JPH0512621B2 - - Google Patents

Info

Publication number
JPH0512621B2
JPH0512621B2 JP61301668A JP30166886A JPH0512621B2 JP H0512621 B2 JPH0512621 B2 JP H0512621B2 JP 61301668 A JP61301668 A JP 61301668A JP 30166886 A JP30166886 A JP 30166886A JP H0512621 B2 JPH0512621 B2 JP H0512621B2
Authority
JP
Japan
Prior art keywords
stage
air
flow rate
combustion chamber
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61301668A
Other languages
Japanese (ja)
Other versions
JPS63156925A (en
Inventor
Fumyuki Hirose
Nobuyuki Iizuka
Michio Kuroda
Isao Sato
Yoji Ishibashi
Shigeyuki Akatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP30166886A priority Critical patent/JPS63156925A/en
Publication of JPS63156925A publication Critical patent/JPS63156925A/en
Publication of JPH0512621B2 publication Critical patent/JPH0512621B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービンの2段燃焼器に係り、特
に大幅な低NOx化を達成出来、しかもCOや未燃
焼分などの発生を抑え、全運用負荷帯にわたり良
好な燃焼性能を得ることが出来る低NOx2段燃焼
器に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a two-stage combustor for a gas turbine, and is particularly capable of achieving a significant reduction in NOx, suppressing the generation of CO and unburned matter, and reducing the overall This article relates to a low NOx two-stage combustor that can obtain good combustion performance over the operational load range.

〔従来の技術〕[Conventional technology]

ガスタービンに関して、省エネルギ、高温、高
効率化が社会のニーズになつている。ガスタービ
ンでは排ガス中に含まれる窒素酸化物(NOx)
や一酸化炭素(CO)等の排出を抑える大気汚染
防止が厳しく言われ、従来形燃焼技術ではこれに
対処することは出来なくなつている。公知技術の
1例である特開昭61−52523号は、燃料を2系統
にした2段燃焼器とこれに空気制御を組合せた技
術による低NOx燃焼器によつて規制値を満すも
のである。ここに、NOxの規制値はガスタービ
ンの全運用負荷帯で適用されるものであり、広範
囲の燃焼条件で低NOx化を図ると同時に良好な
燃焼性能を維持し、かつ、信頼性の高いものでな
ければならない。一般的にガスタービンの負荷運
転は空気流量を略一定とし、燃料流量のみの増減
で負荷変化を行なわせる。例えば無負荷時や、2
段目の燃料切換時には、1段目燃料流量を減じる
ので、1段目燃料の供給量は定格時に比して約
1/4となる。従つて、燃焼状態は空気過剰とな
り、このため良好な燃焼が持続出来なくなつて、
未燃分の増大や、燃焼振動大となる等による信頼
性の低下が発生する。一方、定格時では、NOx
を低減する目的で低温度化燃焼を行わせるため、
燃焼域に過剰の空気を導入して燃料希薄状態の燃
焼を実現することが必要である。ところが前述し
た如く、低NOx化のため定格負荷時に低温度燃
焼を行わせると、低負荷時や2段目燃料切換時に
はいつそう空気過剰傾向となり、未燃焼成分の発
生要因や燃焼性能が低下する要因となる。このた
め高負荷時の低NOx化を図り、さらに低負荷時
の未燃焼分を抑制する技術として特開昭61−
52523号に示すように、2段目燃料投入時には1,
2段目へ流入する空気量を減ずる空気制御機構を
備え、低負荷時および2段目燃料切換時における
燃焼性の低下を防止している。しかしながら、低
負荷時に1,2段へ流入する空気流量を減ずるた
め流入空気孔を制御する上述の公知技術に係る方
法では2段目燃料切換時に、1段目の空気流量は
53→40%に絞り込まれ、2段目の空気流量は28→
10%に絞り込まれる…というように、全体として
の空気流量は81→50%に減じられる。このように
約30%近くの空気量が減じられ、減少された空気
は1,2段目以外の空気開口部から流入すること
になる。このようにして全体の空気開口部断面積
が約30%減じられることに相当するところから燃
焼器への流入速度が約1.3倍と増加するため燃焼
器内部への空気貫通距離のパターンが変化し燃焼
状態が変化するため、燃焼の偏りや燃焼器壁の局
部加熱等の不具合いが発生する。さらには空気開
口面積を絞つたことにより、燃焼器内外の圧力差
は1.7倍に増加する。このため燃焼器へ空気の流
入外圧力による圧縮力が掛かることにより、燃焼
器の局部加熱部への圧縮力の作用等が重畳し、燃
焼器が座屈する等の破損、焼損が発生するという
不具合があり、寿命、信頼性に欠点を有する。又
第1段目の空気量を減ずるため第1段目で発生す
るNOxが増加するという欠点も有する。
Regarding gas turbines, energy saving, high temperature, and high efficiency are becoming social needs. Nitrogen oxides (NOx) contained in exhaust gas in gas turbines
There is a strict need to prevent air pollution by reducing emissions of carbon monoxide (CO) and carbon monoxide (CO), and conventional combustion technology is no longer able to deal with this problem. Japanese Patent Application Laid-Open No. 61-52523, which is an example of a known technology, satisfies regulatory values by using a two-stage combustor with two fuel systems and a low NOx combustor that combines this with air control. be. Here, NOx regulation values are applied in the entire operating load range of gas turbines, and are aimed at reducing NOx over a wide range of combustion conditions while maintaining good combustion performance and being highly reliable. Must. Generally, when operating a gas turbine under load, the air flow rate is kept approximately constant, and the load is changed by increasing or decreasing only the fuel flow rate. For example, when there is no load,
When switching the fuel for the stage, the first stage fuel flow rate is reduced, so the supply amount of the first stage fuel becomes approximately 1/4 of that at the rated time. Therefore, the combustion state becomes excessively airy, which makes it impossible to maintain good combustion.
Reliability decreases due to an increase in unburned content, increased combustion vibration, etc. On the other hand, at rated condition, NOx
In order to perform low temperature combustion for the purpose of reducing
It is necessary to introduce excess air into the combustion zone to achieve fuel-lean combustion. However, as mentioned above, if low-temperature combustion is performed at rated load to reduce NOx, there will be a tendency for excess air to occur at low load or when switching to the second stage fuel, causing unburned components to occur and combustion performance to deteriorate. It becomes a factor. For this reason, we developed a technology to reduce NOx during high loads and further suppress the unburned gas during low loads.
As shown in No. 52523, when fuel is input into the second stage, 1,
It is equipped with an air control mechanism that reduces the amount of air flowing into the second stage to prevent a decrease in combustibility during low loads and when switching to the second stage fuel. However, in the method according to the above-mentioned known technology that controls the inflow air holes in order to reduce the air flow rate flowing into the first and second stages during low load, when the second stage fuel is switched, the air flow rate in the first stage is reduced.
53→40%, second stage air flow rate is 28→
In this way, the overall air flow rate is reduced from 81% to 50%. In this way, the amount of air is reduced by approximately 30%, and the reduced air flows in through air openings other than those in the first and second stages. In this way, since the overall air opening cross-sectional area is reduced by about 30%, the inflow velocity into the combustor increases by about 1.3 times, and the pattern of air penetration distance into the combustor changes. As the combustion state changes, problems such as uneven combustion and local heating of the combustor wall occur. Furthermore, by narrowing the air opening area, the pressure difference between the inside and outside of the combustor increases by 1.7 times. As a result, compressive force is applied to the combustor due to the external pressure of air flowing into the combustor, and the compressive force acts on the locally heated parts of the combustor, causing damage such as buckling of the combustor, and burnout. However, it has shortcomings in longevity and reliability. Another drawback is that since the amount of air in the first stage is reduced, NOx generated in the first stage increases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記公知の従来技術においては、1,2段目へ
流入する空気量を減少させ、低負荷および2段目
への燃料供給時に発生するCOやHC等の未燃焼成
分を抑える効果が有るが、空気を制御したために
燃焼器内外に生ずる圧力差が大きくなることに関
する配慮が為されておらず、圧力差が大となるこ
とに起因する燃焼器信頼性(寿命)の低下やガス
タービンの効率低下といつた問題があつた。
The above-mentioned known conventional technology has the effect of reducing the amount of air flowing into the first and second stages and suppressing unburned components such as CO and HC generated at low loads and during fuel supply to the second stage. No consideration was given to the increased pressure difference between the inside and outside of the combustor due to air control, resulting in decreased combustor reliability (life) and reduced gas turbine efficiency due to the increased pressure difference. I had a problem.

本発明は上述の問題を解決するために為された
ものであつて、1段目燃焼室や燃焼状態に影響を
与えることなく2段目燃焼室の燃焼状態を制御し
て、燃焼器構成部材に過大な差圧を与える虞れ無
く、NOxやCOの発生量を抑制し得る2段燃焼器
の構造を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and it is possible to control the combustion state of the second stage combustion chamber without affecting the first stage combustion chamber or the combustion state, and to The purpose of the present invention is to provide a structure of a two-stage combustor that can suppress the amount of NOx and CO generated without the risk of giving an excessive differential pressure to the combustor.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために創作した本発明に
係るガスタービン用の2段形燃焼器の構造は、(a)
燃焼器の上流側に、1段目燃料ノズルと空気供給
路とを供えた1段目燃焼室を設け、(b)上記1段目
燃焼室の下流側に、2段目燃料ノズル、及び該2
段目燃料ノズルの噴霧した燃料と予混合させる為
の2段目燃焼用空気の流路を設け、(c)上記2段目
燃焼用空気の供給量を調節する手段を設けた構造
の2段燃焼形のガスタービン燃焼器に適用され、
上記1段目燃焼室の燃焼用空気と2段目燃焼室の
燃焼用空気の合計である1,2段目用空気21の
中の一定流量を1段目燃焼室の燃焼用空気24と
して1段目燃焼室へ導く流路を設け、上記1,2
段目用空気21の流量から上記1段目用空気24
の流量を差し引いた一定流量の内の任意流量を2
段目燃焼室の燃焼用空気として予混合部17に供
給するための空気流量調節手段を設け、 上記空気流量調節手段で流量を制限された残余
の空気を、予混合部をバイパスさせて2段目燃焼
室に導くバイパス流路20を、予混合部17の外
周側に設けて、1段目用空気の流量を一定に保ち
つつ、2段目燃焼室の予混合部に供給する空気流
量を任意に調節し得るように構成したものであ
る。
The structure of the two-stage combustor for gas turbine according to the present invention created to achieve the above object is as follows: (a)
A first-stage combustion chamber provided with a first-stage fuel nozzle and an air supply path is provided on the upstream side of the combustor, and (b) a second-stage fuel nozzle and a second-stage combustion chamber are provided on the downstream side of the first-stage combustion chamber. 2
A two-stage structure including a second-stage combustion air flow path for premixing with the fuel sprayed by the second-stage fuel nozzle, and (c) a means for adjusting the supply amount of the second-stage combustion air. Applied to combustion type gas turbine combustor,
The constant flow rate of the first and second stage air 21, which is the sum of the combustion air in the first stage combustion chamber and the combustion air in the second stage combustion chamber, is defined as the combustion air 24 in the first stage combustion chamber. A flow path leading to the stage combustion chamber is provided, and the above 1 and 2 are
The first stage air 24 is calculated from the flow rate of the stage air 21.
The arbitrary flow rate within the constant flow rate after subtracting the flow rate of is 2
An air flow rate adjusting means is provided to supply the premixing section 17 as combustion air for the combustion chamber of the second stage, and the remaining air whose flow rate has been restricted by the air flow rate adjusting means is passed through the second stage by bypassing the premixing section. A bypass flow path 20 leading to the second combustion chamber is provided on the outer circumferential side of the premixing section 17, so that the flow rate of air supplied to the premixing section of the second stage combustion chamber can be adjusted while keeping the flow rate of the first stage air constant. It is configured so that it can be adjusted as desired.

〔作用〕[Effect]

上述の構成によれば、2段目燃焼用空気(2段
目燃料ノズル用の1次空気)を絞つた場合、残余
の空気はバイパス流路を通して2段目燃焼室内に
(2次空気として)供給することが出来るので、
2段目燃焼用空気を絞つても燃焼器ライナに掛か
る差圧を軽減し得る。従つて、差圧による燃焼器
信頼性低下の虞れなく、1段目燃焼用空気流量、
2段目燃焼用空気流量を制御して、有毒排気成分
の減少と効率上昇とを目的とする燃焼制御を行う
ことが出来る。
According to the above configuration, when the second-stage combustion air (primary air for the second-stage fuel nozzle) is throttled, the remaining air passes through the bypass flow path into the second-stage combustion chamber (as secondary air). Because we can supply
Even if the second stage combustion air is throttled, the differential pressure applied to the combustor liner can be reduced. Therefore, the first stage combustion air flow rate,
By controlling the second stage combustion air flow rate, combustion control can be performed with the aim of reducing toxic exhaust components and increasing efficiency.

〔実施例〕〔Example〕

次に、本発明の1実施例の構成を第1図及び第
2図について説明する。
Next, the configuration of one embodiment of the present invention will be explained with reference to FIGS. 1 and 2.

第1図は本実施例の断面図、第2図はその要部
拡大断面図である。
FIG. 1 is a sectional view of this embodiment, and FIG. 2 is an enlarged sectional view of the main part thereof.

ガスタービンは圧縮機1、タービン2、燃焼器
3などによつて構成され、圧縮機1で圧縮された
空気1aはケーシング4内を通つて燃焼器に導か
れる。燃焼器3は外筒5a,5b、ライナ6a,
6bおよび内筒7と、これに1,2段目燃料8,
9を供給する燃料ノズル10,11が装備されて
いる。第1段目燃焼室12はライナ6aと円筒7
との環状空間部によつて形成されている。
The gas turbine includes a compressor 1, a turbine 2, a combustor 3, etc., and air 1a compressed by the compressor 1 is guided to the combustor through a casing 4. The combustor 3 includes outer cylinders 5a, 5b, a liner 6a,
6b and the inner cylinder 7, and the first and second stage fuels 8,
It is equipped with fuel nozzles 10, 11 that supply 9. The first stage combustion chamber 12 has a liner 6a and a cylinder 7.
It is formed by an annular space with.

第2段目燃焼室13は第1段目燃焼室12より
も直径が大きいライナ6b内部である。1段目燃
焼室12には複数個、複数列の空気口が開口し、
さらに壁面冷却用の空気孔(いずれも図示せず)
が開口している。又、内筒7にも壁面冷却用空気
孔が多数開口する。第1段目燃焼室12と第2段
目燃焼室13との接続部には2段目燃料9を供給
する燃料ノズル11が空気通路内に取付られ、2
段目空気中に燃料を噴出する。(この部分の詳細
な構成は第2図について後述する。)このように
空気通路部16が第2段目空気と2段目燃料との
予混合部となり予混合した燃料ガス17が第2段
目燃焼室13へ導かれ、第1段目燃焼室12で形
成された火炎を着火源として第2次予混合燃焼火
炎を形成する。第1段目燃料への着火は、図示し
ていないが、スパーク方式の点火栓によつて行
い、火炎検知器によつて着火を確認するようにな
つている。ガスタービンの着火から順次に負荷上
昇したとき、約20%負荷時までは第1段目燃焼の
みで運転し、さらに高負荷側になると第2段目の
燃料を供給し、第1、2段燃焼を行なわせるもの
である。第2段目の燃焼は前述の如く、2段目燃
料9と空気との予混合燃焼であるため可燃焼範囲
内で定められる燃料と空気との混合割合いが存在
し、燃料割合いが小さいと不安定燃焼やCOなど
を発生する下限界がある。逆に燃料割合いが濃い
とNOxが発生する上限界がある。このため常に
最適な混合割合いになるように、燃料に比例して
空気量を加減することが必要である。これを実現
するため第2段目空気入口部22を覆うスライド
リング18を内装し、これを軸方向に動かすこと
によつて上記の空気入口部22の実効面積を変化
させ、第2段目空気量の増減を図る。この増減は
第2段目燃料供給量とある一定比率になるように
調節できる構成(図示せず)になつている。そし
て第2段目の空気通路の外周側に第2段目燃焼室
13に開口するバイパス空気通路20を配置す
る。
The second stage combustion chamber 13 is inside the liner 6b, which has a larger diameter than the first stage combustion chamber 12. A plurality of air ports and a plurality of rows of air ports are opened in the first stage combustion chamber 12.
Additionally, air holes for wall cooling (none of these are shown)
is open. The inner cylinder 7 also has a large number of wall cooling air holes. A fuel nozzle 11 for supplying the second stage fuel 9 is installed in the air passage at the connection part between the first stage combustion chamber 12 and the second stage combustion chamber 13.
The stage injects fuel into the air. (The detailed structure of this part will be described later with reference to FIG. 2.) In this way, the air passage section 16 becomes a premixing section for the second stage air and the second stage fuel, and the premixed fuel gas 17 is transferred to the second stage. The second premixed combustion flame is guided to the second combustion chamber 13 and uses the flame formed in the first stage combustion chamber 12 as an ignition source to form a second premixed combustion flame. Although not shown, the first stage fuel is ignited by a spark type ignition plug, and the ignition is confirmed by a flame detector. When the load increases sequentially from the ignition of the gas turbine, the first stage combustion is operated only until about 20% load, and when the load becomes even higher, fuel is supplied to the second stage, and the first and second stage It causes combustion to occur. As mentioned above, the second stage combustion is a premixed combustion of the second stage fuel 9 and air, so there is a mixing ratio of fuel and air that is determined within the combustible range, and the fuel ratio is small. There is a lower limit at which combustion becomes unstable and CO is generated. Conversely, if the fuel ratio is high, there is an upper limit to the amount of NOx generated. Therefore, it is necessary to adjust the amount of air in proportion to the fuel so that the optimum mixing ratio is always maintained. In order to achieve this, a slide ring 18 that covers the second stage air inlet section 22 is installed, and by moving this in the axial direction, the effective area of the air inlet section 22 is changed, and the second stage air Try to increase or decrease the amount. This increase/decrease can be adjusted to a certain constant ratio with the second stage fuel supply amount (not shown). A bypass air passage 20 that opens into the second stage combustion chamber 13 is arranged on the outer peripheral side of the second stage air passage.

前記のスライドリング18は、2段目燃焼用空
気通路16の空気流量を制御するとともに、バイ
パス空気通路20の空気流量を制御する。これに
より、2段目燃焼用空気流量とバイパス空気流量
とは連繋して制御される。
The slide ring 18 controls the air flow rate in the second stage combustion air passage 16 and also controls the air flow rate in the bypass air passage 20. Thereby, the second stage combustion air flow rate and the bypass air flow rate are controlled in conjunction.

第2図に第2段目空気通路16およびバイパス
部20の詳細を示す。1,2段目への空気21は
スライドリング18、2段目空気入口部22を通
過する空気23と、第1段目燃焼室12(第1図
参照)へ供給する空気24とに分かれる。第2段
目の空気23は2段目空気通路16を通る間に第
2段目燃料ノズル11の先端に開口した複数個の
燃料噴出口25から燃料を噴霧される。そして燃
料と空気との予混合部17を通過し、第2段燃焼
室へと導かれる。第2段目燃焼投入時(少流量
時)では空気流量23も少量に抑えることが必要
であるためスライドリング18は図中内側へ移動
し、入口面積を小とすることによつて空気流量を
抑える。上記スライドリング18の左方への移動
に伴つて、バイパス20の空気流入口の実効面積
が増大する。この為第2段目空気通路入口22の
実効面積を減少して空気流量を小とした分に見合
うだけの空気26を、バイパス通路20から第2
段燃焼室13へ導くようになつている。
FIG. 2 shows details of the second stage air passage 16 and the bypass section 20. Air 21 to the first and second stages is divided into air 23 that passes through the slide ring 18 and second stage air inlet 22, and air 24 that is supplied to the first stage combustion chamber 12 (see FIG. 1). While the second stage air 23 passes through the second stage air passage 16, fuel is sprayed from a plurality of fuel jet ports 25 opened at the tip of the second stage fuel nozzle 11. The fuel then passes through the fuel and air premixing section 17 and is guided to the second stage combustion chamber. When the second stage combustion is started (low flow rate), it is necessary to suppress the air flow rate 23 to a small amount, so the slide ring 18 moves inward in the figure and reduces the air flow rate by reducing the inlet area. suppress. As the slide ring 18 moves to the left, the effective area of the air inlet of the bypass 20 increases. Therefore, the effective area of the second-stage air passage inlet 22 is reduced to reduce the air flow rate, and the air 26 is transferred from the bypass passage 20 to the second stage.
It is designed to lead to a stage combustion chamber 13.

上述のようにしてバイパス20の空気流量を変
化させても、第1図に示した空気孔31の開口面
積は変化せず、2段目燃焼室13の出口部の燃焼
状態が変化しない。
Even if the air flow rate of the bypass 20 is changed as described above, the opening area of the air hole 31 shown in FIG. 1 does not change, and the combustion state at the outlet of the second stage combustion chamber 13 does not change.

第3図は、前記スライドリング18のストロー
クと、1段目空気量A1・2段目空気量A2との関
係を示す図表である。
FIG. 3 is a chart showing the relationship between the stroke of the slide ring 18 and the first stage air amount A1 and second stage air amount A2 .

2段目空気量A2は、従来例も本実施例も同じ
カーブA2を描く。
The second stage air amount A2 draws the same curve A2 in both the conventional example and this embodiment.

従来例の1段目空気量A1′は鎖線の如くであり、
本例の1段目空気量A1破線の如くになる。第2
段目燃料切換時はA2量を抑えると共に第2段目
燃料(F2と略す)を抑えて、空気過剰率(λ2
略す)(ここで空気過剰率λ2は、燃焼時の空気流
量と理論燃焼空気量との比である)を1.3〜1.7に
抑えた空気制御を行うため、本例においてはスラ
イドリングを閉方向に移動させてA2量の減少を
図り、負荷上昇と共にA2、F2の上昇を行う。
The first stage air amount A 1 ' in the conventional example is as shown by the chain line,
The first stage air amount A1 in this example is as shown by the broken line. Second
When switching stage fuel, the amount of A 2 is suppressed, the second stage fuel (abbreviated as F 2 ) is suppressed, and the excess air ratio (abbreviated as λ 2 ) (here, excess air ratio λ 2 is the amount of air during combustion In order to perform air control that keeps the ratio between the flow rate and the theoretical combustion air amount to 1.3 to 1.7, in this example, the slide ring is moved in the closing direction to reduce the A2 amount, and as the load increases, the A2 amount increases. 2 , perform an F 2 rise.

第4図に示すように、従来例ではA1′,A2以外
の冷却、希釈空気A3′は約30%程度多くなる。し
かし、本実施例ではA2量の変化に拘らず常に一
定な第1段目燃焼を行うことが出来ると共にA1
量の減少が無いためライナ5aおよび内筒7の冷
却用空気の減少がない。このためメタル温度が高
くなるという欠点を補うことが出来る。さらに
A3量が常に一定であり、スライドリング開閉に
よる影響はバイパス空気量の変化で吸収出来るた
め常に安定な燃焼を持続することが出来る。
As shown in FIG. 4, in the conventional example, the amount of cooling and dilution air A 3 ' other than A 1 ' and A 2 increases by about 30%. However, in this example, it is possible to always perform constant first stage combustion regardless of changes in the amount of A2 , and the amount of A1
Since there is no decrease in the amount of cooling air for the liner 5a and the inner cylinder 7, there is no decrease in the amount of cooling air. Therefore, it is possible to compensate for the drawback that the metal temperature becomes high. moreover
Since the amount of A3 is always constant and the effects of opening and closing the slide ring can be absorbed by changes in the amount of bypass air, stable combustion can be maintained at all times.

第5図に第1段目燃焼と第2段目燃焼の負荷変
動による変化の様子を示す。第1段目、第2段目
燃焼共にF2量の上限はNOx制限によつて規制さ
れ、下限はCO制限によつて規制される。本実施
例の第1段目および第2段目燃焼はNOx限界CO
限界共に満足している。従来例においては第1段
目燃焼に見られるようにA1量が少くなるために
25%負荷近傍でNOxが限界値を越えるような傾
向を示す。本実施例ではこのようにNOxが発生
する傾向はなく全負荷帯にわたり安定かつNOx,
COの発生を抑えた燃焼を持続することが出来る。
第6図に示すように全負荷帯でNOx制限値を満
足することが出来ると共にCOの発生を抑えるこ
とが出来る。
FIG. 5 shows how the first-stage combustion and second-stage combustion change due to load fluctuations. The upper limit of the amount of F2 in both the first and second stage combustion is regulated by the NOx limit, and the lower limit is regulated by the CO limit. The first and second stage combustion in this example is NOx limit CO
I am satisfied with both limits. In the conventional example, the amount of A1 decreases as seen in the first stage combustion.
NOx tends to exceed the limit value near 25% load. In this example, there is no tendency for NOx to be generated in this way, and the NOx and
It is possible to sustain combustion while suppressing the generation of CO.
As shown in Figure 6, it is possible to satisfy the NOx limit value in the entire load range and to suppress the generation of CO.

第7図に他の効果として圧力損失に及ぼすA2
量変化の影響を示す。25%負荷近傍における従来
例ではA1A2量を減少する操作を行うため圧力損
失は空気開口面積が約30%低減することに起因し
て、圧力損失は急激に上昇するが本実施例では
A2空気量の減少分はバイパス空気量を増加する
ことで対処するため、A2量の変化に拘らず圧力
損失増加は無い。このことは燃焼器の外側に掛る
圧縮力の上昇が無いことも意味しており、燃焼時
に燃焼器のメタル温度が500〜700℃に加熱されて
材料強度が低下することを勘案すると、その実用
的効果は非常に大きい。一方、圧力損失の増加は
特に圧縮機の出力増やタービン出力低下に直接結
びつくのであり、タービン効率に関連するもので
あるため、この圧力損失が低いほど効率が向上す
る。この点からみて圧力損失の上昇を抑える効果
を有する本実施例によればタービン効率の低下が
なく、かつ、圧縮機やタービンに与えるダメージ
も少く抑えることが出来るという利点を持つ。
Figure 7 shows other effects of A 2 on pressure loss.
Showing the effect of a change in quantity. In the conventional example near 25% load, the pressure loss increases rapidly due to the air opening area being reduced by approximately 30% due to the operation of reducing the amount of A 1 A 2 , but in this example, the pressure loss increases rapidly.
Since the decrease in the amount of A2 air is dealt with by increasing the amount of bypass air, there is no increase in pressure loss regardless of the change in the amount of A2 . This also means that there is no increase in the compression force applied to the outside of the combustor, and considering that the metal temperature of the combustor is heated to 500 to 700°C during combustion and the material strength decreases, it is difficult to put it into practical use. The effect is very large. On the other hand, an increase in pressure loss is directly linked to an increase in compressor output and a decrease in turbine output, and is related to turbine efficiency, so the lower the pressure loss, the higher the efficiency. From this point of view, this embodiment, which has the effect of suppressing an increase in pressure loss, has the advantage that there is no decrease in turbine efficiency and damage to the compressor and turbine can be suppressed to a small extent.

第8図にバイパス空気の流出が第2段目燃焼に
及ぼす影響を抑えるように改良した実施例を示
す。
FIG. 8 shows an improved embodiment in which the influence of the outflow of bypass air on the second stage combustion is suppressed.

バイパス空気通路20からの空気26は第2段
目の燃焼火炎に近接するところから噴出するため
第2段目火炎28を冷却するという問題がある。
これを防ぐためには、バイパス空気が噴出する位
置を第2段目後側に移せば良い。これによりさら
に第2段目火炎の燃焼性能を向上する効果を発揮
する。このため、本実施例は第2段目燃焼室13
に突出した筒状の仕切板29を設けたものであ
る。本例においては、第2段目燃焼室13のライ
ナ5b内壁面に沿うようにバイパス空気が流れる
ため第2段目燃焼室メタル温度を低減する効果を
生じると共に、第2段目火炎に接する仕切板はバ
イパス空気26による熱伝達により充分冷却され
る。この仕切板29にさらにセラミツクスコーテ
イングなどを施すことにより、より信頼性の高い
ものになる。
Since the air 26 from the bypass air passage 20 is ejected from a location close to the second stage combustion flame, there is a problem in that it cools the second stage flame 28.
In order to prevent this, the position where the bypass air is blown out may be moved to the rear side of the second stage. This exhibits the effect of further improving the combustion performance of the second stage flame. Therefore, in this embodiment, the second stage combustion chamber 13
A cylindrical partition plate 29 is provided that protrudes from the top. In this example, since the bypass air flows along the inner wall surface of the liner 5b of the second stage combustion chamber 13, it has the effect of reducing the second stage combustion chamber metal temperature, and the partition in contact with the second stage flame The plates are sufficiently cooled by heat transfer by the bypass air 26. By further applying ceramic coating or the like to this partition plate 29, it becomes more reliable.

〔発明の効果〕〔Effect of the invention〕

本発明によれば第2段目空気を減少させてもこ
の影響を他に及ぼさないように空気流量変化分に
見合う流量をバイパス通路に導き得るため、第1
段目燃焼の変化への影響をなくすことが出来ると
いう効果があると共にガスタービンの全負荷帯に
わたりNOx,COの発生を抑えることが出来る。
さらに、急激な流量変化が無いため圧縮機やター
ビン等に及ぼす悪影響もなく良好なガスタービン
の運転が出来る。特に2段目燃焼用空気流量を調
節しても1段目燃焼用空気流量を一定に保ち得る
ので、圧力差の増大に因る構成部材の破損を防止
し得る。
According to the present invention, even if the second stage air is reduced, a flow rate commensurate with the change in air flow rate can be guided to the bypass passage so as not to have this effect on others.
This has the effect of eliminating the effect on stage combustion changes, and can also suppress the generation of NOx and CO over the entire load range of the gas turbine.
Furthermore, since there is no sudden change in flow rate, the gas turbine can be operated smoothly without any adverse effects on the compressor, turbine, etc. In particular, even if the second-stage combustion air flow rate is adjusted, the first-stage combustion air flow rate can be kept constant, so damage to structural members due to an increase in pressure difference can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示す断面図であ
る。第2図は上記実施例の部分詳細図である。第
3図はスライドリング開閉によるA1A2変化を示
す図表、第4図は同じくA3量の変化を示す図表
である。第5図は前記実施例における燃焼状態の
変化を説明するための図表、第6図は同じく排ガ
ス成分を示す図表、第7図は圧力損失の説明図表
である。第8図は前記と異なる実施例の断面図で
ある。 12…第1段目燃焼室、13…第2段目燃焼
室、16…第2段目空気通路、20…バイパス空
気通路、17…スライドリング、23…第2段目
空気、24…第1段目空気。
FIG. 1 is a sectional view showing one embodiment of the present invention. FIG. 2 is a partial detailed view of the above embodiment. FIG. 3 is a chart showing changes in A 1 A 2 due to opening and closing of the slide ring, and FIG. 4 is a chart showing changes in the amount of A 3 as well. FIG. 5 is a chart for explaining changes in combustion conditions in the embodiment, FIG. 6 is a chart for explaining exhaust gas components, and FIG. 7 is a chart for explaining pressure loss. FIG. 8 is a sectional view of an embodiment different from the above. 12...First stage combustion chamber, 13...Second stage combustion chamber, 16...Second stage air passage, 20...Bypass air passage, 17...Slide ring, 23...Second stage air, 24...First stage Stage air.

Claims (1)

【特許請求の範囲】 1 (a)燃焼器の上流側に、1段目燃料ノズルと空
気供給路とを供えた1段目燃焼室を設け、(b)上記
1段目燃焼室の下流側に、2段目燃料ノズル、及
び該2段目燃料ノズルの噴霧した燃料と予混合さ
せる為の2段目燃焼用空気の流路を設け、(c)上記
2段目燃焼用空気の供給量を調節する手段を設け
た構造の2段燃焼形ガスタービン燃焼器におい
て、 上記1段目燃焼室の燃焼用空気と2段目燃焼室
の燃焼用空気の合計である1,2段目用空気21
の中の一定流量を1段目燃焼室の燃焼用空気24
として1段目燃焼室へ導く流路を設け、上記1,
2段目用空気21の流量から上記1段目用空気2
4の流量を差し引いた一定流量の内の任意流量を
2段目燃焼室の燃焼用空気として予混合部17に
供給するための空気流量調節手段を設け、 上記空気流量調節手段で流量を制限された残余
の空気を、予混合部をバイパスさせて2段目燃焼
室に導くバイパス流路20を、予混合部17の外
周側に設けて、1段目用空気の流量を一定に保ち
つつ、2段目燃焼室の予混合部に供給する空気流
量を任意に調節し得るように構成したことを特徴
とする2段燃焼器構造。 2 前記のバイパス流路は、バイパス空気流量の
調節手段を設けたものとして、かつ、該バイパス
空気流量調節手段と、前記2段目燃焼用空気供給
量調節手段とを相互に連動せしめたことを特徴と
する特許請求の範囲第1項に記載の2段燃焼器構
造。 3 前記2段燃焼用空気供給量調節手段は、2段
目燃焼用空気の流量を、全体空気流量の10〜35%
の範囲内で変化せしめるものであり、かつ、前記
バイパス空気流量調節手段は、バイパス空気流量
を全体空気流量の0〜25%の範囲内で変化せしめ
るものであることを特徴とする特許請求の範囲第
2項に記載の2段燃焼器構造。 4 前記のバイパス空気流路は、前記2段目燃料
ノズルの噴霧燃料によつて形成される予混合燃焼
火炎形成区域との間に仕切壁を設けたものである
ことを特徴とする特許請求の範囲第1項又は同第
2項に記載の2段燃焼器構造。
[Claims] 1. (a) A first-stage combustion chamber provided with a first-stage fuel nozzle and an air supply path is provided on the upstream side of the combustor, and (b) a first-stage combustion chamber is provided on the downstream side of the first-stage combustion chamber. a second-stage fuel nozzle and a flow path for second-stage combustion air to be premixed with the fuel sprayed by the second-stage fuel nozzle; (c) supply amount of the second-stage combustion air; In a two-stage combustion type gas turbine combustor having a structure in which a means for adjusting 21
A constant flow rate of the combustion air 24 in the first stage combustion chamber is
A flow path leading to the first stage combustion chamber is provided, and the above 1.
From the flow rate of the second stage air 21, the first stage air 2 is calculated from the flow rate of the second stage air 21.
An air flow rate adjusting means is provided for supplying an arbitrary flow rate out of the constant flow rate obtained by subtracting the flow rate of 4 to the premixing section 17 as combustion air for the second stage combustion chamber, and the air flow rate is restricted by the air flow rate adjusting means. A bypass passage 20 is provided on the outer circumferential side of the premixing section 17 to guide the remaining air to the second stage combustion chamber by bypassing the premixing section, thereby keeping the flow rate of the first stage air constant. A two-stage combustor structure characterized in that the air flow rate supplied to a premixing section of a second-stage combustion chamber can be arbitrarily adjusted. 2. The bypass flow path is provided with a bypass air flow rate adjustment means, and the bypass air flow rate adjustment means and the second stage combustion air supply amount adjustment means are interlocked with each other. A two-stage combustor structure according to claim 1. 3. The second-stage combustion air supply amount adjusting means adjusts the flow rate of the second-stage combustion air to 10 to 35% of the total air flow rate.
, and the bypass air flow rate adjusting means changes the bypass air flow rate within a range of 0 to 25% of the total air flow rate. The two-stage combustor structure according to paragraph 2. 4. The bypass air flow path is characterized in that a partition wall is provided between the bypass air flow path and a premix combustion flame formation area formed by the atomized fuel of the second stage fuel nozzle. A two-stage combustor structure according to Scope 1 or 2.
JP30166886A 1986-12-19 1986-12-19 Structure of two-staged firing burner Granted JPS63156925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30166886A JPS63156925A (en) 1986-12-19 1986-12-19 Structure of two-staged firing burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30166886A JPS63156925A (en) 1986-12-19 1986-12-19 Structure of two-staged firing burner

Publications (2)

Publication Number Publication Date
JPS63156925A JPS63156925A (en) 1988-06-30
JPH0512621B2 true JPH0512621B2 (en) 1993-02-18

Family

ID=17899689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30166886A Granted JPS63156925A (en) 1986-12-19 1986-12-19 Structure of two-staged firing burner

Country Status (1)

Country Link
JP (1) JPS63156925A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2865684B2 (en) * 1989-01-06 1999-03-08 株式会社日立製作所 Gas turbine combustor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240833A (en) * 1984-05-15 1985-11-29 Hitachi Ltd Combustion method and combustor for gas turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240833A (en) * 1984-05-15 1985-11-29 Hitachi Ltd Combustion method and combustor for gas turbine

Also Published As

Publication number Publication date
JPS63156925A (en) 1988-06-30

Similar Documents

Publication Publication Date Title
US5054280A (en) Gas turbine combustor and method of running the same
JP2644745B2 (en) Gas turbine combustor
EP0222173B1 (en) Combustor for gas turbine
US8769955B2 (en) Self-regulating fuel staging port for turbine combustor
JP3335713B2 (en) Gas turbine combustor
US4671069A (en) Combustor for gas turbine
US5343693A (en) Combustor and method of operating the same
JPH05149149A (en) Gas turbine combustor
JPS63247536A (en) Gas turbine combustor
US3952501A (en) Gas turbine control
JPH02183720A (en) Gas turbine combustor
JPH0411729B2 (en)
JP2767403B2 (en) Low NOx burner for gas turbine
JPH0512621B2 (en)
JPH0115775B2 (en)
JPH0583814B2 (en)
JPH0343534B2 (en)
JPH04124520A (en) Gas turbine combustor
JPH0443726Y2 (en)
JPH04131619A (en) Gas turbine combustion device
JPH08303780A (en) Gas turbine combustor
JPS6091141A (en) Low nox gas turbine burner
JPS629124A (en) Gas turbine combustor
JPH07260149A (en) Combustion apparatus for gas turbine
JP2527170B2 (en) Operation method of gas turbine two-stage combustor