JPH05129326A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05129326A
JPH05129326A JP28664691A JP28664691A JPH05129326A JP H05129326 A JPH05129326 A JP H05129326A JP 28664691 A JP28664691 A JP 28664691A JP 28664691 A JP28664691 A JP 28664691A JP H05129326 A JPH05129326 A JP H05129326A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
conductivity
nudc
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28664691A
Other languages
Japanese (ja)
Inventor
Masaru Yuki
勝 結城
Kenichi Tanaka
研一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP28664691A priority Critical patent/JPH05129326A/en
Priority to US07/969,325 priority patent/US5466957A/en
Publication of JPH05129326A publication Critical patent/JPH05129326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To enhance the junction breakdown strength of the title semiconductor device and to achieve high speed of the title semiconductor device while an effect suppressing a short channel is being maintained in the same manner as in the case of conventional MOSFETs having an NUDC structure by a method wherein, before a gate electrode is formed, first conductivity-type impurities are implanted into a first conductivity-type semiconductor substrate and an NUDC high concentration layer is formed. CONSTITUTION:First conductivity-type impurities are channel-implanted into a first conductivity-type semiconductor substrate 11; an NUDC layer 11a composed of a first conductivity-type high concentration layer is formed. Then, a gate electrode 14 is formed; after that, second conductivity-type impurities are ion-implanted; an NUDC layer 15a composed of a first conductivity-type low concentration layer is formed. Then, second conductivity-type impurities are ion-implanted; a second conductivity-type low concentration layer 16a is formed in the NUDC layer 15a. Then a side wall 18 is formed on the gate electrode 14; after that, second conductivity-type impurities 17 are ion-implanted into the first conductivity-type semiconductor substrate 11; a source-drain layer is formed in a second conductivity-type high concentration layer 17a; a MOSFET having an NUDC structure is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は半導体装置の製造方法
に関し、さらに詳しくは、MOSトランジスタのソース
・ドレイン間に不純物の不均一分布のチャネル層、すな
わち不純物が高濃度に分布した部分と不純物が低濃度に
分布した部分によって形成されているチャネル層を有す
る構造、いわゆるNUDC( A Novel Source-to-Drai
n Nonuniformly Doped Channel )構造からなる微細M
OSFETの形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a channel layer having a nonuniform distribution of impurities between a source and a drain of a MOS transistor, that is, a portion where impurities are distributed at a high concentration and an impurity. A structure having a channel layer formed of portions distributed at low concentration, so-called NUDC (A Novel Source-to-Drai)
n Non-uniformly Doped Channel) Fine M
The present invention relates to a method of forming an OSFET.

【0002】[0002]

【従来の技術】従来のこの種方法は、文献( A Novel
Source-to-Drain Nonuniformly Doped Channel (NU
DC)MOSFET for High CurrentDrivability and Thres
holdVoltage Controllability ;Y.Okumura et.al IEDM9
0 391 〜394 )に示されている。
2. Description of the Related Art Conventional methods of this kind are described in the literature (A Novel
Source-to-Drain Nonuniformly Doped Channel (NU
DC) MOSFET for High CurrentDrivability and Thres
holdVoltage Controllability; Y.Okumura et.al IEDM9
0 391-394).

【0003】以下、その従来技術を図10〜図13を用
いて説明する。まず、図10に示すようにP型Si基板
1上にゲート酸化膜2を形成し、次に、リンドープされ
たポリシリコン膜3をCVD法により堆積する。次に、
図11に示すように既知のフォトリソ技術、エッチング
技術を用いてゲート電極3aのパターニングを行い、続
いて、ボロン4を、注入角θが20〜40度の傾きを持たせ
てSi基板1をA方向に回転させてイオン注入し、NU
DCの高濃度P型チャネル層4aを得る。
The conventional technique will be described below with reference to FIGS. First, as shown in FIG. 10, a gate oxide film 2 is formed on a P-type Si substrate 1, and then a phosphorus-doped polysilicon film 3 is deposited by a CVD method. next,
As shown in FIG. 11, the gate electrode 3a is patterned by using the known photolithography technique and etching technique, and then, the boron 4 is implanted into the Si substrate 1 with an implantation angle θ of 20 to 40 degrees. Direction and rotate for ion implantation, NU
A high concentration P-type channel layer 4a of DC is obtained.

【0004】次に、図12に示すようにリン5をSi基
板1の真上から注入角θが0度でイオン注入し、チャネ
ル層4a内にLDDの低濃度N型不純物層(N- 層)5
aを得る。次に、図13に示すようにゲート電極3aの
サイドウォール7を形成し、その後、砒素6を注入角θ
が7度の傾きを持たせてイオン注入することによりソー
ス・ドレイン層である高濃度N型不純物層6aを形成す
る。
Next, as shown in FIG. 12, phosphorus 5 is ion-implanted from directly above the Si substrate 1 at an implantation angle θ of 0 °, and the LDD low-concentration N-type impurity layer (N layer) is implanted into the channel layer 4a. ) 5
get a. Next, as shown in FIG. 13, a sidewall 7 of the gate electrode 3a is formed, and then arsenic 6 is implanted at an implantation angle θ.
Is implanted with an inclination of 7 degrees to form the high-concentration N-type impurity layer 6a as the source / drain layer.

【0005】このようなNチャネル微細MOSFETで
は、NUDC構造のためチャネルのNUDCの高濃度P
型層4aにより、ソース・ドレイン間のパンチスルーが
抑制されてショートチャネル効果を抑制できる。
In such an N-channel fine MOSFET, the high concentration P of the NUDC of the channel is due to the NUDC structure.
The mold layer 4a suppresses punch-through between the source and drain and suppresses the short channel effect.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記方
法では、ソース・ドレインを形成する領域に予めP型キ
ャリアの高濃度注入を行っているNUDC構造のためソ
ース・ドレインとして形成された高濃度N型不純物層6
aと、NUDCの高濃度P型チャネル層4aとの接合耐
圧を著しく低下させてしまうことになり、電界集中が大
きくなるので、ホットキャリアに対しても弱くなる。
However, in the above method, the high-concentration N-type formed as the source / drain is formed due to the NUDC structure in which the high-concentration injection of P-type carriers is performed in advance in the regions for forming the source / drain. Impurity layer 6
The junction breakdown voltage between a and the high-concentration P-type channel layer 4a of NUDC is remarkably lowered, and the electric field concentration is increased, so that it is also weak against hot carriers.

【0007】[0007]

【課題を解決するための手段及び作用】本発明は、
(i)第1導電型半導体基板上に、第1導電型不純物の
チャネル注入を行って第1導電型高濃度層のNUDC層
を形成し、(ii)第1導電型高濃度層の上にゲート電極
を形成し、その後にイオン注入を第2導電型不純物で行
い第1導電型低濃度層のNUDC層を形成し、(iii)
しかる後、LDD形成用の第2導電型不純物のイオン注
入を行い、第1導電型低濃度層のNUDC層にLDDの
第2導電型低濃度層を形成し、(iv)ゲート電極のサイ
ドウォールを形成した後第1導電型半導体基板上に第2
導電型不純物のイオン注入を行って第2導電型高濃度層
のソース・ドレイン層を形成し、NUDC構造のMOS
FETを形成することからなる半導体装置の製造方法で
ある。
The present invention comprises:
(I) A channel of the first conductivity type impurity is implanted on the first conductivity type semiconductor substrate to form a NUDC layer of the first conductivity type high concentration layer, and (ii) on the first conductivity type high concentration layer. A gate electrode is formed, and then ion implantation is performed with a second conductivity type impurity to form a NUDC layer of a first conductivity type low concentration layer, (iii)
Then, the second conductivity type impurity for forming LDD is ion-implanted to form the second conductivity type low concentration layer of LDD on the NUDC layer of the first conductivity type low concentration layer, and (iv) the sidewall of the gate electrode. And forming a second layer on the first conductivity type semiconductor substrate.
A source / drain layer of the second conductivity type high concentration layer is formed by ion-implanting conductivity type impurities, and a NUDC structure MOS is formed.
A method for manufacturing a semiconductor device, which comprises forming an FET.

【0008】すなわち、この発明は、ゲート電極形成後
に第1導電型不純物を高濃度注入してNUDCの第1導
電型高濃度チャネル層を形成するといった方法をとら
ず、ゲート電極形成前に第1導電型半導体基板全域に第
1導電型不純物を高濃度注入して第1導電型高濃度層
(NUDC高濃度層)を形成し、続いてゲート電極形成
後、N型不純物をカウンタードープすることにより、第
1導電型低濃度層(NUDC低濃度層)を形成するとい
うことを特徴としている。そして、NUDC構造形成後
は、LDDの第2導電型低濃度層を形成し、さらにゲー
ト電極のサイドウォールを形成し、しかる後、第1導電
型半導体基板上に、ソース・ドレイン層となる第2導電
型高濃度層を形成するものである。
That is, the present invention does not employ a method of injecting the first-conductivity-type impurities in a high concentration after the gate electrode is formed to form the first-conductivity-type high-concentration channel layer of NUDC, and the first electrode is formed before the gate electrode is formed. By injecting the first-conductivity-type impurity in a high concentration all over the conductivity-type semiconductor substrate to form a first-conductivity-type high-concentration layer (NUDC high-concentration layer), subsequently forming a gate electrode, and then counter-doping the N-type impurities. The first conductivity type low concentration layer (NUDC low concentration layer) is formed. Then, after forming the NUDC structure, a second conductivity type low concentration layer of LDD is formed, and a sidewall of the gate electrode is further formed, and thereafter, a source / drain layer to be a source / drain layer is formed on the first conductivity type semiconductor substrate. A two-conductivity-type high-concentration layer is formed.

【0009】また、この発明は別の観点から、(i)第
1導電型半導体基板上に、第1導電型不純物のチャネル
注入を行って第1導電型高濃度層のNUDC層を形成
し、(ii)第1導電型高濃度層の上にゲート電極を形成
し、その後にイオン注入を第2導電型不純物で行い第1
導電型低濃度層のNUDC層を形成し、(iii)しかる
後、第1導電型半導体基板上に第2導電型不純物のイオ
ン注入を行って第2導電型高濃度層のソース・ドレイン
層を形成し、NUDC構造のMOSFETを形成するこ
とからなる半導体装置の製造方法である。
According to another aspect of the present invention, (i) a channel of a first conductivity type impurity is implanted on a first conductivity type semiconductor substrate to form a NUDC layer of a first conductivity type high concentration layer, (Ii) forming a gate electrode on the first-conductivity-type high-concentration layer, and then performing ion implantation with a second-conductivity-type impurity;
A NUDC layer of low conductivity type is formed, and (iii) after that, ion implantation of a second conductivity type impurity is performed on the first conductivity type semiconductor substrate to form a source / drain layer of the second conductivity type high concentration layer. It is a method for manufacturing a semiconductor device, which comprises forming a MOSFET having a NUDC structure.

【0010】すなわち、この発明では、NUDC構造形
成後にゲート電極のサイドウォールを設けずに、第1導
電型半導体基板上に、ソース・ドレイン層となる第2導
電型高濃度層を形成するようにしたものである。本発明
のNUDC構造は、第1導電型半導体基板上に形成され
る、チャネルのNUDC低濃度P型層(第1導電型低濃
度層)により、ソース・ドレイン間のパンチスルーが抑
制されてショートチャネル効果を抑制できて接合耐圧の
向上が見られ、また、NUDC低濃度P型層(第1導電
型低濃度層)が、第2導電型高濃度層のソース・ドレイ
ン下部にも形成されるため、空乏層が伸びやすく、この
ため、寄生容量が低くなり、高速化に対しても好適な構
造となる。また、電界強度の低減効果も見られ、信頼性
に対しても強い構造となる。
That is, according to the present invention, after forming the NUDC structure, the second conductivity type high concentration layer to be the source / drain layers is formed on the first conductivity type semiconductor substrate without providing the sidewall of the gate electrode. It was done. In the NUDC structure of the present invention, the NUDC low-concentration P-type layer (first conductivity-type low-concentration layer) of the channel formed on the first conductivity type semiconductor substrate suppresses punch-through between the source and the drain, thereby causing a short circuit. The channel effect can be suppressed and the junction breakdown voltage is improved, and the NUDC low concentration P-type layer (first conductivity type low concentration layer) is also formed under the source / drain of the second conductivity type high concentration layer. Therefore, the depletion layer is likely to expand, which reduces the parasitic capacitance and provides a structure suitable for speeding up. In addition, the effect of reducing the electric field strength is also observed, and the structure has high reliability.

【0011】[0011]

【実施例】図1〜図5を用いて、本発明の第1の実施例
を説明する。まず、図1のようにP型シリコン基板11
上にNUDC高濃度P型層(第1導電型高濃度層)11
aの形成のためボロン(第1導電型の不純物)12をイ
オン注入エネルギが20〜50keV でドープ量が5×1012
2×1013/cm2 程度のイオン注入条件でイオン注入す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. First, as shown in FIG. 1, a P-type silicon substrate 11 is formed.
NUDC high concentration P-type layer (first conductivity type high concentration layer) 11
For forming a, boron (first conductivity type impurity) 12 is ion-implanted with an energy of 20 to 50 keV and a doping amount of 5 × 10 12 to
Ion implantation is performed under ion implantation conditions of about 2 × 10 13 / cm 2 .

【0012】次に、シリコン基板11上の全面に、850
℃〜950 ℃程度の熱処理条件で熱酸化してゲート酸化膜
13及びリンドープされたポリシリコン層をCVD法に
より順次形成し、しかる後、既知のフォトリソグラフィ
技術、エッチング技術を用いてゲート酸化膜13上にゲ
ート電極14を形成する(図2参照)。次に、NUDC
低濃度P型層(第1導電型低濃度層)15a形成のた
め、リン(第2導電型の不純物)15を20keV 〜150keV
で5×1011〜1×1013/cm2 程度、7 °〜60°の傾きを
持たせた注入角θでB方向に回転イオン注入する(図3
参照)。
Next, 850 is formed on the entire surface of the silicon substrate 11.
The gate oxide film 13 and the phosphorus-doped polysilicon layer are sequentially formed by the CVD method by thermal oxidation under a heat treatment condition of about 90 ° C. to 950 ° C. Then, the gate oxide film 13 is formed by using the known photolithography technique and etching technique. The gate electrode 14 is formed thereon (see FIG. 2). Next, NUDC
In order to form the low concentration P-type layer (first conductivity type low concentration layer) 15a, phosphorus (second conductivity type impurity) 15 is added at 20 keV to 150 keV.
Rotational ion implantation in the B direction with an implantation angle θ of about 5 × 10 11 to 1 × 10 13 / cm 2 and an inclination of 7 ° to 60 ° (Fig. 3
reference).

【0013】次に、LDDのN- 層(第2導電型低濃度
層)16a形成のためLDD形成用のN型の不純物(第
2導電型の不純物)のイオン注入を行う。この際、砒素
(第2導電型の不純物)16を注入角0°で30〜50keV
で、1×1013〜5×1013/cm 2 程度イオン注入してNU
DC低濃度P型層15aにLDDのN- 層16aを形成
する(図4参照)。
Next, the LDD N-Layer (second conductivity type low concentration
Layer) 16a to form an LDD-forming N-type impurity (first layer).
Ion implantation of two conductivity type impurities) is performed. At this time, arsenic
(Second conductivity type impurity) 16 at 30 ° to 50 keV at an injection angle of 0 °
So 1 x 1013~ 5 x 1013/cm 2NU by ion implantation
N of LDD is formed on the DC low concentration P-type layer 15a.-Form layer 16a
(See FIG. 4).

【0014】次に、ゲート電極14のサイドウォール1
8を、例えばSiO2 で形成し、しかる後にソース・ド
レインのN+ 層(第2導電型高濃度層)17a形成のた
め砒素17を注入角0〜7 °で40〜80keV で1×1015
5×1015/cm2 イオン注入する(図5参照)。このよう
に本実施例では、ゲート電極形成前にP型シリコン基板
11全域にボロン12を高濃度注入してNUDC高濃度
P型層11aを形成し、続いてゲート電極14形成後、
N型不純物をカウンタードープすることにより、NUD
C低濃度P型層15aを形成し、そして、NUDC構造
形成後は、LDDのN- 層16aをNUDC低濃度P型
層15a内に形成し、さらにゲート電極のサイドウォー
ル18を形成し、しかる後、P型シリコン基板11上
に、N+ 層のソース・ドレイン層17aを形成したの
で、NUDC構造のためチャネルのNUDC層15aに
より、ソース・ドレイン間のパンチスルーが抑制されて
ショートチャネル効果を抑制できて接合耐圧の向上が見
られ、また、NUDC層15aが、N+ 層17aのソー
ス・ドレイン下部にも形成されるため、空乏層が伸びや
すく、このため、寄生容量が低くなり、高速化を実現で
きる。また、電界強度の低減効果も見られ、高信頼性の
NUDC構造を有するNチャネルの微細MOSFETを
得ることができる。
Next, the sidewall 1 of the gate electrode 14
8 is formed of, for example, SiO 2 , and thereafter, arsenic 17 is implanted to form an N + layer (second conductivity type high concentration layer) 17 a for source / drain at an implantation angle of 0 to 7 ° and 1 × 10 15 at 40 to 80 keV. ~
Ion implantation is performed at 5 × 10 15 / cm 2 (see FIG. 5). As described above, in this embodiment, before the gate electrode is formed, the boron 12 is heavily implanted into the entire region of the P-type silicon substrate 11 to form the NUDC high-concentration P-type layer 11a, and subsequently, after the gate electrode 14 is formed,
By counter-doping N-type impurities, NUD
After the C low-concentration P-type layer 15a is formed, and after the NUDC structure is formed, the LDD N - layer 16a is formed in the NUDC low-concentration P-type layer 15a, and the side wall 18 of the gate electrode is further formed. After that, since the source / drain layer 17a of the N + layer is formed on the P-type silicon substrate 11, punch-through between the source and the drain is suppressed by the NUDC layer 15a of the channel due to the NUDC structure, so that the short channel effect is achieved. The junction breakdown voltage can be suppressed and the junction breakdown voltage is improved. Further, since the NUDC layer 15a is also formed under the source / drain of the N + layer 17a, the depletion layer easily extends, which reduces the parasitic capacitance and increases the speed. Can be realized. Further, the effect of reducing the electric field strength is also seen, and an N-channel fine MOSFET having a highly reliable NUDC structure can be obtained.

【0015】なお、本実施例ではNUDC高濃度層11
aをP型シリコン基板11上に直接形成したものを示し
たが、P型シリコン基板11上に形成したPウェル上に
NUDC高濃度層11aを形成しても良い。又、図6〜
図9は、上記実施例の図3に示す構造を得たのち、ソー
ス・ドレインのN+ 層(高濃度N型層)18a形成のた
め、砒素18を注入角0°で40〜80keV で1×1015〜5
×1015/cm2 イオン注入するようにしたこの発明の第2
の実施例を示す。この実施例では、NUDC構造形成後
にゲート電極のサイドウォールを設けずに、P型シリコ
ン基板11上のNUDC低濃度層15a内にソース・ド
レイン層となるN+ 層18aを形成するようにしたもの
である(図9参照)。
In this embodiment, the NUDC high concentration layer 11
Although a is directly formed on the P-type silicon substrate 11 is shown, the NUDC high-concentration layer 11a may be formed on the P-well formed on the P-type silicon substrate 11. Moreover, FIG.
In FIG. 9, after obtaining the structure shown in FIG. 3 of the above-mentioned embodiment, arsenic 18 is implanted at 40 ° to 80 keV at an implantation angle of 0 ° to form an N + layer (high-concentration N type layer) 18a for source / drain. × 10 15 ~ 5
The second aspect of the present invention in which × 10 15 / cm 2 ions are implanted
An example of is shown. In this embodiment, after forming the NUDC structure, the sidewall of the gate electrode is not provided, and the N + layer 18a to be the source / drain layer is formed in the NUDC low concentration layer 15a on the P-type silicon substrate 11. (See FIG. 9).

【0016】[0016]

【発明の効果】以上のように本製造方法によれば、従来
のNUDC構造の微細MOSFETと同様にショートチ
ャネルを抑える効果をそのままに維持しながら、接合耐
圧の向上、及び高速化を図ることが可能である。
As described above, according to the present manufacturing method, the junction breakdown voltage can be improved and the speed can be increased while maintaining the effect of suppressing the short channel as is the case with the conventional fine MOSFET having the NUDC structure. It is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例における製造工程の第
1ステップを示す構成説明図である。
FIG. 1 is a structural explanatory view showing a first step of a manufacturing process in a first embodiment of the present invention.

【図2】上記第1の実施例における製造工程の第2ステ
ップを示す構成説明図である。
FIG. 2 is a structural explanatory view showing a second step of the manufacturing process in the first embodiment.

【図3】上記第1の実施例における製造工程の第3ステ
ップを示す構成説明図である。
FIG. 3 is a structural explanatory view showing a third step of the manufacturing process in the first embodiment.

【図4】上記第1の実施例における製造工程の第4ステ
ップを示す構成説明図である。
FIG. 4 is a structural explanatory view showing a fourth step of the manufacturing process in the first embodiment.

【図5】上記第1の実施例における製造工程の第5ステ
ップを示す構成説明図である。
FIG. 5 is a structural explanatory view showing a fifth step of the manufacturing process in the first embodiment.

【図6】この発明の第2の実施例における製造工程の第
1ステップを示す構成説明図である。
FIG. 6 is a structural explanatory view showing a first step of a manufacturing process in the second embodiment of the present invention.

【図7】上記第2の実施例における製造工程の第2ステ
ップを示す構成説明図である。
FIG. 7 is a structural explanatory view showing a second step of the manufacturing process in the second embodiment.

【図8】上記第2の実施例における製造工程の第3ステ
ップを示す構成説明図である。
FIG. 8 is a structural explanatory view showing a third step of the manufacturing process in the second embodiment.

【図9】上記第2の実施例における製造工程の第4ステ
ップを示す構成説明図である。
FIG. 9 is a structural explanatory view showing a fourth step of the manufacturing process in the second embodiment.

【図10】従来例における製造工程の第1ステップを示
す構成説明図である。
FIG. 10 is a structural explanatory view showing a first step of a manufacturing process in a conventional example.

【図11】従来例における製造工程の第2ステップを示
す構成説明図である。
FIG. 11 is a structural explanatory view showing a second step of the manufacturing process in the conventional example.

【図12】従来例における製造工程の第3ステップを示
す構成説明図である。
FIG. 12 is a structural explanatory view showing a third step of the manufacturing process in the conventional example.

【図13】従来例における製造工程の第4ステップを示
す構成説明図である。
FIG. 13 is a structural explanatory view showing a fourth step of the manufacturing process in the conventional example.

【符号の説明】[Explanation of symbols]

11 P型シリコン基板 11a NUDC高濃度P型層(第1導電型高濃度層) 12 ボロン(第1導電型の不純物) 13 ゲート酸化膜 14 ゲート電極 15 リン(第2導電型の不純物) 15a NUDC低濃度N型層(第1導電型低濃度層) 16、17 砒素(第2導電型の不純物) 16a LDDのN- 層(LDDの第2導電型低濃度
層) 17a、18a N+ 層(ソース・ドレイン層)
11 P-type silicon substrate 11a NUDC high-concentration P-type layer (first-conductivity-type high-concentration layer) 12 boron (first-conductivity-type impurity) 13 gate oxide film 14 gate electrode 15 phosphorus (second-conductivity-type impurity) 15a NUDC Low concentration N type layer (first conductivity type low concentration layer) 16, 17 Arsenic (second conductivity type impurity) 16a LDD N layer (second conductivity type low concentration layer of LDD) 17a, 18a N + layer ( Source / drain layer)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 (i)第1導電型半導体基板上に、第1
導電型不純物のチャネル注入を行って第1導電型高濃度
層のNUDC層を形成し、 (ii)第1導電型高濃度層の上にゲート電極を形成し、
その後にイオン注入を第2導電型不純物で行い第1導電
型低濃度層のNUDC層を形成し、 (iii)しかる後、LDD形成用の第2導電型不純物の
イオン注入を行い、第1導電型低濃度層のNUDC層に
LDDの第2導電型低濃度層を形成し、 (iv)ゲート電極のサイドウォールを形成した後第1導
電型半導体基板上に第2導電型不純物のイオン注入を行
って第2導電型高濃度層のソース・ドレイン層を形成
し、NUDC構造のMOSFETを形成することからな
る半導体装置の製造方法。
1. (i) a first conductive type semiconductor substrate on which a first
Channel injection of conductivity type impurities is performed to form a NUDC layer of the first conductivity type high concentration layer, (ii) a gate electrode is formed on the first conductivity type high concentration layer,
After that, ion implantation is performed with the second conductivity type impurities to form a NUDC layer of the first conductivity type low concentration layer, and (iii) after that, ion implantation of the second conductivity type impurities for LDD formation is performed to perform the first conductivity A second conductivity type low concentration layer of LDD is formed on the NUDC layer of the conductivity type low concentration layer, and (iv) a sidewall of the gate electrode is formed, and then ion implantation of a second conductivity type impurity is performed on the first conductivity type semiconductor substrate. A method for manufacturing a semiconductor device, which comprises forming source / drain layers of the second conductivity type high-concentration layer to form a MOSFET having a NUDC structure.
【請求項2】 (i)第1導電型半導体基板上に、第1
導電型不純物のチャネル注入を行って第1導電型高濃度
層のNUDC層を形成し、 (ii)第1導電型高濃度層の上にゲート電極を形成し、
その後にイオン注入を第2導電型不純物で行い第1導電
型低濃度層のNUDC層を形成し、 (iii)しかる後、第1導電型半導体基板上に第2導電
型不純物のイオン注入を行って第2導電型高濃度層のソ
ース・ドレイン層を形成し、NUDC構造のMOSFE
Tを形成することからなる半導体装置の製造方法。
2. (i) a first conductive type semiconductor substrate on which a first
Channel injection of conductivity type impurities is performed to form a NUDC layer of the first conductivity type high concentration layer, (ii) a gate electrode is formed on the first conductivity type high concentration layer,
After that, ion implantation is performed with the second conductivity type impurity to form a NUDC layer of the first conductivity type low concentration layer, and (iii) after that, ion implantation of the second conductivity type impurity is performed on the first conductivity type semiconductor substrate. Form a source / drain layer of the second conductivity type high concentration layer, and have a NUDC structure
A method of manufacturing a semiconductor device, which comprises forming T.
JP28664691A 1991-10-31 1991-10-31 Manufacture of semiconductor device Pending JPH05129326A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP28664691A JPH05129326A (en) 1991-10-31 1991-10-31 Manufacture of semiconductor device
US07/969,325 US5466957A (en) 1991-10-31 1992-10-29 Transistor having source-to-drain nonuniformly-doped channel and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28664691A JPH05129326A (en) 1991-10-31 1991-10-31 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05129326A true JPH05129326A (en) 1993-05-25

Family

ID=17707124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28664691A Pending JPH05129326A (en) 1991-10-31 1991-10-31 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05129326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150698A (en) * 1997-01-13 2000-11-21 Ricoh Company, Ltd. Semiconductor device and method of forming semiconductor device having non-uniformly doped well

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190465A (en) * 1984-10-11 1986-05-08 Hitachi Ltd Semiconductor device and manufacture thereof
JPS61292963A (en) * 1985-06-21 1986-12-23 Hitachi Ltd Semiconductor device and manufacture thereof
JPH05109765A (en) * 1991-10-21 1993-04-30 Sharp Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190465A (en) * 1984-10-11 1986-05-08 Hitachi Ltd Semiconductor device and manufacture thereof
JPS61292963A (en) * 1985-06-21 1986-12-23 Hitachi Ltd Semiconductor device and manufacture thereof
JPH05109765A (en) * 1991-10-21 1993-04-30 Sharp Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6150698A (en) * 1997-01-13 2000-11-21 Ricoh Company, Ltd. Semiconductor device and method of forming semiconductor device having non-uniformly doped well

Similar Documents

Publication Publication Date Title
US5677224A (en) Method of making asymmetrical N-channel and P-channel devices
US6316302B1 (en) Isotropically etching sidewall spacers to be used for both an NMOS source/drain implant and a PMOS LDD implant
US6277675B1 (en) Method of fabricating high voltage MOS device
JP2897004B2 (en) CMOSFET manufacturing method
JP2000260987A (en) Semiconductor device and its manufacture
US5340756A (en) Method for producing self-aligned LDD CMOS, DMOS with deeper source/drain and P-base regions and, bipolar devices on a common substrate
JP2701762B2 (en) Semiconductor device and manufacturing method thereof
JPH0945906A (en) Semiconductor device and its manufacture
JPH06204469A (en) Field-effect transistor and manufacture thereof
US20030111690A1 (en) Semiconductor device and method of manufacturing the same
JPH10200110A (en) Semiconductor device and manufacture of the same
JPH0459774B2 (en)
JPH10189972A (en) Semiconductor element and manufacture thereof
JPH08186250A (en) Manufacture of semiconductor device
JP2001308321A (en) Semiconductor device and its manufacturing method
US7151032B2 (en) Methods of fabricating semiconductor devices
US6051471A (en) Method for making asymmetrical N-channel and symmetrical P-channel devices
US6287922B1 (en) Method for fabricating graded LDD transistor using controlled polysilicon gate profile
JPH10116983A (en) Semiconductor device and its manufacture
JP2009266868A (en) Mosfet and manufacturing method of mosfet
JP4186247B2 (en) Method for manufacturing semiconductor device and method for forming conductive silicon film
JPH05129326A (en) Manufacture of semiconductor device
JP3014138B2 (en) Semiconductor device
JPH04330782A (en) Fine semiconductor device and manufacture thereof
JPH06283713A (en) Semiconductor device and its manufacture