JPH05129402A - Life time measuring method of carrier of semiconductor wafer - Google Patents

Life time measuring method of carrier of semiconductor wafer

Info

Publication number
JPH05129402A
JPH05129402A JP28580891A JP28580891A JPH05129402A JP H05129402 A JPH05129402 A JP H05129402A JP 28580891 A JP28580891 A JP 28580891A JP 28580891 A JP28580891 A JP 28580891A JP H05129402 A JPH05129402 A JP H05129402A
Authority
JP
Japan
Prior art keywords
oxide film
carrier
silicon wafer
life time
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28580891A
Other languages
Japanese (ja)
Other versions
JP2946879B2 (en
Inventor
Yasushi Torii
康司 鳥井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28580891A priority Critical patent/JP2946879B2/en
Publication of JPH05129402A publication Critical patent/JPH05129402A/en
Application granted granted Critical
Publication of JP2946879B2 publication Critical patent/JP2946879B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent life time being affected by the change of surface recombination speed, in a life time measuring method of carrier of a semiconductor wafer. CONSTITUTION:A silicon wafer 1 is put in a chamber constituted of sapphire glass 3 and SiC 4, and the chamber is filled with HF vapor 2. Excessive carrier is optically pumped in the vicinity of the silicon wafer 1 surface by using a laser diode 8. By data-processing the concentration change of the excessive carrier, the life time is obtained in the following manner; the reflected output of microwaves projected on the silicon wafer 1 surface from a Gunn diode 7 is converted to an electric signal by using a detector 9. Since the life time is measured in the state that a natural oxide film or thermal oxide film formed on the silicon wafer is eliminated by using HF vapor, the influence of surface recombination can be eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体ウェーハに於ける
キャリアのライフタイム測定方法に関し、特にマイクロ
波を用いた光導電減衰法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a carrier lifetime in a semiconductor wafer, and more particularly to a photoconductive attenuation method using microwaves.

【0002】[0002]

【従来の技術】図3は従来の半導体ウェーハのライフタ
イム測定方法を示す概略図である。一般にライフタイム
の測定は熱平衡状態の半導体ウェーハに光励起により過
剰キャリアを注入し、過剰キャリア濃度の変化をコンダ
クタンスの変化としてとらえ、マイクロ波の透過量或い
は反射量の時間的変化を検出することにより行われる。
2. Description of the Related Art FIG. 3 is a schematic view showing a conventional method for measuring a lifetime of a semiconductor wafer. In general, lifetime measurement is performed by injecting excess carriers into a semiconductor wafer in thermal equilibrium by photoexcitation, capturing the change in excess carrier concentration as a change in conductance, and detecting the change over time in the amount of transmitted or reflected microwaves. Be seen.

【0003】図3を用いて詳細に説明すると、ガンダイ
オード7から発生したマイクロ波はサーキュレータ6を
介して導波管5を経て、測定ステージ13に設置した半
導体ウェーハ1に定常的に照射され、その反射波はサー
キュレータ6を介して検出器9に到達している。次に半
導体ウェーハ1の表面にパルス駆動のレーザダイオード
8を光源として局所的にレーザ光を注入する。レーザ光
の波長は例えばシリコンの場合904nm程度を用い、
半導体表面近傍の深さ30μm程度の領域に過剰キャリ
アを励起する。尚、半導体ウェーハ1の表面には表面再
結合速度を抑制するため熱酸化膜を形成している。過剰
キャリアは時間経過とともにバルク或いは表面へ拡散
し、不純物,結晶欠陥,表面準位等による再結合中心を
媒介として再結合して消滅し、キャリア濃度は熱平衡状
態に近づく。半導体ウェーハ1から反射しているマイク
ロ波の出力がコンダクタンスに依存することを利用し
て、マイクロ波の反射出力の変化を検出することにより
光励起直後からの過剰キャリア濃度の変化をとらえて実
効的なライフタイムを求めている。具体的にはマイクロ
波の反射出力Rの減衰過程は基本的に R=(RMAX −R0 )exp(−t/tr )+R0 MAX :光励起直後の反射出力のピーク値,R0 :光励
起前の反射出力の定常値、t:経過時間 で表わされ、 R=(RMAX −R0 )/e+R0 となる時間、つまりt=tr をライフタイムと定義して
いる。このマイクロ波の反射出力は検出器9てに電気信
号に変換された後アンプ10にて増幅され、CPU11
にてデータ処理される。
A detailed description will be given with reference to FIG.
The microwave generated from the ode 7 is transmitted through the circulator 6.
Via the waveguide 5 through the half installed on the measurement stage 13
The conductor wafer 1 is constantly irradiated and the reflected wave is reflected.
The detector 9 is reached via the curator 6. Next half
Pulse-driven laser diode on the surface of the conductor wafer 1.
Laser light is locally injected using 8 as a light source. Laser light
The wavelength of is about 904 nm in the case of silicon,
Excess carry is carried out in the region of 30 μm depth near the semiconductor surface.
Excite A. The surface of the semiconductor wafer 1 is
A thermal oxide film is formed to suppress the bonding speed. excess
Carriers diffuse into bulk or surface over time
The recombination centers due to impurities, crystal defects, surface states, etc.
It recombines and disappears as a medium, and the carrier concentration is in a thermal equilibrium state.
Approaching state. Microphone reflecting from semiconductor wafer 1
We take advantage of the fact that the output of the microwave depends on the conductance.
By detecting the change in the reflected output of the microwave
By capturing the change in excess carrier concentration immediately after photoexcitation,
Seeking an effective lifetime. Specifically micro
The attenuation process of the reflected output R of the wave is basically R = (RMAX-R0) Exp (-t / tr) + R0  RMAX: Peak value of reflected output immediately after photoexcitation, R0: Light encouragement
The steady-state value of the reflected output before the occurrence of t, expressed as t: elapsed time, R = (RMAX-R0) / E + R0  Time, that is, t = trIs defined as lifetime
There is. The reflected output of this microwave is sent to the detector 9 as an electric signal.
After being converted into a signal, it is amplified by the amplifier 10 and the CPU 11
The data is processed in.

【0004】一般に上述したライフタイム測定方法は、
半導体装置工程に於ける重金属汚染評価等に用いられて
いる。
Generally, the above-mentioned lifetime measuring method is
It is used for evaluation of heavy metal contamination in the semiconductor device process.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この従
来の半導体ウェーハに於けるキャリアのライフタイム測
定方法では、半導体表面近傍に過剰キャリアを励起する
ため、光照射後、特に初期時に光照射面側の表面再結合
の影響を強く受けやすく、例えば半導体表面に自然酸化
膜或いは熱酸化膜が形成された状態で測定を行うとバル
クのライフタイムと実効的に求めたライフタイムとで相
関がとれない場合が生じるという問題があった。
However, in this conventional carrier lifetime measuring method for a semiconductor wafer, excess carriers are excited in the vicinity of the semiconductor surface. When it is easily affected by surface recombination, for example, when measuring with a natural oxide film or thermal oxide film formed on the semiconductor surface, it is not possible to correlate the bulk lifetime with the effectively obtained lifetime. There was a problem that.

【0006】例えば、自然酸化膜が形成された状態で測
定すると、シリコンの場合1012cm-2程度の界面準位
が存在し、表面再結合速度が著しく速く実効的に求めた
ライフタイムはバルクのライフタイムよりはるかに短い
値となり、バルクの再結合中心濃度が異なるウェーハの
間で比較した場合でも見かけ上ライフタイムに有意差が
生じにくく、重金属等の汚染評価は不可能であった。そ
こで表面再結合速度を抑制するために熱酸化膜を形成す
ることが一般的に行われているが熱酸化膜を形成した状
態で測定すると、熱酸化膜中の電荷の変化や熱酸化膜と
半導体基板との界面の状態等の変化を受け易すく、バル
クのライフタイムに影響を与えない不純物によっても見
かけ上ライフタイムが変化することや、熱酸化膜を形成
する時の熱処理条件等に依存することなどが有り、重金
属等の汚染評価を行う上で障害となることがあった。
For example, when measured in a state where a natural oxide film is formed, in the case of silicon, an interface level of about 10 12 cm -2 exists, the surface recombination rate is remarkably fast, and the effectively obtained lifetime is a bulk. The value is much shorter than the lifetime of, and even when compared between wafers having different bulk recombination center concentrations, it is unlikely that a significant difference in lifetime occurs, and it is impossible to evaluate contamination of heavy metals and the like. Therefore, a thermal oxide film is generally formed in order to suppress the surface recombination rate, but when measured with the thermal oxide film formed, the change in charge in the thermal oxide film and the thermal oxide film It is easily affected by changes in the state of the interface with the semiconductor substrate, and the apparent lifetime changes due to impurities that do not affect the bulk lifetime, and depends on the heat treatment conditions when forming the thermal oxide film, etc. However, there are cases where it is an obstacle to the evaluation of pollution such as heavy metals.

【0007】[0007]

【課題を解決するための手段】本発明の半導体ウェーハ
に於けるキャリアのライフタイム測定方法は、半導体ウ
ェーハをフッ化水素散雰囲気中に置き、熱酸化膜等をエ
ッチング除去し、且つ自然酸化膜の成長を抑制する工程
と過剰キャリアを励起する工程とを有する。
A method for measuring a carrier lifetime in a semiconductor wafer according to the present invention is to place a semiconductor wafer in a hydrogen fluoride diffusion atmosphere, remove a thermal oxide film and the like by etching, and remove a natural oxide film. And a step of exciting excess carriers.

【0008】[0008]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の第1の実施例を示すブロック図であ
る。まずシリコンウェーハ1をサファイヤガラス3とS
iC4により構成された反応チャンバー内に設置する。
尚、シリコンウェーハ1の表面状態として自然酸化膜,
熱酸化膜,CVD酸化膜,CVD窒化膜などの場合適用
が可能である。
The present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a first embodiment of the present invention. First, the silicon wafer 1 and the sapphire glass 3 and the S
It is installed in a reaction chamber composed of iC4.
In addition, as a surface state of the silicon wafer 1, a natural oxide film,
It can be applied in the case of a thermal oxide film, a CVD oxide film, a CVD nitride film, or the like.

【0009】次にシリコンウェーハ1の設置された反応
チャンバー内に蒸気状フッ化水素酸(以下HF蒸気と略
す)2を充満させる。HF蒸気2は例えばHFを沸点以
上に加熱し不活性ガスにより運搬する。このHF蒸気2
によりシリコンウェーハ1の表面に形成された酸化膜或
いは窒化膜をエッチング除去し、シリコンウェーハ1の
表面に自然酸化膜が形成されない状態を維持する。
Next, the reaction chamber in which the silicon wafer 1 is installed is filled with vaporized hydrofluoric acid (hereinafter abbreviated as HF vapor) 2. The HF vapor 2 heats, for example, HF to a temperature equal to or higher than the boiling point and conveys it by an inert gas. This HF vapor 2
Thus, the oxide film or the nitride film formed on the surface of the silicon wafer 1 is removed by etching, and the state where the natural oxide film is not formed on the surface of the silicon wafer 1 is maintained.

【0010】以下は従来例と同様で、先ずガンダイオー
ド7よりサーキュレータ6,導波管5を介してサファイ
ヤガラス3を通してマイクロ波がシリコンウェーハ1に
定常的に照射されている。又シリコンウェーハ1からの
反射波は導波管5,サーキュレータ6を介して検出器9
に到達し、電気信号に変換される。この電気信号はアン
プ10で増幅され、必要時にCPU11にてデータ処理
される。
The subsequent steps are the same as those of the conventional example. First, microwaves are constantly radiated from the Gunn diode 7 through the circulator 6 and the waveguide 5 through the sapphire glass 3 to the silicon wafer 1. Further, the reflected wave from the silicon wafer 1 is passed through the waveguide 5 and the circulator 6 to the detector 9
Reaches and is converted into an electrical signal. This electric signal is amplified by the amplifier 10 and processed by the CPU 11 when necessary.

【0011】次にシリコンウェーハ1の表面にパルス駆
動のレーザダイオード8を光源として局所的にレーザ光
を照射し、シリコンウェーハ1の表面近傍すなわち表面
から約30μmの領域に過剰キャリアを励起する。励起
された過剰キャリアは拡散し、再結合中心を媒介として
消滅していく。過剰キャリアの濃度の変化をコンダクタ
ンスの変化としてシリコンウェーハ1からのマイクロ波
の反射出力の変化を検出する。つまり反射出力の変化を
電気信号に変換した後アンプ10で増幅しCPU11で
処理することにより実効的なライフタイムを求める。
Next, the surface of the silicon wafer 1 is locally irradiated with laser light by using the pulse-driven laser diode 8 as a light source to excite excess carriers in the vicinity of the surface of the silicon wafer 1, that is, in a region of about 30 μm from the surface. Excited excess carriers diffuse and disappear via the recombination center. The change in the reflected output of the microwave from the silicon wafer 1 is detected by using the change in the concentration of excess carriers as the change in the conductance. That is, the effective lifetime is obtained by converting the change in the reflected output into an electric signal, amplifying it by the amplifier 10 and processing it by the CPU 11.

【0012】本実施例に於いてはシリコンウェーハ1の
表面の酸化膜等をエッチング除去し、且つ自然酸化膜が
成長することを抑制し、シリコン結晶が露出した状態で
光励起を行っているので界面準位或いは表面電荷の発生
を防ぐことができ、従来例での問題点であった熱酸化膜
中の電荷の変化や熱酸化膜と半導体基板との界面の状態
の変化の影響を受けることが一切なく、バルク中の再結
合中心濃度に依存したライフタイムを得ることができる
という利点を有する。
In this embodiment, the oxide film on the surface of the silicon wafer 1 is removed by etching, the growth of a natural oxide film is suppressed, and the photoexcitation is performed with the silicon crystal exposed. It is possible to prevent the generation of levels or surface charges, and it is possible to be affected by changes in the charge in the thermal oxide film and changes in the state of the interface between the thermal oxide film and the semiconductor substrate, which were problems in the conventional example. It has the advantage that a lifetime that depends on the concentration of recombination centers in the bulk can be obtained without any.

【0013】図2は本発明の第2の実施例を示す要部断
面図である。第1の実施例と異なる点は、エッチング材
として水溶液状のHF12を用いている点である。本実
施例によれば、半導体表面がより安定した状態を得られ
ること、エッチング速度の制御が広い範囲で可能である
ことや、場合によりNH3 を混合し、シリコンウェーハ
表面をエッチングしながらライフタイムを測定すること
が可能で、深さ方向の情報も得られるという利点を有す
る。又、測定装置も簡略な構造で構成することが可能で
あるという利点も有する。
FIG. 2 is a sectional view of the essential parts showing a second embodiment of the present invention. The difference from the first embodiment is that an aqueous solution HF12 is used as an etching material. According to this example, the semiconductor surface can be obtained in a more stable state, the etching rate can be controlled in a wide range, and NH 3 may be mixed as the case may be to etch the silicon wafer surface to increase the lifetime. Can be measured, and it has an advantage that information in the depth direction can be obtained. Further, there is an advantage that the measuring device can also be configured with a simple structure.

【0014】[0014]

【発明の効果】以上説明したように本発明は半導体ウェ
ーハをフッ化水素酸中に置き表面に形成された熱酸化膜
等をエッチング除去するとともに、自然酸化膜の成長を
抑制しているので、界面準位及び表面電荷の発生を防ぐ
ことができる。ゆえに、この状態で光励起を行っている
ので表面再結合の影響を受けることがなくバルク中の再
結合中心濃度に依存したライフタイムを得ることができ
るという効果を有する。
As described above, according to the present invention, the semiconductor wafer is placed in hydrofluoric acid to remove the thermal oxide film and the like formed on the surface by etching, and the growth of the natural oxide film is suppressed. It is possible to prevent the generation of interface states and surface charges. Therefore, since the photoexcitation is performed in this state, there is an effect that a lifetime depending on the recombination center concentration in the bulk can be obtained without being affected by surface recombination.

【0015】具体的に図4に本発明による効果を示す。
バルクのライフタイムを全て共通の半導体ウェーハを用
いているにもかかわらず、従来例では熱酸化膜形成時に
界面準位が変化すると得られるライフタイムには影響が
出ている。尚、自然酸化膜のみでは更にライフタイムの
低下が著しい。それに対し本実施例によれば表面状態の
影響を受けずに一定のライフタイムを得ることができて
いる。
The effect of the present invention is specifically shown in FIG.
Although the semiconductor wafers having the same bulk lifetime are all used, in the conventional example, the lifetime obtained when the interface state changes during the formation of the thermal oxide film is affected. Note that the life time is further reduced only by the natural oxide film. On the other hand, according to this embodiment, a constant lifetime can be obtained without being affected by the surface condition.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示すブロック図。FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す要部断面図。FIG. 2 is a cross-sectional view of a main part showing a second embodiment of the present invention.

【図3】従来の実施例を示すブロック図。FIG. 3 is a block diagram showing a conventional embodiment.

【図4】本発明による効果を示すグラフ。FIG. 4 is a graph showing the effect of the present invention.

【符号の説明】[Explanation of symbols]

1 シリコンウェーハ 2 HF蒸気 3 サファイヤガラス 4 SiC 5 導波管 6 サーキュレータ 7 ガンダイオード 8 レーザダイオード 9 検出器 10 アンプ 11 CPU 12 HF水溶液 13 測定ステージ 1 Silicon wafer 2 HF vapor 3 Sapphire glass 4 SiC 5 Waveguide 6 Circulator 7 Gun diode 8 Laser diode 9 Detector 10 Amplifier 11 CPU 12 HF aqueous solution 13 Measuring stage

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱平衡状態の半導体ウェーハの表面近傍
に光励起により過剰キャリアを注入し、過剰キャリア濃
度の減衰過程をコンダクタンスの変化としてとらえて、
マイクロ波の透過量或いは反射量の時間的変化を検出す
る半導体ウェーハのキャリアのライフタイム測定方法に
於いて、半導体ウェーハをフッ化水素酸化雰囲気中に置
いた状態で光励起を行いライフタイムを測定することを
特徴とする半導体ウェーハのキャリアのライフタイム測
定方法。
1. An excess carrier is injected into the vicinity of the surface of a semiconductor wafer in a thermal equilibrium state by photoexcitation, and the decay process of the excess carrier concentration is regarded as a change in conductance,
In a method of measuring the lifetime of a carrier of a semiconductor wafer, which detects the change over time in the amount of transmitted or reflected microwaves, the lifetime is measured by photoexcitation in a state where the semiconductor wafer is placed in a hydrogen fluoride oxidation atmosphere. A method for measuring the lifetime of a carrier of a semiconductor wafer, which is characterized by the above.
JP28580891A 1991-10-31 1991-10-31 Method for measuring carrier lifetime of semiconductor wafer Expired - Fee Related JP2946879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28580891A JP2946879B2 (en) 1991-10-31 1991-10-31 Method for measuring carrier lifetime of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28580891A JP2946879B2 (en) 1991-10-31 1991-10-31 Method for measuring carrier lifetime of semiconductor wafer

Publications (2)

Publication Number Publication Date
JPH05129402A true JPH05129402A (en) 1993-05-25
JP2946879B2 JP2946879B2 (en) 1999-09-06

Family

ID=17696358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28580891A Expired - Fee Related JP2946879B2 (en) 1991-10-31 1991-10-31 Method for measuring carrier lifetime of semiconductor wafer

Country Status (1)

Country Link
JP (1) JP2946879B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135716A (en) * 2006-10-13 2008-06-12 Q-Cells Ag Method and device for evaluating wafer during production of solar cell
JP2008210947A (en) * 2007-02-26 2008-09-11 Japan Aerospace Exploration Agency Evaluation method of semiconductor substrate
CN112005353A (en) * 2018-04-25 2020-11-27 信越半导体株式会社 Method for sorting single crystal silicon substrate and single crystal silicon substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135716A (en) * 2006-10-13 2008-06-12 Q-Cells Ag Method and device for evaluating wafer during production of solar cell
US8679361B2 (en) 2006-10-13 2014-03-25 Q-Cells Se Method and device for characterizing wafers during the production of solar cells
JP2008210947A (en) * 2007-02-26 2008-09-11 Japan Aerospace Exploration Agency Evaluation method of semiconductor substrate
US7947967B2 (en) 2007-02-26 2011-05-24 Japan Aerospace Exploration Agency Method for evaluating a semiconductor substrate
CN112005353A (en) * 2018-04-25 2020-11-27 信越半导体株式会社 Method for sorting single crystal silicon substrate and single crystal silicon substrate

Also Published As

Publication number Publication date
JP2946879B2 (en) 1999-09-06

Similar Documents

Publication Publication Date Title
US5392124A (en) Method and apparatus for real-time, in-situ endpoint detection and closed loop etch process control
EP0280869B1 (en) A laser luminescence monitor for material thickness processes
JPH1031039A (en) Measuring device and measuring method
JPS61114531A (en) Plasma treatment by microwave
JPS636845A (en) System and method of reactive ion etching
Kingston Electroabsorption in GaInAsP
JP4744535B2 (en) Etching method and method for manufacturing silicon carbide semiconductor device
JP2006351594A (en) Measuring method of electric characteristic of semiconductor wafer
JP2946879B2 (en) Method for measuring carrier lifetime of semiconductor wafer
US5451886A (en) Method of evaluating lifetime of semiconductor material and apparatus for the same
US4567431A (en) Method for revealing semiconductor surface damage using surface photovoltage (SPV) measurements
Mitchell et al. Real‐time, in situ monitoring of GaAs and AlGaAs photoluminescence during plasma processing
JPS62283678A (en) Manufacture of semiconductor device
JPH05136241A (en) Lifetime measuring method of semiconductor wafer
US5556503A (en) Apparatus for thinning a semiconductor film on an insulating film
JPH07240450A (en) Method for measuring carrier life
Liu et al. Photoelastic waveguides and the controlled introduction of strain in III‐V semiconductors by means of thin film technology
JPH04289442A (en) Lifetime measuring method
JPH10270516A (en) Semiconductor-wafer evaluation and its device
Hidehisa Hashizume et al. CARRIER LIFETIME MEASUREMENTS BY MICROWAVE PHOTO-CONDUCTIVITY DECAY METHOD
JPH0685023A (en) Device for measuring minority carrier lifetime in semiconductor wafer
JPS6329824B2 (en)
JPH1019693A (en) Method of measuring stress of semiconductor device
Saito et al. Fabrication and characteristics of very narrow waveguide semiconductor Raman amplifiers and lasers
JPH11166907A (en) Standard wafer for measuring lifetime

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990601

LAPS Cancellation because of no payment of annual fees