JPH05128480A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH05128480A
JPH05128480A JP31989191A JP31989191A JPH05128480A JP H05128480 A JPH05128480 A JP H05128480A JP 31989191 A JP31989191 A JP 31989191A JP 31989191 A JP31989191 A JP 31989191A JP H05128480 A JPH05128480 A JP H05128480A
Authority
JP
Japan
Prior art keywords
magnetic
film
recording medium
coercive force
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31989191A
Other languages
Japanese (ja)
Inventor
Hideo Murata
英夫 村田
Motoe Nakajima
源衛 中嶋
Hajime Shinohara
肇 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP31989191A priority Critical patent/JPH05128480A/en
Publication of JPH05128480A publication Critical patent/JPH05128480A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To economically and stably obtain a magnetic recording medium further improved in coercive force by specifying the ratio of a particle diameter of an under film to the particle diameter of a magnetic film to improve the orientation property of the magnetic layer. CONSTITUTION:A magnetic recording medium is constituted by providing the magnetic film made from a magnetic material with the under film made from Cr or a Cr alloy on a substrate made from a non-magnetic material. The ratio of the particle diameter of the under film to the particle diameter of the magnetic film is selected from region of 0.8-1.5. The magnetic film is made from a Co-Cr alloy and the particle diameter is desirably 30-50nm. The particle diameter is controlled in the region because coercive force is lowered as the orientation property is lowered and the magnetic domain walls becomes easily movable when the diameter is out of the region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば磁気ヘッドとの
間において情報の記録および再生を行なうための磁気記
録媒体に関し、特に下地膜と磁性膜との配向性をよくし
て保磁力が大きくなるようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium for recording and reproducing information with, for example, a magnetic head, and in particular, the orientation of the underlayer and the magnetic layer is improved to increase the coercive force. It was made to become.

【0002】[0002]

【従来の技術】磁気ディスク装置では、磁気記録媒体に
微小間隔で磁気ヘッドを対向させ、磁気記録媒体に記録
された磁気情報を磁気ヘッドが読みとったり、磁気ヘッ
ドから磁気記録媒体に磁気的に記録するようになってい
る。磁気ディスク装置により記録、再生を行なう場合に
は磁気ヘッドと磁気記録媒体とを例えば0.2〜0.3
μmの微小間隔に保持するのが通常である。従って磁気
ヘッドと磁気記録媒体との接触による摩擦、摩耗および
/または両者の衝突に伴う損傷を防止するため、浮動ヘ
ッドスライダを使用する。すなわち磁気ヘッドスライダ
が、磁気記録媒体の表面との相対速度により、両者の間
隔に発生する流体力学的な浮上力を利用して、両者の微
小間隔を保持するように構成している。
2. Description of the Related Art In a magnetic disk device, a magnetic head is opposed to a magnetic recording medium at minute intervals so that the magnetic head reads magnetic information recorded on the magnetic recording medium or magnetically records the magnetic information from the magnetic head onto the magnetic recording medium. It is supposed to do. When recording and reproducing by a magnetic disk device, the magnetic head and the magnetic recording medium are, for example, 0.2 to 0.3.
It is usual to keep the distance to a minute interval of μm. Therefore, a floating head slider is used to prevent friction, wear, and / or damage caused by collision between the magnetic head and the magnetic recording medium. That is, the magnetic head slider is configured to maintain a minute gap between the two by utilizing the hydrodynamic levitation force generated in the gap between the two due to the relative velocity with the surface of the magnetic recording medium.

【0003】磁気記録媒体は、その記録密度を高めるた
め、磁性膜の保磁力を向上させることが種々研究されて
いる。例えば、非磁性基板と磁性膜との間に介在される
Cr下地膜の厚さが保磁力の向上に大きく関係するとい
うことから、1000Oe以上の保磁力を得る為に20
00Å以上のCr下地膜を形成したものがある。しかし
厚い膜厚のCr下地膜をスパッタにより形成する場合、
生産に長時間を要し好ましくない。そのため非磁性基板
上に、厚さ1000ÅのCr下地膜を形成し、その上に
Co−Cr−Ta膜を形成したものが提唱されている。
In order to increase the recording density of magnetic recording media, various studies have been conducted to improve the coercive force of magnetic films. For example, since the thickness of the Cr underlayer interposed between the non-magnetic substrate and the magnetic film is greatly related to the improvement of the coercive force, in order to obtain a coercive force of 1000 Oe or more, 20
There is one in which a Cr underlayer of 00Å or more is formed. However, when forming a thick Cr underlayer by sputtering,
It takes a long time for production, which is not preferable. Therefore, it is proposed that a Cr underlayer having a thickness of 1000 Å is formed on a non-magnetic substrate, and a Co-Cr-Ta film is formed thereon.

【0004】上記のようにCr下地膜の上にCo−Cr
−Taの磁性膜を形成したものは、Cr層上にCoN
i、CoNiCr等の磁性層を形成したものより磁気特
性が優れていることが知られている。また磁気特性を向
上するため、Cr層上に、CoNiPtの磁性層を形成
したものが特開昭62−141628号公報と特開昭6
1−142524号公報に開示され、一般にPt添加量
は15%以上にして保磁力を向上させている。さらにP
tが高価なため、基板上にCr層を介して形成する磁性
膜において、CoCrPtTaの四元系元素を使用する
とともにPt添加量を少なくした磁性膜として保磁力を
向上したものが特開平1−256017号公報に開示さ
れている。
As described above, Co--Cr is formed on the Cr underlayer.
A magnetic film of -Ta is formed on the Cr layer with CoN.
It is known that the magnetic characteristics are superior to those of a magnetic layer formed of i, CoNiCr, or the like. Further, in order to improve the magnetic characteristics, a magnetic layer of CoNiPt formed on a Cr layer is disclosed in JP-A-62-141628 and JP-A-6-61628.
It is disclosed in Japanese Patent Publication No. 1-142524, and generally, the amount of Pt added is set to 15% or more to improve the coercive force. Furthermore P
Since t is expensive, in a magnetic film formed on a substrate through a Cr layer, a quaternary element of CoCrPtTa is used and a coercive force is improved as a magnetic film with a small Pt addition amount. It is disclosed in Japanese Patent No. 256017.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術に記載し
たように、Cr下地膜の膜厚を大きくしたり、磁性膜と
してCo−Cr−Taを使用して1000Oe以上の保
磁力を得られるようにしたものがあるが、保磁力の向上
として十分満足のいくものではない。また磁性膜の材料
にPtを添加したものは高価であり経済的ではない。そ
こで本発明は、磁気記録媒体の保磁力をより向上したも
のを、経済的にかつ安定して得られるようにすることを
目的とする。
As described in the above-mentioned prior art, it is possible to obtain a coercive force of 1000 Oe or more by increasing the thickness of the Cr underlayer film or by using Co-Cr-Ta as the magnetic film. However, it is not fully satisfactory as an improvement in coercive force. Further, a material obtained by adding Pt to the material of the magnetic film is expensive and not economical. It is therefore an object of the present invention to economically and stably obtain a magnetic recording medium having an improved coercive force.

【0006】[0006]

【課題を解決するための手段】本発明者らは、磁気記録
媒体としての保磁力を向上するため、Cr下地膜と磁性
膜の配向性をどのようにすれば向上できるかを鋭意研究
した。そのため、Co−Cr−Taからなる磁性膜の厚
さを50nmとし、Cr下地膜の厚さを変化させた場合
に保磁力がどのように影響を受けるかを実験し、図1に
示す結果を得た。そして図1から、Cr下地膜が約10
0nm以上と厚い場合に、1300Oe以上の保磁力が
得られることを知った。また、Cr下地膜の厚さを50
nmとし、Co−Cr−Taからなる磁性膜の厚さを変
化させた場合に、保磁力がどのような影響を受けるかを
実験し、その結果を図2に示した。そして図2から、磁
性膜の厚さが薄くなり40nm以下の場合に保磁力が1
300Oe以上になることを知った。
DISCLOSURE OF THE INVENTION The inventors of the present invention have earnestly studied how to improve the orientation of the Cr underlayer and the magnetic layer in order to improve the coercive force of the magnetic recording medium. Therefore, the thickness of the magnetic film made of Co-Cr-Ta was set to 50 nm, and an experiment was conducted to see how the coercive force was affected when the thickness of the Cr underlayer was changed, and the results shown in FIG. Obtained. Then, from FIG. 1, the Cr base film is about 10
It was found that a coercive force of 1300 Oe or more can be obtained when the thickness is 0 nm or more. In addition, the thickness of the Cr underlayer is 50
An experiment was conducted to see how the coercive force was affected when the thickness of the magnetic film made of Co—Cr—Ta was changed to be nm, and the results are shown in FIG. From FIG. 2, the coercive force is 1 when the thickness of the magnetic film is thin and 40 nm or less.
I knew that it would be over 300 Oe.

【0007】以上の結果からCr下地膜、磁性膜とも膜
厚が厚くなると、結晶粒径が大きくなると考えられるこ
とから、種々の厚さのCr下地膜と磁性膜の粒径を顕微
鏡組織写真で確認した。膜厚の異なるCr下地膜の顕微
鏡組織写真は図3に示し、それらCr下地膜の上に形成
される磁性膜(CoCrTa)の顕微鏡組織写真は図4
に示した。また、Cr下地膜を一定とし磁性膜(CoC
rTa)の膜厚を変化させた場合の顕微鏡写真を図5に
示した。基板温度が室温と200℃とに異なっていても
同じ膜厚ではCr膜よりCoCrTa膜の方が粒径が大
きく、図1、図2で示した下地膜が厚く、かつCoCr
Ta膜が薄い場合に高い保磁力となる条件は、図3、4
からそれぞれの下地Cr粒径は大きくなり、かつCoC
rTa粒径は小さくなる条件であり、Cr下地膜と磁性
膜の各粒径が近い関係にある場合にエピタキシャル成長
し易くなり配向性がよくなることが推測できる。そこで
Cr下地膜の粒径と磁性膜の粒径との比を変化させて磁
気記録媒体を作製し、それぞれの保磁力を測定して結果
を図6に示した。図6から粒径比1の時に保磁力が15
00Oe以上となり、粒径比0.8〜1.5で保磁力が
950Oe以上になり、前記推測が正しいことが確認で
きた。
From the above results, it is considered that the crystal grain size increases as the thickness of both the Cr underlayer film and the magnetic film becomes thicker. Therefore, the grain sizes of the Cr underlayer film and the magnetic film of various thicknesses are microscopic photographs. confirmed. A microstructure photograph of Cr underlayers having different film thicknesses is shown in FIG. 3, and a microstructure photograph of a magnetic film (CoCrTa) formed on these Cr underlayers is shown in FIG.
It was shown to. Further, the Cr underlayer film is kept constant and the magnetic film (CoC
FIG. 5 shows micrographs when the film thickness of rTa) was changed. Even if the substrate temperature is different from room temperature to 200 ° C., the CoCrTa film has a larger grain size than the Cr film at the same film thickness, the base film shown in FIGS.
Conditions for obtaining a high coercive force when the Ta film is thin are shown in FIGS.
Therefore, the grain size of each Cr underlayer is increased, and CoC
The condition is that the rTa grain size is small, and it can be inferred that when the grain sizes of the Cr underlayer and the magnetic layer are close to each other, epitaxial growth is facilitated and the orientation is improved. Therefore, magnetic recording media were manufactured by changing the ratio of the grain size of the Cr underlayer and the grain size of the magnetic film, and the coercive force of each was measured. The results are shown in FIG. From Fig. 6, when the particle size ratio is 1, the coercive force is 15
It was confirmed that the above assumption was correct, since the particle size ratio was 0.8 to 1.5 and the coercive force was 950 Oe or more.

【0008】本発明は、上記実験結果に基づきなされた
ものである。すなわち、非磁性材料からなる基板の表面
にCrまたはCr合金からなる下地膜を介して磁性材料
からなる磁性膜を設けてなる磁気記録媒体において、下
地膜の粒径と磁性膜の粒径との比が0.8〜1.5であ
ることを特徴とする磁気記録媒体である。磁性膜はCo
−Cr系の合金で作製され、その粒径が30〜50nm
であることが望ましい。粒径を前記範囲に限定したの
は、その範囲外になると配向性の低下と磁壁の移動がし
易くなるため、保磁力が低下するからである。
The present invention has been made based on the above experimental results. That is, in a magnetic recording medium in which a magnetic film made of a magnetic material is provided on the surface of a substrate made of a non-magnetic material via a base film made of Cr or a Cr alloy, the grain size of the underlayer and the grain size of the magnetic film are A magnetic recording medium having a ratio of 0.8 to 1.5. The magnetic film is Co
-Cr alloy is used and its grain size is 30-50nm
Is desirable. The particle size is limited to the above range because if it is out of the range, the coercive force is lowered because the orientation is lowered and the domain wall is easily moved.

【0009】[0009]

【作用】上記の磁気記録媒体は、下地膜と磁性膜のそれ
ぞれの粒径の比を0.8〜1.5にしているので、磁性
膜の配向性が良く、そのために保磁力が向上する。
In the above magnetic recording medium, since the ratio of the grain sizes of the underlayer film and the magnetic film is 0.8 to 1.5, the orientation of the magnetic film is good and therefore the coercive force is improved. ..

【0010】[0010]

【実施例】マグネシウムを4重量%含有するアルミニウ
ム合金からなる基板の表面を旋削加工により平滑に形成
し、外径95mm、内径25mm、厚さ1.27mmの
基板とした。次にこの基板の表面にNi−P合金からな
るメッキ膜を5〜15μmの厚さに形成し、磁気記録媒
体の起動時および停止時における磁気ヘッド若しくはス
ライダとの接触摺動特性(CSS)を確保する。上記の
ようにして被着したメッキ膜の表面を平滑に研磨すると
ともに、磁気ヘッド若しくはスライダとの吸着を防止す
るためのテクスチャ加工を施す。
Example The surface of a substrate made of an aluminum alloy containing 4% by weight of magnesium was formed into a smooth surface by turning, to obtain a substrate having an outer diameter of 95 mm, an inner diameter of 25 mm and a thickness of 1.27 mm. Next, a Ni-P alloy plating film having a thickness of 5 to 15 μm is formed on the surface of this substrate, and the contact sliding characteristics (CSS) with the magnetic head or slider at the time of starting and stopping the magnetic recording medium are measured. Secure. The surface of the plated film deposited as described above is polished to be smooth, and texture processing is performed to prevent adsorption to the magnetic head or slider.

【0011】次に基板を洗浄後、例えばDCマグネトロ
ンスパッタ装置により、Crからなる下地膜と、Co−
Cr−Ta合金からなる磁性膜と、Cからなる保護膜と
を順次積層して成膜する。この場合、Cr下地膜の成膜
には、スパッタ室内を1×10-5Toor以下に排気
後、基板を200℃において30分間加熱し、Arガス
を導入してスパッタ室内を5mToorに保持し、投入
電力2000W、成膜速度400Å/分の条件により、
膜厚60nmに成膜するとともに粒径はほぼ40nmに
作製した。次にこのCr下地膜の上に、Co−Cr−T
aからなる磁性膜を上記同様にして、投入電力2000
W、成膜速度1000Å/分の条件で50nmの膜厚に
成膜するとともに、粒径はほぼ50nmに作製した。ま
た保護膜は投入電力1000W、成膜速度80Å/分の
条件で前記磁性膜上に膜厚300Åで成膜した。
Next, after cleaning the substrate, a base film made of Cr and Co--
A magnetic film made of a Cr-Ta alloy and a protective film made of C are sequentially laminated to form a film. In this case, to form the Cr underlayer, the sputtering chamber was evacuated to 1 × 10 −5 Toor or less, the substrate was heated at 200 ° C. for 30 minutes, and Ar gas was introduced to maintain the sputtering chamber at 5 mToor. Depending on the conditions of input power 2000 W and film formation rate 400 Å / min,
The film was formed to have a film thickness of 60 nm and the particle size was made to be approximately 40 nm. Next, on this Cr underlayer film, Co-Cr-T
The magnetic film made of a is applied in the same manner as above, and the input power is 2000
A film having a thickness of 50 nm was formed under the conditions of W and a film forming rate of 1000 Å / min, and the particle size was made to be approximately 50 nm. The protective film was formed on the magnetic film at a film thickness of 300 Å under the conditions of an applied power of 1000 W and a film formation rate of 80 Å / min.

【0012】上記のようにして作製した磁気記録媒体の
保磁力を測定したところ、1300Oeであった。なお
上記実施例では、磁性膜としてCo−Cr−Taを使用
したが、その他のCo−Cr系合金でも同様の結果とな
ることが容易に推測でき、また下地膜もCrに限るもの
ではなくCr合金で作成しても同様の結果がえられるこ
とを推測できる。
When the coercive force of the magnetic recording medium manufactured as described above was measured, it was 1300 Oe. Although Co—Cr—Ta was used as the magnetic film in the above-mentioned examples, it can be easily inferred that similar results can be obtained with other Co—Cr alloys, and the underlayer film is not limited to Cr. It can be inferred that the same result can be obtained even if it is made of an alloy.

【0013】[0013]

【発明の効果】本発明の磁気記録媒体は、下地膜の粒径
と磁性膜の粒径との比を0.8〜1.5にしているの
で、磁性膜の配向性がよく、安定して保磁力の大きな磁
気記録媒体を得ることができる。
In the magnetic recording medium of the present invention, the ratio of the grain size of the undercoating film to the grain size of the magnetic film is 0.8 to 1.5, so that the orientation of the magnetic film is good and stable. Thus, a magnetic recording medium having a large coercive force can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】Cr下地膜の厚さと保磁力との関係図である。FIG. 1 is a relationship diagram between the thickness of a Cr underlayer and coercive force.

【図2】Co−Cr−Ta磁性膜と保磁力との関係図で
ある。
FIG. 2 is a relationship diagram between a Co—Cr—Ta magnetic film and coercive force.

【図3】膜厚の異なるCr下地膜のそれぞれの粒径を示
すための顕微鏡による金属組織写真である。
FIG. 3 is a photomicrograph of a metallographic structure showing the grain sizes of Cr underlayers having different thicknesses.

【図4】膜厚の異なるCo−Cr−Ta磁性膜のそれぞ
れの粒径を示すための顕微鏡による金属組織写真であ
る。
FIG. 4 is a micrograph of a metallographic structure showing the grain sizes of Co—Cr—Ta magnetic films having different film thicknesses.

【図5】Cr下地膜の膜厚を一定とし磁性膜の膜厚を変
えたそれぞれの場合の金属組織写真である。
5A and 5B are photographs of metallographic structures in respective cases in which the thickness of the Cr underlayer film is constant and the thickness of the magnetic film is changed.

【図6】Cr下地膜の粒径と磁性膜の粒径との比と、保
磁力との関係図である。
FIG. 6 is a graph showing the relationship between the ratio of the grain size of the Cr underlayer film to the grain size of the magnetic film and the coercive force.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非磁性材料からなる基板の表面に、Cr
またはCr合金からなる下地膜を介して磁性材料からな
る磁性膜を設けてなる磁気記録媒体において、下地膜の
粒径と磁性膜の粒径との比が0.8〜1.5であること
を特徴とする磁気記録媒体。
1. The surface of a substrate made of a non-magnetic material is provided with Cr.
Alternatively, in a magnetic recording medium in which a magnetic film made of a magnetic material is provided through a base film made of a Cr alloy, the ratio of the particle size of the base film to the particle size of the magnetic film is 0.8 to 1.5. A magnetic recording medium characterized by:
【請求項2】 磁性膜はCo−Cr系の合金で作製さ
れ、その粒径が30〜50nmであることを特徴とする
請求項1に記載の磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the magnetic film is made of a Co—Cr alloy and has a particle size of 30 to 50 nm.
JP31989191A 1991-11-07 1991-11-07 Magnetic recording medium Pending JPH05128480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31989191A JPH05128480A (en) 1991-11-07 1991-11-07 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31989191A JPH05128480A (en) 1991-11-07 1991-11-07 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH05128480A true JPH05128480A (en) 1993-05-25

Family

ID=18115390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31989191A Pending JPH05128480A (en) 1991-11-07 1991-11-07 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH05128480A (en)

Similar Documents

Publication Publication Date Title
JPH10188278A (en) Production of high-performance low-noise isotropic magnetic medium having chromium lower layer
JP4023408B2 (en) Substrate for perpendicular magnetic recording medium, perpendicular magnetic recording medium, and method for producing them
JPH04205916A (en) Magnetic recording medium
JPH05189738A (en) Magnetic recording medium
JPH05128480A (en) Magnetic recording medium
KR100639620B1 (en) Magnetic recording medium, method of manufacture thereof, and magnetic disk device
JP2760906B2 (en) Magnetic recording medium and method of manufacturing the same
JPH03296919A (en) Magnetic recording medium
JPH08329442A (en) Magnetic recording medium
JPH05182171A (en) Magnetic recording medium
JPH0268712A (en) Thin film magnetic recording medium
JPH0512647A (en) Magnetic recording medium
JP2538124B2 (en) Fixed magnetic disk and manufacturing method thereof
JPH02154323A (en) Production of magnetic recording medium
JPH0514325B2 (en)
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JPH1041134A (en) Magnetic recording medium and its manufacturing method
JPS6379954A (en) Formation of magnetic structrue
JPH05258278A (en) Magnetic recording medium
JPH05101364A (en) Magnetic recording medium
JPH03283016A (en) Magnetic recording medium
JPH05258276A (en) Magnetic recording medium
JPH03142708A (en) Magnetic recording medium
JP2002025044A (en) Perpendicular magnetic recording medium and method for manufacturing the same
JP2000348323A (en) Magnetic recording medium, production of same and magnetic memory device