JPH05126761A - Empty-bottle separating apparatus - Google Patents

Empty-bottle separating apparatus

Info

Publication number
JPH05126761A
JPH05126761A JP28964491A JP28964491A JPH05126761A JP H05126761 A JPH05126761 A JP H05126761A JP 28964491 A JP28964491 A JP 28964491A JP 28964491 A JP28964491 A JP 28964491A JP H05126761 A JPH05126761 A JP H05126761A
Authority
JP
Japan
Prior art keywords
bottle
light
image
color
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28964491A
Other languages
Japanese (ja)
Inventor
Takashi Onishi
巍 大西
Noriyoshi Nagase
徳美 永瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP28964491A priority Critical patent/JPH05126761A/en
Publication of JPH05126761A publication Critical patent/JPH05126761A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

PURPOSE:To identify the color of a bottle quickly and automatically with high reliability by identifying the light transmitted through the bottle under inspection and the light, which is not transmitted through the bottle, and thereafter measuring the wavelength component of the light transmitted through the bottle. CONSTITUTION:The light from a light source 7 is scattered with a scattering plate 6 and cast on a glass bottle under inspection 1. The image is picked up with a CCD camera 3. In an image processing device 4, the image plane, wherein the amount of the transmitted light that is directly cast into the camera 3 without passing the bottle 1 is larger than a specified threshold value, is removed based on the image signal obtained with the camera 3, and the image region of the battle is set. Then, the part, wherein the amount of the light is less because of a label and contamination in the image region of the bottle, is avoided, and the region having the highest luminance is made to be the region for identifying the color of the bottle 1. The wavelength components (green, red and blue) of the light in this region are measured, and the color of the bottle 1 is identified based on the magnitudes. Thus, the separating work for the recovered bottles can be automated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、種々の使用済みガラス
びんを再利用(リサイクル)することを目的としてガラ
スの色を自動的に分別する空びん分別装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an empty bottle sorting apparatus for automatically sorting the colors of glass for the purpose of reusing (recycling) various used glass bottles.

【0002】[0002]

【従来の技術】収集されるガラスびんは、通常自治体が
運用する再資源化設備でコンベアにて搬送しながら作業
員が目視により数種類の色別に区分けして、破砕してカ
レットにした後製びん工場にて原料として使用される。
ガラスびんの色分別は現状では人間の目による判断に依
っており自動化の例は見当らない。
2. Description of the Related Art Collected glass bottles are usually conveyed by conveyors at a recycling facility operated by local governments, visually classified by workers into several types of colors, and crushed into cullet bottles. Used as a raw material in the factory.
At present, the color separation of glass bottles depends on the judgment of human eyes, and there is no example of automation.

【0003】[0003]

【発明が解決しようとする課題】びんの分別が自動化さ
れず人間の目に依存する理由は、収集したびんが寸法・
形状、色あいが多種に及ぶことのほか、その形態も千差
万別であり機械による識別が困難であるためである。即
ち、同一寸法のびんでもラベルの付着形態、フタの有
無、汚レの程度あるいは破損の状況などにより、びんの
透過光の様子が変化し、びんの寸法によっても透過光量
やその色あいの形状が異なるため、人間では一瞬にして
色分別をするために選定するびんの部位を、画像処理な
ど機械的な手段で正確にかつ高速に見分ける技術が確立
されていない。
The reason why the sorting of the bottles is not automated and depends on the human eyes is because the size and size of the collected bottles are large.
This is because in addition to the wide variety of shapes and colors, the shapes are also varied, and it is difficult to identify them by machines. That is, even for bottles of the same size, the state of the transmitted light of the bottle changes depending on the label attachment form, the presence or absence of the lid, the degree of stain or the state of damage, etc., and the amount of transmitted light and the shape of its color tone also vary depending on the size of the bottle. Because of the difference, humans have not established a technique for accurately and quickly identifying the parts of the bottle that are selected for color classification in an instant by mechanical means such as image processing.

【0004】本発明は、この様な状況を鑑み、人間の判
別機構を類似した識別アルゴリズムを、照明とCCDカ
メラによる画像信号を用いて実現することを課題とする
もので、びん色の識別を高速かつ信頼性の高い方法で自
動化することを目的とする。
In view of such a situation, the present invention has an object to realize an identification algorithm similar to a human identification mechanism by using an image signal from an illumination and a CCD camera, and identifies a bottle color. It aims to automate in a fast and reliable way.

【0005】[0005]

【課題を解決するための手段】本発明では前述課題を解
決するために、被検査びん下方に散乱光源を配し、びん
上方にCCDカメラを設けてCCDカメラ画像信号の輝
度よりびん透過光の領域と光源から直接カメラに入射さ
れる領域を識別する機能、及びびん透過光の領域にあっ
て最も透過光量が大きい部分領域を選定する機能、さら
にこの部分領域の色波長成分即ち緑(G),赤(R),
青(B)の相対的な光強度の大きさからガラスの色を識
別する機能を持つ画像処理装置を具備することを特徴と
する。
In the present invention, in order to solve the above-mentioned problems, a scattered light source is arranged below the bottle to be inspected, and a CCD camera is provided above the bottle so that the transmitted light of the bottle can be determined from the brightness of the CCD camera image signal. The function of identifying the area and the area directly incident on the camera from the light source, the function of selecting the partial area having the largest amount of transmitted light in the area of the bottle transmitted light, and the color wavelength component of this partial area, that is, green (G) , Red (R),
An image processing device having a function of discriminating the color of glass from the relative intensity of blue (B) light is provided.

【0006】そして被検査びんに対する散乱光源とCC
Dカメラとの配置は以下3種の配置がある。第1は前記
光源と、前記CCDカメラとを、前記被検査びんの胴部
の上下に平行に配設して、前記びん透過光のカメラ画像
信号から最も透過光量が大きい部分領域を選択したこと
を特徴とする。
Then, the scattered light source and CC for the bottle to be inspected
There are the following three types of arrangement with the D camera. First, the light source and the CCD camera are arranged in parallel above and below the body of the bottle to be inspected, and a partial area having the largest transmitted light amount is selected from the camera image signal of the bottle transmitted light. Is characterized by.

【0007】第2は前記光源を前記被検査びんの口部に
平行に配設すると共に前記CCDカメラを前記被検査び
んの底部に平行に配設して、前記カメラの画像信号から
びんの直径を測定してその直径の大きさにより色判別の
ための領域を選択したことを特徴とする。第3は前記光
源を被検査びんの口部と底部とに配設し、該光源からの
透過光をミラーと反回転ストロボを介して同期して到達
するように前記CCDカメラを配設して前記カメラ画像
信号から最も透過光量が大きい部分領域を選択したこと
を特徴とする。
Secondly, the light source is arranged in parallel with the mouth of the bottle to be inspected and the CCD camera is arranged in parallel with the bottom of the bottle to be inspected, and the diameter of the bottle is determined from the image signal of the camera. Is measured, and a region for color discrimination is selected according to the size of the diameter. Thirdly, the light source is arranged at the mouth and the bottom of the bottle to be inspected, and the CCD camera is arranged so that the transmitted light from the light source arrives in synchronism with the mirror through the anti-rotation strobe. It is characterized in that a partial region having the largest amount of transmitted light is selected from the camera image signal.

【0008】[0008]

【作用】散乱板を介した光源により、びんのレンズ効果
などによる極端に輝度のムラのない均一なびん透過画像
が得られる。このようにして得られたびん透過画像は、
光源から直接光が入射する領域に比べて透過光量が小さ
いから、カメラ視野領域の画像信号の輝度をあるしきい
値で区分することにより、びん透過光の領域が識別でき
る。さらにびん領域のうち最も輝度の高い領域を取り出
せば、この部分はラベルや汚れ、またはびんの形状が複
雑な底部隅部などの領域を除外した光がガラスに垂直に
透過する領域を選定することになり、人間が色判別する
ために選ぶ領域と一致する。この部分の色成分(G,
R,B)の分布は、ガラスの光透過度に関わりなくガラ
スの色分別と強い相関があるため、G,R,B成分の比
率を求めることにより色分別が可能となる。
By the light source through the scattering plate, it is possible to obtain a uniform bottle transmission image without extremely uneven brightness due to the lens effect of the bottle. The bottle transmission image obtained in this way is
Since the amount of transmitted light is smaller than the region where light directly enters from the light source, the region of bottle transmitted light can be identified by dividing the luminance of the image signal in the camera visual field region by a certain threshold value. Furthermore, if you take out the area with the highest brightness in the bottle area, select the area through which light passes perpendicularly to the glass, excluding areas such as labels and stains or the bottom corners where the bottle shape is complicated. Which corresponds to the area that humans select for color discrimination. The color component (G,
The distribution of R, B) has a strong correlation with the color classification of the glass regardless of the light transmittance of the glass, and thus the color classification can be performed by obtaining the ratio of the G, R, B components.

【0009】[0009]

【実施例】本発明の第1実施例を図1に示す。以下図1
に依り、本発明の構成とその機能を説明する。高周波蛍
光灯などの光源7より照射される光はアクリル板などで
構成される散乱板6により散乱され上方に置かれる供試
びん1を透過してびん画像を形成する。びんはホールド
装置2により光源に平行に置かれ、その画像はCCDカ
メラ(TVカメラ)3により画像信号に変換される。画
像信号は画像処理装置4により処理され、びん色の識別
信号により適当なびん分別装置9により後流側で機械的
に分類する。
FIG. 1 shows a first embodiment of the present invention. Figure 1 below
Therefore, the configuration and the function of the present invention will be described. Light emitted from a light source 7 such as a high-frequency fluorescent lamp is scattered by a scattering plate 6 made of an acrylic plate or the like and passes through the test bottle 1 placed above to form a bottle image. The bottle is placed in parallel with the light source by the hold device 2, and its image is converted into an image signal by the CCD camera (TV camera) 3. The image signal is processed by the image processing device 4, and is mechanically classified on the downstream side by an appropriate bottle sorting device 9 according to the bottle color identification signal.

【0010】画像処理装置4では、カメラ3により得ら
れる画像例えば図2に示す画像に対して、まずびん領域
の設定を行う。図のびん外側でかつ視野画面11の領域
はびんを透過しないで直接、カメラに光源が入射する領
域であり、びん像12に比べて透過光量が大きい。従っ
てこの視野画面の画素についてあるしきい値を超える明
るい部分を除外すれば、もしくは暗い部分を抽出するこ
とにり、びん画像の領域設定ができる。かくして得られ
たびん領域のうち、ラベルや汚レのある部分、及び光源
と垂直でない肉厚部分などは光源が垂直に透過する部分
14に比べて光量が小さくなる。従ってびん画像領域の
うち最も輝度が高い領域を設定すれば、この部分はラベ
ル等を避けた領域となり、人間がびんの色を識別するた
めに選定する領域と概一致する。このようにして定めた
領域14の光波長の成分(G,R,B)の比率はガラス
の分別色と強い相関があるため、これらの光波長成分の
大きさから被検査びんの色識別が可能となる。尚、検査
ラインでびんと形状が類似した磁器や金属製の容器につ
いても、びん画像内での透過光が無いため極端に輝度が
小さくなるため同じ検査ライン上で容易に識別が可能で
ある、なお画像処理の手順のフローの例を図3に示し
た。
The image processing apparatus 4 first sets a bottle area for an image obtained by the camera 3, for example, the image shown in FIG. The area outside the bottle in the figure and on the field-of-view screen 11 is an area where the light source directly enters the camera without passing through the bottle, and the amount of transmitted light is larger than that of the bottle image 12. Therefore, it is possible to set the area of the bottle image by excluding the bright portion exceeding a certain threshold value from the pixels of the view screen or by extracting the dark portion. In the bottle area thus obtained, the amount of light is smaller in the label, the stained portion, the thick portion that is not perpendicular to the light source, and the like, as compared with the portion 14 through which the light source passes vertically. Therefore, if the area with the highest brightness is set in the bottle image area, this area becomes an area where the label and the like are avoided, and approximately coincides with the area selected by a person for identifying the color of the bottle. Since the ratio of the light wavelength components (G, R, B) of the region 14 thus determined has a strong correlation with the color separation of the glass, the color of the bottle to be inspected can be identified from the size of these light wavelength components. It will be possible. Even for porcelain and metal containers that are similar in shape to bottles on the inspection line, there is no transmitted light in the bottle image, so the brightness is extremely small, so it is possible to easily identify on the same inspection line. An example of the flow of the image processing procedure is shown in FIG.

【0011】本発明の第2実施例を図4に示す。被検査
対象びん1の口部に設けた白色発光体7から照射される
光は散乱板6を介してびん口部及びその周辺のガラスを
透過し、直接或は間接的にびん内部を照らし、びん底部
軸上に配置するCCDカメラ3により円形の画像が撮像
される。このようにして得られた画像信号を画像処理装
置4により処理することにより色分別信号が得られ、こ
の信号によりびん分別装置9を制御してびんを色別す
る。
A second embodiment of the present invention is shown in FIG. The light emitted from the white light emitting body 7 provided at the mouth of the bottle 1 to be inspected passes through the glass at the mouth of the bottle and its surroundings through the scattering plate 6, and directly or indirectly illuminates the inside of the bottle. A circular image is taken by the CCD camera 3 arranged on the axis at the bottom of the bottle. The image signal thus obtained is processed by the image processing device 4 to obtain a color classification signal, and the bottle classification device 9 is controlled by this signal to perform color classification of the bottles.

【0012】CCDカメラにより得られる図5に示すよ
うな画像から、画像処理装置で透過光の光量分布よりび
んの直径2Rが演算される。比較的透過光が均一な色判
定領域の中心からの距離rとびん半径との割合r/Rは
多くのびんでほぼ一定の値を持つため、上記Rとびん中
心座標を知ることによりこの領域の画面上の位置が求め
られる。このようにして検出ウィンドー(色を識別する
ための測定領域で、この部分の透過光を分析する。)を
びん大きさに応じて適切に定めることができる。例えば
図5で大びん12の画像に対しウィンドー16中びん画
像13に対しウィンドー17、小びん画像14に対しウ
ィンドー18、極小びん15に対しウィンドー19の如
くウィンドーを定める。かくして得られるウィンドーの
色成分(R,G,B)の大きさを測定すればこれらの値
から識別すべき色合いが算定できる。
From the image shown in FIG. 5 obtained by the CCD camera, the diameter 2R of the bottle is calculated by the image processing device from the distribution of the amount of transmitted light. Since the ratio r / R of the distance r from the center of the color judgment area where the transmitted light is relatively uniform and the bottle radius has a substantially constant value in many bottles, this area can be obtained by knowing the above R and bottle center coordinates. The position on the screen is required. In this way, the detection window (in the measurement area for identifying the color, the transmitted light of this portion is analyzed) can be appropriately determined according to the bottle size. For example, in FIG. 5, a window 16 is defined for the image of the large bottle 12, a window 17 is defined for the medium bottle image 13, a window 18 is defined for the small bottle image 14, and a window 19 is defined for the very small bottle 15. By measuring the magnitude of the color components (R, G, B) of the window thus obtained, the shade to be identified can be calculated from these values.

【0013】本発明の第3実施例を図6に示す。一般的
に、びんをとりあえず長手方向にそろえるのは比較的容
易であるが、びんの頭又は底方向をそろえることは、び
んの形状が多種多様なことから非常に困難である。そこ
で第3実施例では図6に示すように、ハーフミラー1
5、を供試びん1の頭方向と底方向の両方に配置し、そ
れを反射ミラー17、と像合成ミラー18を介してCC
Dカメラ3.1台で図7のようにびん底像22とびん頭
部像23、を得る。
A third embodiment of the present invention is shown in FIG. Generally, it is relatively easy to align the bottles in the longitudinal direction for the time being, but it is very difficult to align the head or bottom of the bottles due to the various shapes of the bottles. Therefore, in the third embodiment, as shown in FIG.
5 are arranged in both the head direction and the bottom direction of the test bottle 1, and the CCs are arranged through the reflection mirror 17 and the image synthesis mirror 18
With a D camera 3.1, a bottle bottom image 22 and a bottle head image 23 are obtained as shown in FIG.

【0014】撮像タイミングは、画像処理装置4からの
タイミング信号を出力し、ストロボ反転同期電源16、
で2つの発光体7、を順番に発光させて同期を取る。ま
た、色識別においては、びん底像22、とびん頭部像2
3に2個〜複数個の色分析ウィンドー14、を設定し、
光張度の強いものを選択することにより、びんの底又は
頭部どちらを向いていても対応できる。
As for the image pickup timing, the timing signal from the image processing device 4 is output,
The two light emitters 7 are sequentially made to emit light to synchronize. Further, in color identification, the bottle bottom image 22 and the bottle head image 2
Set 2 to multiple color analysis windows 14 in 3,
By selecting the one with strong light intensity, it is possible to deal with either the bottom or the head of the bottle.

【0015】これによってびんが上下どちらを向いてい
ても、ラベルの非常に少ないびん底の画像を画像処理装
置に取込むことが可能である。画像処理装置では、びん
の画像位置に色分析エリアを設定しており、この部分の
色成分(R,G,B)の分布は、ガラスの色分別と強い
相関があるため、R,G,B成分の比率を求めることに
より色分別が可能となる。また、フタが残っていたり、
首の部分のラベル等による遮光の影響は、色分析エリア
の光の強さを比較し、どちらがびん底にあたるのかを判
断することにより排徐できる。
This makes it possible to capture an image of the bottom of the bottle with very few labels into the image processing device, regardless of whether the bottle is facing up or down. In the image processing apparatus, the color analysis area is set at the image position of the bottle, and the distribution of the color components (R, G, B) in this portion has a strong correlation with the color classification of the glass. Color classification can be performed by obtaining the ratio of the B component. Also, the lid remains,
The effect of shading due to the label or the like on the neck can be eliminated by comparing the light intensities of the color analysis areas and determining which is the bottom of the bottle.

【0016】なお、図6に示すハーフミラー15を使う
手法は1例であり、ハーフミラー15、を回転式ミラー
で機械的に同期させる方法や、カメラを2台それぞれび
ん頭部方向とびん底方向に置き、対向する光源との同期
撮影する方法もある。
The method of using the half mirror 15 shown in FIG. 6 is only an example. A method of mechanically synchronizing the half mirror 15 with a rotary mirror, or a method in which two cameras are respectively in the bottle head direction and the bottle bottom are used. There is also a method of placing the light source in a certain direction and capturing images synchronously with the opposing light source.

【0017】[0017]

【発明の効果】本発明は上記の如く構成されているので
従来作業員が実施していた回収びんの分別作業が自動化
することができ、人間が汚染物に触れたり検査ラインの
騒音に曝される機会を大巾に減ずることができ、作業環
境改善の効果が得られる。またこれまで述べたように分
別のアルゴリズムやハードウェアも単純なものであるた
め、低コストで検査装置を提供でき、処理の高速・無人
化を可能とすることを相まって、検査効率の大巾な向上
や検査の信頼性向上など、技術的・経済的な効果が得ら
れる。
EFFECTS OF THE INVENTION Since the present invention is configured as described above, it is possible to automate the sorting operation of collecting bottles, which was conventionally performed by a worker, and the human being is exposed to contaminants and exposed to the noise of the inspection line. The chances of working can be greatly reduced, and the effect of improving the working environment can be obtained. Also, as mentioned above, the sorting algorithm and hardware are simple, so it is possible to provide an inspection device at a low cost, and it is possible to provide high-speed and unattended processing. Technical and economic effects such as improvement and reliability of inspection can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す概略図である。FIG. 1 is a schematic diagram showing a first embodiment of the present invention.

【図2】第1実施例の画像処理説明図である。FIG. 2 is an explanatory diagram of image processing according to the first embodiment.

【図3】本発明の色分析フローチャート図である。FIG. 3 is a color analysis flowchart of the present invention.

【図4】本発明の第2実施例を示す概略図である。FIG. 4 is a schematic view showing a second embodiment of the present invention.

【図5】第2実施例のびん画像と色判別領域との関連説
明図である。
FIG. 5 is an explanatory diagram of a relation between a bottle image and a color discrimination area according to the second embodiment.

【図6】本発明の第3実施例を示す概略図である。FIG. 6 is a schematic view showing a third embodiment of the present invention.

【図7】第3実施例のびんの首及びびん底方向からのび
ん画像図である。
FIG. 7 is a bottle image view from the neck and bottle bottom directions of the third embodiment.

【符号の説明】 1 被検査びん 3 CCDカメラ 4 画像処理装置 7 光源[Explanation of symbols] 1 bottle to be inspected 3 CCD camera 4 image processing device 7 light source

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被検査びんに散乱光を照射する光源と、
該光源により照射された被検査びんを撮影するCCDカ
メラと、該CCDカメラに到達するびん透過光を、びん
を透過しない光と識別して光の波長成分を測定してびん
の色を分類する機能を有する画像処理装置とからなる空
びん分別装置。
1. A light source for irradiating the bottle to be inspected with scattered light,
A CCD camera for photographing the bottle to be inspected illuminated by the light source, and the bottle-transmitted light reaching the CCD camera are distinguished from the light not transmitted through the bottle, and the wavelength component of the light is measured to classify the bottle color. An empty bottle sorting device comprising an image processing device having a function.
【請求項2】 前記光源と、前記CCDカメラとを、前
記被検査びんの胴部の上下に平行に配設して、前記びん
透過光のカメラ画像信号から最も透過光量が大きい部分
領域を選択したことを特徴とする請求項1記載の空びん
分別装置。
2. The light source and the CCD camera are arranged in parallel above and below the body of the bottle to be inspected, and a partial area having the largest transmitted light amount is selected from the camera image signal of the bottle transmitted light. The empty bottle sorting device according to claim 1, wherein
【請求項3】 前記光源を前記被検査びんの口部に平行
に配設すると共に前記CCDカメラを前記被検査びんの
底部に平行に配設して、前記カメラの画像信号からびん
の直径を測定してその直径の大きさにより色判別のため
の領域を選択したことを特徴とする請求項1記載の空び
ん分別装置。
3. The light source is arranged in parallel with the mouth of the bottle to be inspected, and the CCD camera is arranged in parallel with the bottom of the bottle to be inspected, and the diameter of the bottle is determined from the image signal of the camera. 2. The empty bottle sorting device according to claim 1, wherein a region for color discrimination is selected by measuring and measuring the diameter.
【請求項4】 前記光源を被検査びんの口部と底部とに
配設し、該光源からの透過光をミラーと反回転ストロボ
を介して同期して到達するように前記CCDカメラを配
設して前記カメラ画像信号から最も透過光量が大きい部
分領域を選択したことを特徴とする請求項1記載の空び
ん分別装置。
4. The CCD camera is arranged so that the light source is arranged at the mouth and the bottom of the bottle to be inspected, and the transmitted light from the light source arrives in synchronism with the mirror through an anti-rotation strobe. The empty bottle sorting apparatus according to claim 1, wherein a partial area having the largest amount of transmitted light is selected from the camera image signal.
JP28964491A 1991-11-06 1991-11-06 Empty-bottle separating apparatus Withdrawn JPH05126761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28964491A JPH05126761A (en) 1991-11-06 1991-11-06 Empty-bottle separating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28964491A JPH05126761A (en) 1991-11-06 1991-11-06 Empty-bottle separating apparatus

Publications (1)

Publication Number Publication Date
JPH05126761A true JPH05126761A (en) 1993-05-21

Family

ID=17745911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28964491A Withdrawn JPH05126761A (en) 1991-11-06 1991-11-06 Empty-bottle separating apparatus

Country Status (1)

Country Link
JP (1) JPH05126761A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081550A1 (en) * 2003-03-10 2004-09-23 Syscona Kontrollsysteme Gmbh Full inspection of the inner wall of transparent containers
JP2011016040A (en) * 2009-07-07 2011-01-27 Pura Techno Material:Kk Cap sorter
JP2017064579A (en) * 2015-09-28 2017-04-06 ジャパンテック株式会社 Bottle sorting system
EP3650839A1 (en) * 2018-11-09 2020-05-13 ACM-Automatisierung, Computertechnik, Meß- und Regeltechnik GmbH Laboratory gas measuring device
KR102222176B1 (en) * 2020-07-24 2021-03-03 주식회사 에이트테크 System for sorting recycle based on artificial intelligence
KR102222177B1 (en) * 2020-07-24 2021-03-03 주식회사 에이트테크 Recycling classification system using ai
CN113305034A (en) * 2020-09-14 2021-08-27 绵阳中润机电科技有限公司 Visual grading system and method for recovery bottles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081550A1 (en) * 2003-03-10 2004-09-23 Syscona Kontrollsysteme Gmbh Full inspection of the inner wall of transparent containers
JP2011016040A (en) * 2009-07-07 2011-01-27 Pura Techno Material:Kk Cap sorter
JP2017064579A (en) * 2015-09-28 2017-04-06 ジャパンテック株式会社 Bottle sorting system
EP3650839A1 (en) * 2018-11-09 2020-05-13 ACM-Automatisierung, Computertechnik, Meß- und Regeltechnik GmbH Laboratory gas measuring device
KR102222176B1 (en) * 2020-07-24 2021-03-03 주식회사 에이트테크 System for sorting recycle based on artificial intelligence
KR102222177B1 (en) * 2020-07-24 2021-03-03 주식회사 에이트테크 Recycling classification system using ai
CN113305034A (en) * 2020-09-14 2021-08-27 绵阳中润机电科技有限公司 Visual grading system and method for recovery bottles

Similar Documents

Publication Publication Date Title
US6259827B1 (en) Machine vision methods for enhancing the contrast between an object and its background using multiple on-axis images
US5095204A (en) Machine vision inspection system and method for transparent containers
US6061086A (en) Apparatus and method for automated visual inspection of objects
US20040150815A1 (en) Flaw detection in objects and surfaces
KR102310179B1 (en) Inspection method using color lighting
EP0595261A1 (en) Method of inspecting solid body for foreign matter
JP2009115613A (en) Foreign matter inspecting apparatus
US6859270B2 (en) Method and device for inspecting transparent containers
KR101972517B1 (en) Dual line optics inspection system for surface inspection of flexible device
CN110208269B (en) Method and system for distinguishing foreign matters on surface of glass from foreign matters inside glass
WO2021203683A1 (en) Testing device for grading and color-based separation of ceramic tiles
JPH05126761A (en) Empty-bottle separating apparatus
CN208350678U (en) Transparent vessel oral area crackle on-line measuring device
JP3241666B2 (en) Glass container defect inspection equipment
JP4184511B2 (en) Method and apparatus for defect inspection of metal sample surface
CN117949470A (en) Multi-station transparent material edging corner defect detection system and method
JPH07104290B2 (en) Bottle inspection equipment
JPH04294204A (en) Apparatus for extracting defect in object surface
KR20210154208A (en) Glass-ceramic detection systems and methods
JPH0658733A (en) Inspecting method of nonuniform section of glass bottle
JPH10160676A (en) Rice grain inspection device
JP2000163582A (en) Method and device for inspecting defect on metallic sample surface
JPH07113758A (en) Binary calculating method in appearance inspection device
JPH09178558A (en) Method and apparatus for determining color of object
JPH1156159A (en) Method and device for inspecting egg

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990204