is limited.

【0004】また、この出願の発明者は Nippon
Tungsten Review,Vol.15
(1982).において、この緻密化処理を省略するた
めに、溶射皮膜形成面にNi−P合金形成粉末を薄く被
覆して、これを加熱してNi−P合金皮膜を設けた後、
この上に硬質の溶射皮膜を形成することが記載されてい
る。
Further, the inventor of this application is Nippon
Tungsten Review, Vol. Fifteen
(1982). In order to omit this densification treatment, a Ni-P alloy forming powder is thinly coated on the surface on which the thermal spray coating is formed, and heated to form a Ni-P alloy coating.
It is described that a hard thermal spray coating is formed thereon.

【0005】ところが、その緻密化のためには、結合相
を形成するNi−P合金形成粉末を30重量%程度配合
する必要があり、そのため、溶射皮膜の硬度は高いが靱
性に乏しく、また、複合粉製造時の加熱温度がNi−P
合金の液相温度以下であるため、WCとNi−P合金と
の拡散、固溶が完全ではなく、その溶射皮膜の耐摩耗性
は不十分となる欠点がある。
However, for the purpose of densification, it is necessary to incorporate about 30% by weight of a Ni-P alloy forming powder for forming a binder phase. Therefore, the hardness of the sprayed coating is high but the toughness is poor. Heating temperature during composite powder production is Ni-P
Since the temperature is lower than the liquidus temperature of the alloy, diffusion and solid solution between WC and the Ni-P alloy are not perfect, and the wear resistance of the sprayed coating is insufficient.

【0006】[0006]

【発明が解決しようとする課題】この発明が解決しよう
とする課題は、溶射状態のままで、優れた緻密性、耐摩
耗性、基材との密着性を有するWC−Co系溶射皮膜を
得ることができる手段を見いだすことにある。
The problem to be solved by the present invention is to obtain a WC-Co-based thermal sprayed coating having excellent denseness, abrasion resistance and adhesion to a substrate in a sprayed state. Is to find a way to do it.

【0007】[0007]

【課題を解決するための手段】この発明は、WC−Co
系粉末に、Pを5〜15wt%含有するNi−P合金粉
末を配合した溶射材料である。
The present invention provides a WC-Co.
This is a thermal spray material in which a Ni-P alloy powder containing 5 to 15 wt% of P is blended with a base powder.

【0008】この溶射材料は、950〜1050°Cの
温度でNi−P合金の液相が出現する。したがって、焼
結、粉砕という溶射粉末製造工程時に、WCと結合相が
強固に結合したものとなっており、プラズマ溶射後で
も、溶射皮膜が約900°Cに低下するまでNi−P合
金の液相が存在し、皮膜の気孔は減少して粒子間の結合
を強化する。さらに、このNi−P合金の液相に、基礎
成分であるWCと結合相であるCoが固溶し、WCとC
oとを強固に結合することになる。そのため、溶射のま
まであっても、溶射後の緻密化処理を行わずとも充分な
緻密性を有し、十分な耐摩耗性を有する皮膜を形成する
ことができる。
[0008] In this thermal spray material, a liquid phase of the Ni-P alloy appears at a temperature of 950 to 1050 ° C. Therefore, the WC and the binder phase are firmly bonded during the thermal spray powder production process of sintering and pulverization. Even after the plasma spraying, the Ni-P alloy liquid is cooled until the thermal spray coating falls to about 900 ° C. The presence of a phase reduces the porosity of the coating and enhances the bonding between the particles. Further, in the liquid phase of the Ni-P alloy, WC as a basic component and Co as a binder phase form a solid solution, and WC and C
and o are firmly bonded. Therefore, even if the thermal spraying is performed, it is possible to form a film having a sufficient density and a sufficient abrasion resistance without performing a densification treatment after the thermal spraying.

【0009】Ni−P合金中のPの含有量が5重量%未
満では液相の形成が少なく、液相へのWCとCoの固溶
量が減少して溶射皮膜の強度が低下し、また、20重量
%以上ではNi−P合金自体の脆性に起因して、溶射皮
膜の強度、耐摩性が低下する。
When the content of P in the Ni-P alloy is less than 5% by weight, the formation of a liquid phase is small, the solid solution amount of WC and Co in the liquid phase is reduced, and the strength of the thermal spray coating is reduced. If the content is more than 20% by weight, the strength and wear resistance of the thermal sprayed coating are reduced due to the brittleness of the Ni-P alloy itself.

【0010】[0010]

【発明の実施の形態】この発明の溶射材料を製造するに
当たっては、WC粉末、Co粉末、Ni−P合金粉末を
所定の配合比で、ボールミルで充分に混合し、水素雰囲
気電気炉または真空炉で、900°C以上1050°C
以下の温度で焼結する。この焼結温度は、Ni−P合金
中のPの含有量によっても規定されるが、このPの含有
量であれば、この範囲内の温度で液相が発生し、WC粒
子の一部がこの液相に固溶する。
BEST MODE FOR CARRYING OUT THE INVENTION In producing a thermal spray material according to the present invention, WC powder, Co powder, and Ni-P alloy powder are sufficiently mixed in a predetermined mixing ratio by a ball mill, and a hydrogen atmosphere electric furnace or a vacuum furnace is used. Over 900 ° C and 1050 ° C
Sinter at the following temperature. This sintering temperature is also defined by the content of P in the Ni-P alloy, but if this P content is present, a liquid phase is generated at a temperature within this range, and a part of the WC particles is partially removed. It dissolves in this liquid phase.

【0011】この発明の溶射材料の粒度は溶射ノズルへ
の移動性の面から、−200から+400メッシュ適当
である。
[0011] The particle size of the thermal spray material of the present invention is appropriate from -200 to +400 mesh from the viewpoint of mobility to the thermal spray nozzle.

【0012】[0012]

【実施例】表1の実施例1〜5に示す配合組成を有する
WC、Co、Ni−P合金のそれぞれの粉末をボールミ
ルで混合し、カーボンボートに充填し、水素零囲気の電
気炉で表1に記載の温度でそれぞれ2時間焼結した後、
スタンプミルで粉砕し、節別により、−200〜+40
0メッシュのWC−Co−(Ni−P)複合粉末を得
た。この複合粉末を用い、プラズマ溶射を行い、約2m
m厚みの溶射皮膜を得た。
EXAMPLES The powders of WC, Co, and Ni-P alloys having the composition shown in Examples 1 to 5 in Table 1 were mixed by a ball mill, filled in a carbon boat, and charged in a hydrogen-free electric furnace. After sintering for 2 hours each at the temperature described in 1,
Pulverized with a stamp mill and -200 to +40
A WC-Co- (Ni-P) composite powder of 0 mesh was obtained. Using this composite powder, plasma spraying is performed to about 2 m
Thus, a sprayed coating having a thickness of m was obtained.

【0013】各実施例の溶射条件を表2に示す。これよ
って形成した溶射皮膜は後処理を全く行なわないもの
で、その硬さ、アブレシブ摩耗試験(荷重3kgf,摩
擦回数2800回)の結果、また、薄膜密着強度測定装
置(セバスチャンIV型)により皮膜の密着強度を測定
した結果を溶射材料の製造条件も併せて表1に示す。
Table 2 shows the thermal spraying conditions of each embodiment. The sprayed coating thus formed was not subjected to any post-treatment, and its hardness, the results of an abrasive wear test (load: 3 kgf, number of frictions: 2,800 times), and the coating by a thin film adhesion strength measuring device (Sebastian IV type) The results of measuring the adhesion strength are shown in Table 1 together with the production conditions of the thermal spray material.

【0014】比較のために、従来の溶射材を用いて溶射
皮膜を形成し、この発明の実施例と同様の試験を行な
い、その結果を表1に示す。比較例1、2は、実施例1
と同じ溶射条件で溶射を行ない、比較例3は実施例5と
同じ溶射条件で溶射を行なった。
For comparison, a thermal spray coating was formed using a conventional thermal spray material, and the same tests as those of the embodiment of the present invention were conducted. The results are shown in Table 1. Comparative Examples 1 and 2 correspond to Example 1.
Thermal spraying was performed under the same thermal spraying conditions as in Example 5, and Comparative Example 3 was performed under the same thermal spraying conditions as in Example 5.

【0015】この実施例の結果を各比較例と比較する
と、硬さ、耐摩耗性、密着力の何れも満足すべきもので
あった。比較例1のWC−Coに対しては、耐摩耗性と
密着性の点で優れている。比較例2は結合相にNi−P
合金相のみを行い粉末製造のための焼結温度は880°
Cであった。この場合、比較例1と対比して耐摩耗性は
向上しているが、靱性に乏しく、この実施例の場合はい
ずれもが比較例2よりも更に優れている。また、比較例
3の場合は、後処理による熱影響が大きく耐用性に問題
があった。
When the results of this example were compared with the comparative examples, all of hardness, abrasion resistance, and adhesion were satisfactory. The WC-Co of Comparative Example 1 is excellent in abrasion resistance and adhesion. In Comparative Example 2, the binder phase was Ni-P
Sintering temperature for powder production is 880 ° with only alloy phase
C. In this case, the abrasion resistance is improved as compared with Comparative Example 1, but the toughness is poor, and in each of the examples, each is more excellent than Comparative Example 2. Further, in the case of Comparative Example 3, the post-treatment had a large thermal effect and there was a problem in durability.

【0016】[0016]

【表1】 [Table 1]

【表2】 [Table 2]

【0017】[0017]

【発明の効果】この発明による溶射材を用いて得られた
溶射皮膜は溶射のままで緻密化処理したWC−Co皮膜
に匹敵する耐摩耗性を有し、基材に対する密着性も良
く、熱処理をしなくてもよいのでコスト的にも有利であ
り、基材の適用範囲が広い。
The thermal spray coating obtained by using the thermal spray material according to the present invention has abrasion resistance comparable to that of the WC-Co coating which has been densified as it is sprayed, has good adhesion to the substrate, and has good heat treatment. This is advantageous in terms of cost because it is not necessary to perform the method, and the applicable range of the base material is wide.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 宏樹 福岡市東区香椎駅前1丁目4番14 メゾ ン・ド香椎204号 (72)発明者 中野 修 福岡市博多区美野島1丁目2番8号 日本 タングステン株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroki Hayashi 1-44-1 Mason de Kashii 204, Kashii Station, Higashi-ku, Fukuoka (72) Inventor Osamu Nakano 1-2-8 Minojima, Hakata-ku, Fukuoka Japan Japan Inside Tungsten Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 WC−Co系粉末とPを5〜15wt%
含有するNi−P合金粉末を配合した溶射材料。
1. A WC-Co powder and P in an amount of 5 to 15 wt%.
Thermal spray material containing Ni-P alloy powder.
【請求項2】 WCの硬質粒子が、CoとNiとPとか
らなる結合相に一部固溶した複合相を有する請求項1に
記載の溶射材料。
2. The thermal spray material according to claim 1, wherein the WC hard particles have a composite phase partially dissolved in a binder phase composed of Co, Ni and P.
【請求項3】 WC−Co系粉末とPを5〜15wt%
含有するNi−P合金粉末との混合粉末を900°C以
上の温度で焼結したのち、この焼結物を−200〜+4
00メッシュに破砕する溶射材料の製造法。
3. An amount of 5 to 15 wt% of WC-Co powder and P.
After sintering the mixed powder with the contained Ni-P alloy powder at a temperature of 900 ° C. or more, this sintered product is subjected to −200 to +4.
A method for producing a thermal spray material that is crushed to 00 mesh.
JP8309518A 1996-11-20 1996-11-20 Wc-co type thermal spraying material and its production Pending JPH10147852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8309518A JPH10147852A (en) 1996-11-20 1996-11-20 Wc-co type thermal spraying material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8309518A JPH10147852A (en) 1996-11-20 1996-11-20 Wc-co type thermal spraying material and its production

Publications (1)

Publication Number Publication Date
JPH10147852A true JPH10147852A (en) 1998-06-02

Family

ID=17993978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8309518A Pending JPH10147852A (en) 1996-11-20 1996-11-20 Wc-co type thermal spraying material and its production

Country Status (1)

Country Link
JP (1) JPH10147852A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100652649B1 (en) 2004-12-16 2006-12-01 재단법인 포항산업과학연구원 METHOD OF MAKING WC-Co FEEDSTOCK POWDERS WITH Co FILMS FOR THERMAL SPRAYING
WO2011038549A1 (en) * 2009-09-30 2011-04-07 高标国际有限公司 Heating surface and preparation method thereof
CN105755417A (en) * 2016-03-02 2016-07-13 武汉理工大学 Preparation method of solar selective absorbing coating
CN110004313A (en) * 2019-04-11 2019-07-12 南京理工大学 A method of hard alloy is prepared based on plasma discharging two-step sintering

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152960A (en) * 1980-04-24 1981-11-26 Nippon Tungsten Co Ltd Tungsten carbide melt-spraying powder and its manufacture
JPS60103169A (en) * 1983-11-11 1985-06-07 Showa Denko Kk Composite powder for thermal spraying
JPH03274252A (en) * 1990-03-26 1991-12-05 Teikoku Piston Ring Co Ltd Wear resistant composite spraying material and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152960A (en) * 1980-04-24 1981-11-26 Nippon Tungsten Co Ltd Tungsten carbide melt-spraying powder and its manufacture
JPS60103169A (en) * 1983-11-11 1985-06-07 Showa Denko Kk Composite powder for thermal spraying
JPH03274252A (en) * 1990-03-26 1991-12-05 Teikoku Piston Ring Co Ltd Wear resistant composite spraying material and its production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100652649B1 (en) 2004-12-16 2006-12-01 재단법인 포항산업과학연구원 METHOD OF MAKING WC-Co FEEDSTOCK POWDERS WITH Co FILMS FOR THERMAL SPRAYING
WO2011038549A1 (en) * 2009-09-30 2011-04-07 高标国际有限公司 Heating surface and preparation method thereof
CN102510910A (en) * 2009-09-30 2012-06-20 高标国际有限公司 Heating surface and preparation method thereof
CN105755417A (en) * 2016-03-02 2016-07-13 武汉理工大学 Preparation method of solar selective absorbing coating
CN110004313A (en) * 2019-04-11 2019-07-12 南京理工大学 A method of hard alloy is prepared based on plasma discharging two-step sintering
CN110004313B (en) * 2019-04-11 2020-12-25 南京理工大学 Method for preparing hard alloy based on spark plasma two-step sintering

Similar Documents

Publication Publication Date Title
RU2126311C1 (en) Method of producing metal composite materials
TWI299364B (en) Fabrication of b/c/n/o doped sputtering targets
EP0138228B1 (en) Abrasion resistant coating and method for producing the same
JP2003519284A (en) Method for producing FeCrAl material and material thereof
CN104946914B (en) A kind of forming method of Metal Substrate functional gradient composite materials
EP1711342B1 (en) Wear resistant materials
JPH05271842A (en) Cermet alloy and its production
EP0805728A1 (en) Method of making metal composite materials
JPH09502769A (en) Improved composite powder for thermal spray coating
JP2001123253A (en) Ferrous sintered sliding member and producing method therefor
CN108642434B (en) Preparation method of NiCrBSi-Zr wear-resistant and corrosion-resistant coating
US4280841A (en) Method for manufacturing a mechanical seal ring
JPH10147852A (en) Wc-co type thermal spraying material and its production
JP3091690B2 (en) Method for producing TiB2-based coating
JPH08134635A (en) Aluminum-titanium alloy target materia for dry-process vapor deposition
JPS6033187B2 (en) Surface hardening treatment method
EP0591305B1 (en) Cermets based on transition metal borides, their production and use
EP0260101A2 (en) Production of flat products from particulate material
US4380479A (en) Foils of brittle alloys
US20110229918A1 (en) Method of Quantifying Transient Interactions Between Proteins
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
JPH0941115A (en) Thermal spray coating film and its forming method
JPS5830385B2 (en) Tungsten carbide thermal spray powder and its manufacturing method
JP2819648B2 (en) Coated cemented carbide for wear-resistant tools
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020913