JPH0115775B2 - - Google Patents

Info

Publication number
JPH0115775B2
JPH0115775B2 JP7500281A JP7500281A JPH0115775B2 JP H0115775 B2 JPH0115775 B2 JP H0115775B2 JP 7500281 A JP7500281 A JP 7500281A JP 7500281 A JP7500281 A JP 7500281A JP H0115775 B2 JPH0115775 B2 JP H0115775B2
Authority
JP
Japan
Prior art keywords
air
fuel
primary
combustion chamber
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7500281A
Other languages
Japanese (ja)
Other versions
JPS57192728A (en
Inventor
Satoshi Tsukahara
Narihisa Sugita
Yoji Ishibashi
Isao Sato
Hidekazu Fujimura
Yoshimitsu Minagawa
Takashi Oomori
Zensuke Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7500281A priority Critical patent/JPS57192728A/en
Publication of JPS57192728A publication Critical patent/JPS57192728A/en
Publication of JPH0115775B2 publication Critical patent/JPH0115775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/26Controlling the air flow

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン燃焼器の燃焼方法及び装
置に係り、特に予混合低NOx燃焼を行なうため
の方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a combustion method and apparatus for a gas turbine combustor, and more particularly to a method and apparatus for performing premixed low NOx combustion.

〔従来の技術〕[Conventional technology]

燃料と空気を予混合して燃焼する場合のNOx
濃度は第1図に示される特性を有しており、空気
過剰率λが1.1近傍の時に最高濃度となり、λが
1.1以上になるとλが大きいほどNOx濃度は低く
なる。ガスタービン燃焼器の低NOx化にこの特
性が生かされており、その一例が第2図に示され
る。ガスタービンは無負荷から定格負荷まで空気
過剰率が約4倍変化する。これに対してNOxが
低く、安定燃焼が可能な範囲は空気過剰率で2倍
以下である。したがつて燃料噴口を燃焼器軸方向
に2段とし、各段での空気過剰率をNOxが低く、
かつ、安定燃焼が可能な範囲に規定している。ま
た、NOx低減をより確実に実現するために燃焼
用空気を別置の圧縮機で昇圧し、所定量の空気が
燃焼器頭部から供給されるよう構成されている。
すなわち、第2図に示される従来のこの種装置に
おいて、予燃焼室1において希薄燃焼するための
空気は主圧縮機デイフユーザ6からの空気を抽気
路7で分流され、圧縮機18で昇圧され、制御弁
19で流量制御されて燃料ノズル3に導かれる。
燃料ノズル3内では一次燃料管8からの一次燃料
と混合され、安定燃焼可能な希薄混合気として予
燃焼室1に供給される。二次燃料管9、二次燃料
ヘツダ12からの二次燃料は圧縮機デイフユーザ
6から直接流れてくる二次空気と二次スワーラ1
1内において混合され、希薄混合気として主燃焼
室2に供給され、予燃焼室1の火炎により着火さ
れて燃焼する。この結果、予燃焼室1、主燃焼室
2においてともに希薄燃焼が行なわれるため、低
NOx化が実現可能となる。
NOx when premixing fuel and air for combustion
The concentration has the characteristics shown in Figure 1, and the highest concentration occurs when the excess air ratio λ is around 1.1.
When it is 1.1 or more, the larger λ is, the lower the NOx concentration becomes. This characteristic is utilized to reduce NOx in gas turbine combustors, and an example is shown in Figure 2. In a gas turbine, the excess air ratio changes approximately four times from no load to rated load. On the other hand, the range in which NOx is low and stable combustion is possible is less than twice the excess air ratio. Therefore, the fuel nozzle is arranged in two stages in the axial direction of the combustor, and the excess air ratio at each stage is set so that NOx is low and NOx is low.
Moreover, it is specified within a range that allows stable combustion. Additionally, in order to more reliably reduce NOx, the combustion air is pressurized using a separate compressor, and a predetermined amount of air is supplied from the combustor head.
That is, in the conventional device of this type shown in FIG. 2, the air for lean combustion in the precombustion chamber 1 is diverted from the main compressor diffuser 6 through the bleed passage 7, and is pressurized by the compressor 18. The flow rate is controlled by the control valve 19 and guided to the fuel nozzle 3.
In the fuel nozzle 3, it is mixed with the primary fuel from the primary fuel pipe 8, and is supplied to the pre-combustion chamber 1 as a lean mixture capable of stable combustion. The secondary fuel from the secondary fuel pipe 9 and the secondary fuel header 12 is combined with the secondary air flowing directly from the compressor diffuser 6 and the secondary swirler 1.
1, and is supplied as a lean mixture to the main combustion chamber 2, where it is ignited by the flame in the pre-combustion chamber 1 and combusted. As a result, lean combustion occurs in both the pre-combustion chamber 1 and the main combustion chamber 2, resulting in low
NOx conversion becomes possible.

〔発明が実現しようとする問題点〕[Problems that the invention attempts to realize]

しかし、圧縮機デイフユーザ6から吐出される
空気量はタービンの負荷にかかわらずほぼ一定で
あるため負荷変動時を考えるとこの形式の装置で
は問題がある。即ち二次スワーラ11からの二次
空気が常時ほぼ一定量流入しているために二次燃
料が噴射され始めた状態ではこの混合気が過剰に
薄くなり、可燃範囲外となつて、大部分が未燃成
分として排出されることとなる。この対策として
予燃焼室1内に供給される一次燃料と一次空気量
を増し、二次スワーラ11からの二次空気が流入
した状態においても主燃焼室2の入口近傍の混合
気を可燃範囲内に保つよう構成することも考えら
れるが、この場合には、一次燃料で受け持つター
ビン負荷が大きくなり、タービン負荷変動時に一
次燃料から、一次、二次燃料への切換点が存在す
ることになり、負荷変動を円滑に行えない問題が
生ずる。更に予燃焼室用の空気を圧縮機で加圧す
る場合には圧縮機の所要動力が増す結果となる。
このため全体の熱効率が大巾に低下するという欠
点は避けられない。
However, since the amount of air discharged from the compressor differential user 6 is approximately constant regardless of the load on the turbine, this type of device poses a problem when the load fluctuates. In other words, since the secondary air from the secondary swirler 11 always flows in a constant amount, when the secondary fuel starts to be injected, the air-fuel mixture becomes excessively thin and falls outside the flammable range, and most of the mixture becomes It will be discharged as unburned components. As a countermeasure to this, the amount of primary fuel and primary air supplied into the pre-combustion chamber 1 is increased, and even when the secondary air from the secondary swirler 11 flows in, the air-fuel mixture near the entrance of the main combustion chamber 2 is kept within the flammable range. It is also conceivable to configure the system so that the primary fuel is maintained at a constant temperature, but in this case, the turbine load handled by the primary fuel will increase, and there will be a switching point from the primary fuel to the primary and secondary fuels when the turbine load fluctuates. A problem arises in which load fluctuations cannot be performed smoothly. Furthermore, when the air for the pre-combustion chamber is pressurized by a compressor, the required power of the compressor increases.
Therefore, the drawback that the overall thermal efficiency is greatly reduced is unavoidable.

本発明の目的は一次燃料から、一次、二次燃料
への切換えをガスタービンの常用負荷帯より低い
負荷で行え、しかも熱効率の低下をきたすことな
く効率よく低NOx化が実現できるガスタービン
燃焼器における予混合燃焼を用いた燃焼方法とそ
の装置を提供することにある。
The object of the present invention is to provide a gas turbine combustor that can switch from primary fuel to primary and secondary fuels at a load lower than the normal load range of the gas turbine, and that can efficiently achieve low NOx without reducing thermal efficiency. An object of the present invention is to provide a combustion method using premixed combustion and an apparatus therefor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の上記目的はガスタービン燃焼装置の一
次燃料量を、タービンの常用負荷の最小負荷より
も低い負荷に相当する燃料量とし、予燃焼室へ導
入される空気を上記一次燃料との比で空気過剰率
1.2〜1.6の範囲になるように一定量とし、、残り
の空気のうち、二次燃料に混合される二次空気量
を空気過剰率が一次燃料の空気過剰率より大きく
全体の空気過剰率が4を越えないようにタービン
負荷に応じて制御することにより達成される。
The above-mentioned object of the present invention is to set the primary fuel amount of the gas turbine combustion device to a fuel amount corresponding to a load lower than the minimum normal load of the turbine, and to adjust the air introduced into the pre-combustion chamber to a ratio of the primary fuel to the above-mentioned primary fuel. excess air rate
The amount of secondary air to be mixed with the secondary fuel is set as a constant amount within the range of 1.2 to 1.6, and the excess air ratio is larger than the excess air ratio of the primary fuel, and the overall excess air ratio is This is achieved by controlling according to the turbine load so as not to exceed 4.

〔作用〕[Effect]

本発明の構成によれば、一次燃料の空気過剰率
は、タービン負荷にかかわらず、ほぼ一定であり
その値も1.2〜1.6の範囲にあるため、NOxの発生
も少なく、しかも安定燃焼する範囲内にある。更
に、一次燃料量は、タービンの常用負荷帯よりも
低い負荷に相当する燃料量に設定されているため
常用負荷帯では、常に一次、二次燃料がともに供
給されており、燃料の切換えによる負荷の急変は
生じない。更に、二次燃焼のλは、一次の空気過
剰率より大きく全体の過剰率が4を越えない値に
選定されているので、未燃分が増大する恐れもな
い。
According to the configuration of the present invention, the excess air ratio of the primary fuel is almost constant regardless of the turbine load, and its value is in the range of 1.2 to 1.6, so the generation of NOx is small, and moreover, it is within the range for stable combustion. It is in. Furthermore, the amount of primary fuel is set to a fuel amount that corresponds to a load lower than the normal load zone of the turbine, so in the normal load zone, both primary and secondary fuel are always supplied, and the load due to fuel switching is reduced. No sudden changes occur. Furthermore, since λ of the secondary combustion is selected to be larger than the primary excess air ratio and the overall excess ratio does not exceed 4, there is no fear that unburned matter will increase.

〔実施例〕〔Example〕

以下、第3図に従つて、本発明の一実施例を説
明する。予燃焼室用空気は従来装置と同様、空気
の一部は抽気路7から分流され圧縮機18により
昇圧されて燃料ノズル3に導かれるが、一次空気
の流量を制御するための流量制御機構は備えられ
ておらず、燃焼ノズル3の出口の一次スワーラ面
積のみによつて流量が一定量に定まる構造であ
る。一次燃料管8からの一次燃料もまた一定量に
調整され燃料ノズル3内で一次空気と混合され、
予混合気として予燃焼室1に流入する。したがつ
て、一次の予混合気の空気過剰率は後述の如く一
定値に保たれる。二次空気は内筒4と外筒16と
の間の空気通路に設けられた通路面積可変の制御
装置14によつて負荷に応じた量に流量制御をさ
れ、二次燃料管9からの二次燃料と二次スワーラ
11の近傍で予混合されるか又は二次スワーラ出
口で拡散混合されつつ主燃焼室2に導かれる。こ
の混合気も低NOx化のために一次混合気よりも
更に燃料希薄である。二次空気は主燃焼室2の空
燃比を一定に保つために例えば、ガイドベーンの
如き制御装置14によりタービン負荷に応じて制
御され、燃料流量、または燃料噴射差圧を検出す
る装置20からの信号に応答して空気流量が制御
される。主燃料室2の冷却空気、希釈空気は制御
装置14の上流側から分岐して冷却空気孔および
希釈空気孔15から流入する。尚、13は隔壁で
あり、制御装置14を通つた空気のみが二次スワ
ーラ11に導かれる。17は圧縮機18を駆動す
るモータである。
An embodiment of the present invention will be described below with reference to FIG. Similar to the conventional device, a part of the air for the pre-combustion chamber is diverted from the air bleed passage 7, boosted in pressure by the compressor 18, and guided to the fuel nozzle 3, but the flow rate control mechanism for controlling the flow rate of the primary air is The structure is such that the flow rate is determined to be a constant amount only by the primary swirler area at the outlet of the combustion nozzle 3. The primary fuel from the primary fuel pipe 8 is also adjusted to a certain amount and mixed with the primary air in the fuel nozzle 3,
It flows into the precombustion chamber 1 as a premixture. Therefore, the excess air ratio of the primary premixture is maintained at a constant value as described below. The flow rate of the secondary air is controlled according to the load by a control device 14 with a variable passage area provided in the air passage between the inner cylinder 4 and the outer cylinder 16, and the secondary air is supplied from the secondary fuel pipe 9. The fuel is premixed with the secondary fuel near the secondary swirler 11 or diffused and mixed at the outlet of the secondary swirler before being introduced into the main combustion chamber 2. This mixture is also leaner in fuel than the primary mixture in order to reduce NOx. The secondary air is controlled according to the turbine load by a control device 14 such as a guide vane in order to keep the air-fuel ratio in the main combustion chamber 2 constant, and is controlled by a device 20 that detects the fuel flow rate or fuel injection differential pressure. Air flow is controlled in response to the signal. Cooling air and dilution air in the main fuel chamber 2 are branched from the upstream side of the control device 14 and flow in through cooling air holes and dilution air holes 15 . Note that 13 is a partition wall, and only the air that has passed through the control device 14 is guided to the secondary swirler 11. 17 is a motor that drives the compressor 18.

以上の構成からなるガスタービン燃焼器におい
て、低NOx化を実現し、かつ従来燃焼器と構造
的に大差なくして安定燃焼が可能な燃料配分と空
気過剰率は以下に説明される。
In the gas turbine combustor configured as described above, the fuel distribution and excess air ratio that enable low NOx reduction and stable combustion without much structural difference from conventional combustors will be explained below.

まず予熱焼室1で燃焼する一次燃料割合はター
ビンの常用負荷帯以下で一次から一次二次への切
換を行うため、及びこの一次燃料の燃焼に要する
空気を昇圧するための動力を低減するために少な
いほど良いが、二次空気を制御することによつて
全作動範囲で高い燃焼効率が確保できる範囲であ
る必要がある。定格負荷近傍の燃焼効率に近い値
が確保できる範囲は第4図に示すように一次・二
次を合計した全体の空気過剰率が4以下であり、
この空気過剰率を確保するために二次空気を制御
すべき範囲は第5図に示す結果となる。したがつ
て一次燃料割合は7%以上、50%以下に設定する
ことが望ましい。
First, the proportion of primary fuel burned in the preheating combustion chamber 1 is set in order to switch from primary to primary and secondary below the turbine's normal load range, and to reduce the power required to pressurize the air required for combustion of this primary fuel. The smaller the amount, the better, but it is necessary to ensure high combustion efficiency over the entire operating range by controlling the secondary air. As shown in Figure 4, the range in which a value close to the combustion efficiency near the rated load can be secured is when the overall excess air ratio, which is the sum of the primary and secondary, is 4 or less.
The range in which the secondary air should be controlled in order to ensure this excess air ratio is shown in FIG. Therefore, it is desirable to set the primary fuel ratio to 7% or more and 50% or less.

第5図の意味するところは、一次燃料の比率を
高める程、二次空気の制御範囲を小さくしても、
可燃範囲λ<4に保ち得ることを示している。
What Figure 5 means is that the higher the primary fuel ratio, the smaller the secondary air control range.
This shows that the flammable range λ<4 can be maintained.

ところで、本発明においては、一次燃料量及び
空気量はタービン負荷にかかわらず一定値に保た
れるから、タービンの常用運転における負荷変動
範囲よりも低い負荷に相当する燃焼量に設定して
おかなければならない。
By the way, in the present invention, the primary fuel amount and air amount are kept constant regardless of the turbine load, so the combustion amount must be set to a value that corresponds to a load lower than the load fluctuation range during normal operation of the turbine. Must be.

タービンの常用負荷が例えば定格負荷の50%か
ら100%の範囲で用いられるタービンにあつては、
一次燃料割合は最大50%に設定し得る。常用負荷
帯が更に低い負荷に設定された場合は、一次燃料
割合はそれに応じて低い値に設定すべきである。
For turbines whose regular load is, for example, in the range of 50% to 100% of the rated load,
The primary fuel proportion can be set up to 50%. If the service load band is set to a lower load, the primary fuel proportion should be set to a correspondingly lower value.

次に空気過剰率は第1図に示されるNOx特性
と第6図に示される予燃焼室吹き消え特性から定
められる。NOx特性から空気過剰率を1.6以上に
してもNOx低減効果のないこと、吹き消え特性
からλ=1.6ではλ=1.2の吹き消え流速の約30%
に低下しており、これは燃焼器直径が約2倍にな
ることから上限と空気過剰率λ=1.6とするのが
望ましい。下限は希薄燃焼による低NOx効果が
50%となるλ=1.2とするのが望ましい。
Next, the excess air ratio is determined from the NOx characteristics shown in FIG. 1 and the precombustion chamber blowout characteristics shown in FIG. From the NOx characteristics, there is no NOx reduction effect even if the excess air ratio is set to 1.6 or more, and from the blow-off characteristics, when λ = 1.6, the blow-off flow rate is approximately 30% of the blow-off flow rate when λ = 1.2.
Since the combustor diameter is approximately doubled, it is desirable to set the upper limit and excess air ratio λ to 1.6. The lower limit is the low NOx effect due to lean combustion.
It is desirable to set λ = 1.2, which is 50%.

以上の説明より明らかな如く、一次燃料は、タ
ービンの常用負荷帯よりも低い負荷に相当する燃
料量であつて、しかも一次燃料比率が7%〜50%
の範囲に入る量に選定され、一次燃料に対し空気
量は、過剰率λが1.2から1.6の範囲に入るように
設定される。一例として全体の空気過剰率を2.9、
一次空気過剰率を1.3とした場合、一次燃料割合
を変えたときの一次空気割合の関係が第7図に示
される。
As is clear from the above explanation, the amount of primary fuel corresponds to a load lower than the normal load range of the turbine, and the primary fuel ratio is 7% to 50%.
The amount of air relative to the primary fuel is set so that the excess ratio λ falls within the range of 1.2 to 1.6. As an example, the overall excess air ratio is 2.9,
When the primary air excess ratio is set to 1.3, the relationship between the primary air ratio and the primary fuel ratio is shown in FIG. 7.

第7図から明らかなように、λ=1.3としたと
きには、一次燃料割合が7%〜50%の範囲では、
一次空気割合は3%〜22%の範囲にある。
As is clear from Fig. 7, when λ = 1.3, when the primary fuel ratio is in the range of 7% to 50%,
The primary air proportion ranges from 3% to 22%.

次に、二次燃料は、零%から一次燃料割合の残
部の%まで変化する。一次燃料割合が30%のとき
には、2次燃料は、0〜70%まで変化し、そのと
きの燃料の流量を燃料流量検出装置20で検出
し、検出信号に応じて、制御装置14を通過する
空気量が変るので、二次燃料と空気の混合割合
は、燃料量が変つてもほぼ一定に保たれる。そし
て、その空気過剰率は低NOxのため1.2以上で4
以下となつている。
The secondary fuel then varies from zero percent to the remaining percent of the primary fuel proportion. When the primary fuel ratio is 30%, the secondary fuel changes from 0 to 70%, the fuel flow rate at that time is detected by the fuel flow rate detection device 20, and the flow rate passes through the control device 14 according to the detection signal. Since the amount of air changes, the mixing ratio of secondary fuel and air remains approximately constant even if the amount of fuel changes. And the excess air ratio is 1.2 or more due to low NOx.
It is as below.

したがつて、いかなる状態にあつても、二次混
合気は可燃範囲内にあり、未燃成分の排出は少な
く、かつ、NOxの濃度も低くなつている。
Therefore, under any conditions, the secondary air-fuel mixture is within the flammable range, the emissions of unburned components are small, and the concentration of NOx is also low.

一次空気の昇圧に要する動力を少なくして低
NOx化をはかることが望ましく、その極限とし
て昇圧用圧縮機18を設けることなく内筒4の内
外圧力差のみで一次空気を予燃焼室に供給するよ
うにすることも可能である。この場合には全圧の
圧力バランスから予燃焼室内外圧力差が少なく、
一次空気を多量に供給することが困難であり、従
来よりも一次空気量を少なくすることによつて実
現可能となる。本発明では、一次燃料割合が7%
まで少なくすることができ、そのときの一次空気
割合は最小3%まで少なくすることができるので
圧縮機を省略することが可能となる。この場合で
も二次空気を含めた全体の空気過剰率が4以下に
なるように二次空気を制御する。この結果、負荷
によつて空気孔面積が変化し、燃焼器圧力損失が
増大するために熱効率が若干低下するが別置の圧
縮機は不要となる利点がある。
Reduces the power required to boost the pressure of primary air.
It is desirable to reduce the amount of air to NOx, and as a limit, it is also possible to supply primary air to the pre-combustion chamber using only the pressure difference between the inside and outside of the inner cylinder 4 without providing the boosting compressor 18. In this case, the pressure difference between the pre-combustion chamber and the outside is small due to the pressure balance of the total pressure.
It is difficult to supply a large amount of primary air, and this can be achieved by reducing the amount of primary air compared to the conventional method. In the present invention, the primary fuel proportion is 7%
Since the primary air ratio at that time can be reduced to a minimum of 3%, it is possible to omit the compressor. Even in this case, the secondary air is controlled so that the overall excess air ratio including the secondary air is 4 or less. As a result, the air hole area changes depending on the load, and the combustor pressure loss increases, resulting in a slight decrease in thermal efficiency, but there is an advantage that a separate compressor is not required.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、一次燃料か
ら、一次、二次燃料への切換えをガスタービンの
常用負荷帯より低い負荷で行え、しかも、未燃成
分の排出を少なくできるので、ガスタービンの熱
効率を低下させることなく、NOxの低減が可能
となるという効果が得られる。
As described above, according to the present invention, it is possible to switch from primary fuel to primary and secondary fuels at a load lower than the normal load range of the gas turbine, and moreover, it is possible to reduce the emission of unburned components. The effect is that NOx can be reduced without reducing the thermal efficiency of the system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は予混合火炎のNOx特性を示す図、第
2図は従来の予混合燃焼器の構造を示す図、第3
図は本発明の予混合燃焼器の一実施例の構造を示
す図、第4図は燃焼効率が低下しない範囲を示す
データ線図、第5図は二次空気の制御割合を示す
線図、第6図は予燃焼室の吹き消え特性を示す線
図、第7図は全体空気過剰率2.9の燃焼器におい
て予燃焼室空気過剰率を1.3とした場合の一次空
気量割合を示す線図である。 1……予燃焼室、2……主燃焼室、3……燃料
ノズル、4……内筒、14……流量制御装置、1
6……外筒、18……圧縮機、20……燃料流量
検出装置。
Figure 1 is a diagram showing the NOx characteristics of a premixed flame, Figure 2 is a diagram showing the structure of a conventional premixed combustor, and Figure 3 is a diagram showing the NOx characteristics of a premixed flame.
Figure 4 is a diagram showing the structure of an embodiment of the premix combustor of the present invention, Figure 4 is a data diagram showing the range in which combustion efficiency does not decrease, Figure 5 is a diagram showing the control ratio of secondary air, Figure 6 is a diagram showing the blow-out characteristics of the precombustion chamber, and Figure 7 is a diagram showing the primary air amount ratio when the precombustion chamber excess air ratio is 1.3 in a combustor with an overall excess air ratio of 2.9. be. DESCRIPTION OF SYMBOLS 1... Pre-combustion chamber, 2... Main combustion chamber, 3... Fuel nozzle, 4... Inner cylinder, 14... Flow rate control device, 1
6...Outer cylinder, 18...Compressor, 20...Fuel flow rate detection device.

Claims (1)

【特許請求の範囲】 1 頭部に予燃焼室を後部に主燃焼室を備え、一
次燃料と一次空気を予混合して予燃焼室に供給し
て燃焼させ、二次燃料と二次空気から生成された
混合気を主燃焼室内において予燃焼室内の火炎に
より着火燃焼させるガスタービン予混合燃焼方法
において、 前記一次燃料量は、ガスタービンの常用負荷帯
よりも小さい負荷に相当する値に一定に保たれ、
生成される予混合気の空気過剰率が1.2〜1.6の範
囲内のほぼ一定値に設定され、前記二次燃料及び
二次空気により生成される混合気の空気過剰率
は、前記予混合気の空気過剰率よりも大きく、全
体の空気過剰率が4を越えない値になるように、
前記二次空気量をガスタービン負荷に応じて制御
することを特徴とするガスタービン予混合燃焼方
法。 2 一方の端部は一次空気と一次燃料の予混合気
を噴射する燃料ノズルと接続され他方の端部は開
放された予燃焼室とこの予燃焼室と接続されその
接続部近傍に二次空気と二次燃料を供給する構造
を有する主燃焼室とを構成する内筒と、この内筒
を包んで内筒の外周面との間に空気通路を形成す
る外筒と、上記空気通路を通過する空気の一定量
を昇圧して上記燃料ノズルへ供給する昇圧装置
と、一次燃料をタービン負荷にかかわらず一定量
を供給する一次燃料管と、上記空気通路に設けら
れ上記二次空気量を負荷に応じて流量制御する流
量制御装置とを備えたことを特徴とするガスター
ビン予混合燃焼装置。
[Claims] 1. A pre-combustion chamber is provided in the head and a main combustion chamber is provided in the rear, primary fuel and primary air are premixed and supplied to the pre-combustion chamber for combustion, and secondary fuel and air are mixed. In a gas turbine premix combustion method in which a generated air-fuel mixture is ignited and combusted in a main combustion chamber by a flame in a pre-combustion chamber, the amount of primary fuel is kept constant at a value corresponding to a load smaller than a normal load band of the gas turbine. kept,
The excess air ratio of the premixture to be generated is set to a substantially constant value within the range of 1.2 to 1.6, and the excess air ratio of the mixture generated by the secondary fuel and secondary air is equal to the excess air ratio of the premixture. so that the overall excess air ratio is greater than the excess air ratio and does not exceed 4.
A gas turbine premix combustion method, characterized in that the amount of secondary air is controlled according to a gas turbine load. 2 One end is connected to a fuel nozzle that injects a premixture of primary air and primary fuel, and the other end is connected to an open pre-combustion chamber and the secondary air is connected to the pre-combustion chamber near the connection. an inner cylinder that forms an air passageway between the inner cylinder and the outer peripheral surface of the inner cylinder, and an outer cylinder that surrounds the inner cylinder and forms an air passage between the inner cylinder and the outer peripheral surface of the inner cylinder; a booster device that boosts the pressure of a certain amount of air and supplies it to the fuel nozzle; a primary fuel pipe that supplies a constant amount of primary fuel regardless of the turbine load; A gas turbine premix combustion device comprising: a flow rate control device that controls the flow rate according to the flow rate.
JP7500281A 1981-05-20 1981-05-20 Fremixing combustion method of gas turbine and device thereof Granted JPS57192728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7500281A JPS57192728A (en) 1981-05-20 1981-05-20 Fremixing combustion method of gas turbine and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7500281A JPS57192728A (en) 1981-05-20 1981-05-20 Fremixing combustion method of gas turbine and device thereof

Publications (2)

Publication Number Publication Date
JPS57192728A JPS57192728A (en) 1982-11-26
JPH0115775B2 true JPH0115775B2 (en) 1989-03-20

Family

ID=13563556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7500281A Granted JPS57192728A (en) 1981-05-20 1981-05-20 Fremixing combustion method of gas turbine and device thereof

Country Status (1)

Country Link
JP (1) JPS57192728A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091141A (en) * 1983-10-26 1985-05-22 Hitachi Ltd Low nox gas turbine burner
JPS6149136A (en) * 1984-08-16 1986-03-11 Mitsubishi Heavy Ind Ltd Operation control method of gas turbine
JPS61138836A (en) * 1984-12-10 1986-06-26 Toshiba Corp Gas turbine controller
JPH0663646B2 (en) * 1985-10-11 1994-08-22 株式会社日立製作所 Combustor for gas turbine
JP2590216B2 (en) * 1987-10-12 1997-03-12 株式会社日立製作所 Low NOx combustion method and low NOx combustor
JP2544515B2 (en) * 1990-09-19 1996-10-16 株式会社日立製作所 Gas combustor
US6253538B1 (en) 1999-09-27 2001-07-03 Pratt & Whitney Canada Corp. Variable premix-lean burn combustor
JP5693514B2 (en) * 2012-04-06 2015-04-01 三菱重工業株式会社 Gas turbine combustor

Also Published As

Publication number Publication date
JPS57192728A (en) 1982-11-26

Similar Documents

Publication Publication Date Title
JP2644745B2 (en) Gas turbine combustor
JP3335713B2 (en) Gas turbine combustor
JP2758301B2 (en) Gas turbine combustor
US6532743B1 (en) Ultra low NOx emissions combustion system for gas turbine engines
US5201181A (en) Combustor and method of operating same
US6993912B2 (en) Ultra low Nox emissions combustion system for gas turbine engines
CN110878947A (en) Gas turbine combustor
JPH0115775B2 (en)
JPH0544537B2 (en)
JPH09222228A (en) Gas turbine combustion device
WO1998025084A1 (en) DIFFUSION AND PREMIX PILOT BURNER FOR LOW NOx COMBUSTOR
JP2006144759A (en) Premixing combustor for gas turbine and its fuel supply control method
JPH1089689A (en) Gas turbine combustor
JPH04124520A (en) Gas turbine combustor
JP2000097435A (en) Gas turbine combustor
JP3179871B2 (en) Gas turbine combustor and method of operating the same
JP3472424B2 (en) Gas turbine and method of operating gas turbine
JPH0443726Y2 (en)
JPH0139016B2 (en)
JPH06213456A (en) Combustion device for gas turbine and its fuel control device
JPH07248117A (en) Combustion method for gas turbine premixing combustor
JP2783638B2 (en) Gas turbine combustion equipment
JP2527170B2 (en) Operation method of gas turbine two-stage combustor
JPH08303780A (en) Gas turbine combustor
JPH08128636A (en) Gas combustion apparatus