JPH0513101B2 - - Google Patents

Info

Publication number
JPH0513101B2
JPH0513101B2 JP60113612A JP11361285A JPH0513101B2 JP H0513101 B2 JPH0513101 B2 JP H0513101B2 JP 60113612 A JP60113612 A JP 60113612A JP 11361285 A JP11361285 A JP 11361285A JP H0513101 B2 JPH0513101 B2 JP H0513101B2
Authority
JP
Japan
Prior art keywords
thermal shock
ceramics
weight
fused silica
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60113612A
Other languages
Japanese (ja)
Other versions
JPS61270255A (en
Inventor
Yasuhiro Takeuchi
Atsushi Nishino
Yukyoshi Ono
Hironao Numamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60113612A priority Critical patent/JPS61270255A/en
Publication of JPS61270255A publication Critical patent/JPS61270255A/en
Publication of JPH0513101B2 publication Critical patent/JPH0513101B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、熱膨張係数が小で、耐熱衝撃性に優
れるセラミツクスの提供可能な組成物に関するも
のである。 従来の技術 従来の熱膨張係数の小さな耐熱衝撃性に優れた
セラミツクス組成物としては、コーデイエライト
セラミツクス、リチア系セラミツクス、チタン酸
アルミニウムセラミツクス等が一般的であり、最
もよく使用されている。コーデイエライトセラミ
ツクスとは、MgO―Al2O3―SiO2系からなるセ
ラミツクスである。コーデイエライトは、タルク
(Mg3(Si4O10)(OH)2)とカオリン(Al2Si2O5
(OH)4)、およびアルミナ(Al2O3)を任意の比
率で調合し、混合、脱水、成形、乾燥、焼結して
製造される。ちなみに焼結温度は、約1400℃で4
〜5日間である(特公昭54−1564号公報、特公昭
51−20358号公報)。また、チタン酸アルミニウム
セラミツクスとは、酸化チタン(アナターゼ型)
と純度のよいα―Al2O3を原料として、等モル調
合物を1600〜1700℃で焼成して製造される(窯業
工学ハンドブツク P.1274)。 発明が解決しようとする問題点 このような従来耐熱衝撃性セラミツクスでは、
高温焼結を不可決としており、また合成されたセ
ラミツクスからは緻密な焼結体が得られなかつた
り、構成結晶の熱膨張の大きな異方性によつてで
きる粒界の亀裂等より、耐熱衝撃性に問題を有し
ていた。本発明はかかる点に鑑みてなされたもの
で、1100〜1300℃と比較的低い〓焼温度で耐熱衝
撃性セラミツクスを提供することを目的としてい
る。 問題点を解決するための手段 本発明は上記問題点を解決するため、少なくと
も再水和性アルミナとチタン酸アルカリ塩および
溶融シリカの三成分と少なくとも必須成分として
なる組成物を〓焼して得たセラミツクスである。 作 用 本発明は上記の構成よりなり、本発明において
必須成分である再水和性アルミナとは、アルミナ
水和物を熱分解したα―Al2O3以外の遷移アルミ
ナ、例えばρ―Al2O3および無定形アルミナ等で
あり、工業的には例えばバイヤー工程から得られ
るアルミナ水和物等のアルミナ水和物を約400〜
1200℃の熱ガスに通常数分の1〜10秒間接触させ
たり、あるいはアルミナ水和物を減圧下で約250
〜900℃に通常1分〜4時間加熱保持することに
より得ることができる約0.5〜15重量%の灼熱減
量を有するもの等が挙げられる。 次にチタン酸アルカリ塩とは、一般式M′2O・
nTiO2(式中M′は、リチウム、ナトリウム、カリ
ウム、ルビジウム、セシウム、バリウム、ストロ
ンチウム、カルシウムから選ばれるアルカリ金属
原子を表わし、nは1以上の整数である)で示さ
れる物質である。 次にもう一つに必須成分である溶融シリカにつ
いて記述する。溶融シリカかは、熱膨張係数が
0.5×10-6/deg(常温〜1000℃)と物質中もつと
も小さく、熱膨張を低減させる材料として一般的
に知られている。しかしながら溶融シリカはガラ
ス形成酸化物でもあり、他の物質(例えば、ナト
リウム、カリウム、ウカルシウム等のアルカリ成
分およびアルミナ、チタニア等)との混合物で、
1000℃以上の温度で熱処理されると、クリストバ
ライト、あるいはトリジマナイト等の結晶物を生
成させ、熱膨張係数も4〜5×10-6/deg(常温〜
1000℃)と激増させ、この点から、従来、耐熱衝
撃性火物としては使用に供されなかつたが、上記
少なくとも三成分からなる組成物を1100〜1250℃
の範囲で〓焼することにより、その理由は明らか
でないが、耐熱衝撃性に優れたセラミツクスが得
られた。前記、再水和性アルミナ、チタン酸アル
カリ塩、溶融シリカの他、成形助剤(たとえば、
CMC,MC等)および可塑剤(グリセリン、ワ
セリン)等を任意に添加することを可能である。 実施例 1 再水和性アルミナ10重量%、チタン酸カリウム
(K2O・6TiO2)5重量%、溶融シリカ85重量%、
さらに成形助剤としてメチルセルロース4.0重量
部および可塑剤としてクリセリン2.0重量部、さ
らに水30重量部加えた混合物をスクリユーニーダ
を用い10分間混練後スクリユー型押し出し成形機
に供給し、φ100〓で長さ100〓で、壁厚0.3〓、一
辺1.5〓の正方形セルからなるハニカム成形体を
成形した。次いでこの成形体を100℃/時間の昇
温速度で1200℃まで昇温し、更に1200℃で1時間
〓焼した。このようにして得られたハニカム構造
体の物性を第1表に示す。また比較のため、再水
和性アルミナの代りにα―Al2O3粉末を使用した
比較例A、チタン酸カリウムの代りに酸化チタン
(アナターゼ型TiO2)を使用した比較例B、溶融
シリカの代りにコーデイエライト粉末を使用した
比較例Cを前記実施例と同様にしてハニカム状セ
ラミツクスを製造した。この時の物性も第1表に
示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a composition capable of providing ceramics having a small coefficient of thermal expansion and excellent thermal shock resistance. BACKGROUND ART Conventional ceramic compositions with a small coefficient of thermal expansion and excellent thermal shock resistance include cordierite ceramics, lithium ceramics, aluminum titanate ceramics, and the like, which are most commonly used. Cordierite ceramics are ceramics composed of MgO-Al 2 O 3 -SiO 2 system. Cordierite is a combination of talc ( Mg3 ( Si4O10 )(OH) 2 ) and kaolin ( Al2Si2O5 ).
(OH) 4 ) and alumina (Al 2 O 3 ) in any ratio, and are manufactured by mixing, dehydrating, molding, drying, and sintering. By the way, the sintering temperature is about 1400℃.
~5 days (Special Publication No. 54-1564, Special Publication No. 1564,
51-20358). In addition, aluminum titanate ceramics refers to titanium oxide (anatase type).
It is produced by firing an equimolar mixture at 1,600 to 1,700°C using α-Al 2 O 3 of high purity as raw materials (Ceramic Engineering Handbook P. 1274). Problems to be solved by the invention In such conventional thermal shock resistant ceramics,
High-temperature sintering is not an option, and it is difficult to obtain a dense sintered body from the synthesized ceramics, and the thermal shock resistance is poor due to grain boundary cracks caused by the large anisotropy of thermal expansion of the constituent crystals. He had sexual problems. The present invention has been made in view of this point, and an object of the present invention is to provide thermal shock resistant ceramics at a relatively low firing temperature of 1100 to 1300°C. Means for Solving the Problems In order to solve the above problems, the present invention provides a composition obtained by sintering a composition comprising at least three components of rehydratable alumina, an alkali titanate, and fused silica as at least essential components. It is made of ceramics. Function The present invention has the above configuration, and the rehydratable alumina which is an essential component in the present invention is transition alumina other than α-Al 2 O 3 obtained by thermally decomposing alumina hydrate, such as ρ-Al 2 O 3 and amorphous alumina, etc., and industrially, for example, alumina hydrate such as alumina hydrate obtained from the Bayer process is
By contacting hot gas at 1200°C for usually a fraction of a second to 10 seconds, or by exposing alumina hydrate to about 250°C under reduced pressure.
Examples include those having a loss on ignition of about 0.5 to 15% by weight, which can be obtained by heating and holding at ~900°C for usually 1 minute to 4 hours. Next, an alkali titanate salt has the general formula M′ 2 O・
It is a substance represented by nTiO 2 (wherein M' represents an alkali metal atom selected from lithium, sodium, potassium, rubidium, cesium, barium, strontium, and calcium, and n is an integer of 1 or more). Next, we will discuss fused silica, which is another essential component. The thermal expansion coefficient of fused silica
At 0.5×10 -6 /deg (room temperature to 1000°C), it is one of the smallest materials among substances, and is generally known as a material that reduces thermal expansion. However, fused silica is also a glass-forming oxide, in a mixture with other substances (e.g. alkaline components such as sodium, potassium, calcium and alumina, titania, etc.).
When heat treated at a temperature of 1000℃ or higher, crystals such as cristobalite or tridymanite are formed, and the coefficient of thermal expansion is 4 to 5 × 10 -6 /deg (from room temperature to
For this reason, it has not been used as a thermal shock-resistant refractory, but the composition consisting of the above three components is heated to 1100-1250°C.
By firing within this range, ceramics with excellent thermal shock resistance were obtained, although the reason is not clear. In addition to the above-mentioned rehydratable alumina, alkali titanate, and fused silica, forming aids (for example,
CMC, MC, etc.) and plasticizers (glycerin, petrolatum), etc. can be optionally added. Example 1 10% by weight of rehydratable alumina, 5% by weight of potassium titanate (K 2 O.6TiO 2 ), 85% by weight of fused silica,
Furthermore, a mixture of 4.0 parts by weight of methylcellulose as a molding aid, 2.0 parts by weight of chrycerin as a plasticizer, and 30 parts by weight of water was kneaded for 10 minutes using a screw kneader, and then fed to a screw type extrusion molding machine. 100〓, a honeycomb molded body consisting of square cells with a wall thickness of 0.3〓 and a side of 1.5〓 was formed. Next, this molded body was heated to 1200°C at a heating rate of 100°C/hour, and further baked at 1200°C for 1 hour. Table 1 shows the physical properties of the honeycomb structure thus obtained. For comparison, Comparative Example A uses α-Al 2 O 3 powder instead of rehydrating alumina, Comparative Example B uses titanium oxide (anatase type TiO 2 ) instead of potassium titanate, and Comparative Example B uses fused silica. A honeycomb-shaped ceramic was produced in the same manner as in the above Example using Comparative Example C, in which cordierite powder was used in place of Cordierite powder. The physical properties at this time are also shown in Table 1.

【表】 第1表から明らかなように必須成分である再水
和性アルミナ、チタン酸アルカリ塩、溶融シリカ
からなる組成物以外の比較例A、比較例B、比較
例C組成物は、上記組成物に比べ耐圧強度が小さ
く、また熱膨張係数も大で耐熱衝撃性が悪かつ
た。 実施例 2 再水和性アルミナ、チタン酸カリウム、溶融シ
リカの比率を種々変化させ、実施例1と同様に成
形助剤、可塑剤、水を加え実施例1と同様にハニ
カム構造を作成し同様に評価を行つた。その結
果、耐圧強度、耐熱衝撃性に優れている組成範囲
は、第1図の斜線部であつた。この範囲以外での
温度に対する熱膨張収縮率は、第2図aの如くで
あつた。また本発明のセラミツクスではbの如く
であつた。曲線aより溶融シリカから一部結晶化
し、クリストバライト、トリジマナイト等の物質
が生成したことは容易に考えられ、熱膨張係数を
大とし、熱衝撃性を低下させたと推察される。な
お、本実施例のセラミツクスの熱膨張係数(常温
〜1000℃)はいずれも1.3×10-6/deg以上であつ
た。 実施例 3 再水和性アルミナ10重量%、チタン酸アルカリ
塩5重量%(アルカリ成分として、リチウム、ナ
トリウム、カリウム、ルビジウム、セシウム、バ
リウム、ストロンチウム、カルシウムから選ばれ
る各々のアルカリ金属原子からなるチタン酸アル
カリ塩)と、溶融シリカ85重量%および成形助剤
としてメチルセルロース4.0重量部、可塑剤とし
てグリセリン2.0重量部、水32重量部加えた混合
物を実施例1と同様にしてハニカム状セラミツク
スを作成した。このものの物性を第2表に示す。
[Table] As is clear from Table 1, the compositions of Comparative Example A, Comparative Example B, and Comparative Example C other than the compositions consisting of rehydratable alumina, alkali titanate, and fused silica, which are essential components, are the above-mentioned compositions. Compared to the composition, the compressive strength was lower, the coefficient of thermal expansion was higher, and the thermal shock resistance was poor. Example 2 The ratios of rehydratable alumina, potassium titanate, and fused silica were varied, and a forming aid, plasticizer, and water were added in the same manner as in Example 1, and a honeycomb structure was created in the same manner as in Example 1. We conducted an evaluation. As a result, the composition range with excellent compressive strength and thermal shock resistance was the shaded area in FIG. The coefficient of thermal expansion and contraction at temperatures outside this range was as shown in Figure 2a. Moreover, in the ceramics of the present invention, it was as shown in b. From curve a, it is easy to believe that some of the fused silica was crystallized and substances such as cristobalite and tridymanite were produced, which increases the coefficient of thermal expansion and lowers the thermal shock resistance. Incidentally, the coefficient of thermal expansion (from room temperature to 1000° C.) of the ceramics of this example was all 1.3×10 −6 /deg or more. Example 3 10% by weight of rehydratable alumina, 5% by weight of alkali titanate (titanium consisting of alkali metal atoms selected from lithium, sodium, potassium, rubidium, cesium, barium, strontium, and calcium as the alkali component) Honeycomb-shaped ceramics were prepared in the same manner as in Example 1 using a mixture containing 85% by weight of fused silica, 4.0 parts by weight of methylcellulose as a forming aid, 2.0 parts by weight of glycerin as a plasticizer, and 32 parts by weight of water. . The physical properties of this product are shown in Table 2.

【表】【table】

【表】 第2表から明らかなように本発明である再水和
性アルミナと各々のチタン酸アルカリ塩および溶
融シリカからなるセラミツクスは、耐圧強度、耐
熱衝撃性とも優れていた。なかでもチタン酸カリ
ウムを使用したものは耐熱衝撃性が特に優れてい
た。 実施例 4 実施例3における各々のチタン酸アルカリ塩が
ウイスカーである場合の物性を第3表に示す。な
お試験用ハニカム状セラミツクスの作成は実施例
1と同様に行つた。
[Table] As is clear from Table 2, the ceramics of the present invention comprising rehydratable alumina, each alkali titanate salt, and fused silica were excellent in both compressive strength and thermal shock resistance. Among them, those using potassium titanate had particularly excellent thermal shock resistance. Example 4 Table 3 shows the physical properties when each alkali titanate salt in Example 3 is a whisker. Note that the honeycomb-shaped ceramics for testing were prepared in the same manner as in Example 1.

【表】 第3表よりチタン酸アルカリ塩がウイスカーで
ある程熱膨張係数は小さくなる傾向にあり、また
耐熱衝撃性も改善された。 実施例 5 実施例4のNo.3ハニカム成形体における〓焼温
度1000〜1400℃範囲での各物性を第3図に示し
た。 第2図から明らかなように〓焼温度1100℃以下
では耐圧強度が急激に小さくなり、1300℃以上で
は、耐熱衝撃性が急激に低下した。このように本
発明の耐熱衝撃性セラミツクスは〓焼温度1100〜
1300℃で製造されたものがもつとも優れていた。 なお、1000℃で〓焼して得たハニカム状セラミ
ツクスおよび1200℃で〓焼して得たハニカム状セ
ラミツクスの断面の走査型電子顕微鏡写真を第4
図に示した。第4図Aは、1000℃〓焼のハニカム
状セラミツクス断面の10000倍拡大写真であり、
第4図Bは、1200℃〓焼のハニカム状セラミツク
ス断面の10000倍拡大写真である。前記2つの走
査型電子顕微鏡写真からも、〓焼温度によつて得
られるセラミツクスの物性が大きく異なることは
容易に推察される。第4図Aに示す写真から、チ
タン酸カリウム(K2O・6TiO2)ウイスカーが認
められたが、本発明の実施例である第4図Bでは
ウイスカーが完全に融解し、一体化されたため、
ウイスカー等の繊維状態は認められなかつた。 発明の効果 以上述べてきたように、本発明によれば、比較
的低温で〓焼することができ、緻密で耐熱衝撃
性、耐圧強度に優れた低コストで実用的なセラミ
ツクスを得ることが可能できわめて有用である。
[Table] From Table 3, the more whisker-like the alkali titanate salt is, the smaller the coefficient of thermal expansion tends to be, and the thermal shock resistance is also improved. Example 5 The physical properties of the No. 3 honeycomb formed body of Example 4 at a firing temperature in the range of 1000 to 1400°C are shown in FIG. As is clear from Fig. 2, the compressive strength sharply decreased at a firing temperature of 1100°C or lower, and the thermal shock resistance rapidly decreased at a firing temperature of 1300°C or higher. In this way, the thermal shock resistant ceramics of the present invention have a firing temperature of 1100~
The one produced at 1300°C had better retention. In addition, the scanning electron micrographs of the cross sections of the honeycomb-shaped ceramics obtained by firing at 1000℃ and the honeycomb-shaped ceramics obtained by firing at 1200℃ are shown in Section 4.
Shown in the figure. Figure 4A is a 10,000x enlarged photograph of a cross section of honeycomb-shaped ceramics fired at 1,000°C.
Figure 4B is a 10,000x enlarged photograph of a cross section of honeycomb-shaped ceramics fired at 1,200°C. From the above two scanning electron micrographs, it can be easily inferred that the physical properties of the ceramics obtained differ greatly depending on the firing temperature. From the photograph shown in Figure 4A, potassium titanate (K 2 O.6TiO 2 ) whiskers were recognized, but in Figure 4B, which is an example of the present invention, the whiskers were completely melted and integrated. ,
No fibers such as whiskers were observed. Effects of the Invention As described above, according to the present invention, it is possible to obtain practical ceramics at low cost that can be fired at a relatively low temperature, are dense, and have excellent thermal shock resistance and compressive strength. It is extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の耐熱衝撃性セラ
ミツクスの組成範囲を示す状態図、第2図および
第3図は同セラミツクスの〓焼温度に対する耐圧
強度、耐熱衝撃温度の関係図、第4図A,Bは同
セラミツクスの一実施例と比較例において繊維状
態を保持しているかどうかを示す走査型電子顕微
鏡写真である。 A…再水和性アルミナ、B…チタン酸アルカ
リ、C…溶融シリカ。
FIG. 1 is a phase diagram showing the composition range of a thermal shock resistant ceramic according to an embodiment of the present invention. FIGS. Figures 4A and 4B are scanning electron micrographs showing whether the fiber state is maintained in an example and a comparative example of the same ceramics. A... Rehydratable alumina, B... Alkali titanate, C... Fused silica.

Claims (1)

【特許請求の範囲】 1 少なくとも再水和性アルミナとチタン酸アル
カリ塩を溶融シリカからなる組成物を〓焼して得
られた耐熱衝撃性セラミツクス。 2 再水和性アルミナが5〜20重量%、チタン酸
アルカリ塩が1〜10重量%、溶融シリカが70〜94
重量%からなることを特徴とする特許請求の範囲
第1項記載の耐熱衝撃性セラミツクス。 3 チタン酸アルカリ塩がチタン酸カリウムから
なることを特徴とする特許請求の範囲第1項また
は第2項記載の耐熱衝撃性セラミツクス。 4 チタン酸アルカリ塩がウイスカーであること
を特徴とする特許請求の範囲第1項、第2項また
は第3項記載の耐熱衝撃性セラミツクス。 5 〓焼温度が1100〜1300℃であることを特徴と
する特許請求の範囲第1項から第4項の何れかに
記載の耐熱衝撃性セラミツクス。 6 熱膨張係数が1.3×10-6/deg以下であるこ
とを特徴とする特許請求の範囲第1項から第5項
の何れかに記載の耐熱衝撃性セラミツクス。
[Scope of Claims] 1. A thermal shock-resistant ceramic obtained by sintering a composition consisting of fused silica and at least rehydrated alumina and an alkali titanate. 2 5-20% by weight of rehydratable alumina, 1-10% by weight of alkali titanate, 70-94% of fused silica
% by weight of the thermal shock resistant ceramic according to claim 1. 3. The thermal shock-resistant ceramic according to claim 1 or 2, wherein the alkali titanate salt is potassium titanate. 4. The thermal shock resistant ceramic according to claim 1, 2 or 3, wherein the alkali titanate salt is a whisker. 5. The thermal shock resistant ceramic according to any one of claims 1 to 4, characterized in that the firing temperature is 1100 to 1300°C. 6. The thermal shock-resistant ceramic according to any one of claims 1 to 5, which has a thermal expansion coefficient of 1.3×10 -6 /deg or less.
JP60113612A 1985-05-27 1985-05-27 Thermal shock resistant ceramic Granted JPS61270255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60113612A JPS61270255A (en) 1985-05-27 1985-05-27 Thermal shock resistant ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60113612A JPS61270255A (en) 1985-05-27 1985-05-27 Thermal shock resistant ceramic

Publications (2)

Publication Number Publication Date
JPS61270255A JPS61270255A (en) 1986-11-29
JPH0513101B2 true JPH0513101B2 (en) 1993-02-19

Family

ID=14616628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60113612A Granted JPS61270255A (en) 1985-05-27 1985-05-27 Thermal shock resistant ceramic

Country Status (1)

Country Link
JP (1) JPS61270255A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029452A (en) * 1988-06-29 1990-01-12 Matsushita Electric Ind Co Ltd Catalyst for exhaust gas cleaning and its manufacture
JPH02198641A (en) * 1989-01-26 1990-08-07 Matsushita Electric Ind Co Ltd Catalyst and production thereof

Also Published As

Publication number Publication date
JPS61270255A (en) 1986-11-29

Similar Documents

Publication Publication Date Title
EP0036052B2 (en) Honeycomb structure for use as a catalyst support for automobile exhaust
US4001028A (en) Method of preparing crack-free monolithic polycrystalline cordierite substrates
EP0037868B1 (en) Method of producing low-expansion ceramic materials
EP0231006B1 (en) Method for producing ceramics with thermal shock resistance
EP0036462B2 (en) A honeycomb structure for use as a catalyst support for automobile exhaust
EP1027304A1 (en) Method for firing ceramic honeycomb bodies
US5288672A (en) Ceramics based on aluminum titanate, process for their production and their use
JPH0513101B2 (en)
JPH0585813A (en) Production of cordierite ceramic
JPH06305828A (en) Aluminum titanate composite material and its production
US4018614A (en) Celsian-zirconia compositions
JPS589783B2 (en) low expansion ceramics
JPH0688833B2 (en) Thermal shock resistance ceramics
JPH10212158A (en) Refractory for glass fusion furnace
JPH0513102B2 (en)
JPH10194827A (en) Thermal shock resistant ceramics and its production
JPH01183463A (en) Multiple sintered product of aluminum titanate/ beta-spodumene/mullite and production thereof
JPS6251909B2 (en)
ES2296275T3 (en) NEW PROCEDURE FOR THE PRODUCTION OF NZP CERAMIC BODIES THAT HAVE HIGH POROSITY AND HIGH MECHANICAL RESISTANCE.
JPH0226863A (en) Cordierite-based ceramic and production thereof
KR940007224B1 (en) Process for producing composite of oxides substance
JPS5851908B2 (en) Manufacturing method of cordierite sintered body
JPH0149664B2 (en)
JPH0152352B2 (en)
JPH01183464A (en) Production of multiple sintered product of aluminum titanate/mullite

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term