JPH04131619A - Gas turbine combustion device - Google Patents

Gas turbine combustion device

Info

Publication number
JPH04131619A
JPH04131619A JP24873190A JP24873190A JPH04131619A JP H04131619 A JPH04131619 A JP H04131619A JP 24873190 A JP24873190 A JP 24873190A JP 24873190 A JP24873190 A JP 24873190A JP H04131619 A JPH04131619 A JP H04131619A
Authority
JP
Japan
Prior art keywords
flow rate
fuel
air
control valve
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24873190A
Other languages
Japanese (ja)
Inventor
Satoshi Tsukahara
聰 塚原
Noriyuki Hayashi
則行 林
Shigeyoshi Kobayashi
成嘉 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24873190A priority Critical patent/JPH04131619A/en
Publication of JPH04131619A publication Critical patent/JPH04131619A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a thermal efficiency under a partial load and reduce a concentration in discharging NO2 by a method wherein a flow rate control valve is installed at an inlet of an inner cylinder flow passage of air for making pre-mixture gas with fuel, a downstream side of the inner cylinder is provided with a bypass valve and then the opening of each of the flow rate control valve and the bypass valve is controlled in response to a flow rate of fuel. CONSTITUTION:A fuel flow rate F1 at a fuel nozzle 107 is measured by a flow meter 132, a fuel flow rate F2 at a fuel nozzle 101 is measured by a flow meter 134. These flow rates are corrected in references to a temperature of surrounding air and an amount of suction air of a compressor 121 so as to get corrected fuel flow rates F1* and F2*, respectively. Then, F1*+F2* is compared with a constant value K and when a relation of F1*+F2*<K is attained, as rotational angle of each of motors 152 and 162 is controlled in such a way that a flow rate control valve 104 is fully opened and a bypassing valve 105 is fully closed. In turn, when a relation of F1*+ F2*>K is attained, a fuel flow rate correction value F2* is compared with a constant value A and in turn a relation of F2*<A is attained, a rotational angle of each of motors 152 and 162 is controlled in such a way that a flow rate control valve 104 is partially opened and the bypassing valve 105 is partially closed. When a relation of F2*>A is attained, a rotational angle of each of motors 152 and 162 is controlled in such a way that opening of the flow rate control valve 104 is proportional to F2*/F2max* and the opening of the bypass valve 105 is proportional to (F2max*-F2max*)/F2max*.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はガスタービン燃焼器に係り、特にガスタービン
部分負荷での熱効率を向上しNo工排出濃度を低減する
に好適な空気流量配分制御構造ならびに予混合気形成促
進空気供給構造を有するガスタービン燃焼器に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gas turbine combustor, and particularly to an air flow distribution control structure suitable for improving thermal efficiency and reducing No. The present invention also relates to a gas turbine combustor having a premixture formation promoting air supply structure.

[従来の技術] 従来の内筒に供給する空気流量を制御する構造を有する
ガスタービン燃焼器の一例は特開昭63−217141
号公報に示されている。第7図はその従来のガスタービ
ン燃焼器の一例を示す概略断面図である。第7図におい
て、燃料ノズル101からの燃料130と、圧縮機から
の空気206が外筒103と内筒102間の内筒外部空
間221を通って空気孔202から入る空気とが予混合
室205内で混合し、予混合気を形成して燃焼室220
内で燃焼する。一方の燃料ノズル107からの燃料13
1も空気孔219から入る空気および予混合室206か
らの空気と混合しながら燃焼し、燃焼ガス207が尾1
5124からタービンへ導入される。空気孔202には
燃料流量変化に対応して空気流量を制御するための流量
制御弁1゜4を設けている。したがって燃料流量の少な
い部分負荷時には可燃予混合気形成に必要な空気量も減
少するので、流量制御弁104を絞って空気孔202の
通路面積を減少して予混合室205へ流入する空気流量
を減少する。この構造では内筒空気孔全面積が低負荷時
に最小となって定格負荷時に最大となる。一方の空気流
量は圧縮機入口案内翼開度制御を考慮してもその変化が
少ない。したがって低負荷になるほど内筒102への空
気流入速度は大きくなる。
[Prior Art] An example of a conventional gas turbine combustor having a structure for controlling the flow rate of air supplied to an inner cylinder is disclosed in Japanese Patent Application Laid-Open No. 63-217141.
This is shown in the publication No. FIG. 7 is a schematic sectional view showing an example of the conventional gas turbine combustor. In FIG. 7, fuel 130 from the fuel nozzle 101 and air 206 from the compressor enter through the inner cylinder external space 221 between the outer cylinder 103 and the inner cylinder 102 and enter from the air hole 202 into the premixing chamber 205. The mixture is mixed in the combustion chamber 220 to form a premixture.
burn inside. Fuel 13 from one fuel nozzle 107
1 is also burned while mixing with the air entering from the air hole 219 and the air from the premixing chamber 206, and the combustion gas 207 is
5124 into the turbine. The air hole 202 is provided with a flow control valve 1°4 for controlling the air flow rate in response to changes in the fuel flow rate. Therefore, at partial loads with low fuel flow, the amount of air required to form a combustible premixture decreases, so the flow rate control valve 104 is throttled to reduce the passage area of the air hole 202 to reduce the air flow flowing into the premixing chamber 205. Decrease. With this structure, the total area of the air holes in the inner cylinder is minimum at low loads and maximum at rated loads. On the other hand, the air flow rate does not change much even if the compressor inlet guide vane opening control is taken into consideration. Therefore, the lower the load, the faster the air flows into the inner cylinder 102.

従来の内筒に供給する空気流量を制御する構造を有する
ガスタービン燃焼器の他の例は特開昭62−23342
5号公報に示されている。第8図はその従来のガスター
ビン燃焼器の他の例を示す概略断面図である。第8図に
おいて、各図面を通じて同一符号は相当部分を示すもの
とし、燃料供給量の少ない部分負荷時にはバイパス弁1
05を開にして空気孔201から尾!1j124内へ空
気を流し、内筒102へ供給する空気流量を減少する。
Another example of a conventional gas turbine combustor having a structure for controlling the air flow rate supplied to the inner cylinder is disclosed in Japanese Patent Application Laid-Open No. 62-23342.
This is shown in Publication No. 5. FIG. 8 is a schematic sectional view showing another example of the conventional gas turbine combustor. In Fig. 8, the same reference numerals indicate corresponding parts throughout the drawings, and when a partial load with a small fuel supply amount occurs, the bypass valve 1
Open 05 and tail from air hole 201! 1j124 to reduce the air flow rate supplied to the inner cylinder 102.

この結果で予混合室205へ流入する空気流量が相対的
に減少し、燃料ノズル101からの燃料130と混合し
て可燃混合気を形成する。この構造では低負荷になるほ
どバイパス弁105開度が大きくなるので、内$102
および尾@124を含めた全空気孔面積が大きくなり、
内筒102への空気流入速度が小さくなる。
As a result, the flow rate of air flowing into the premixing chamber 205 is relatively reduced, and the air is mixed with the fuel 130 from the fuel nozzle 101 to form a combustible air-fuel mixture. With this structure, the opening degree of the bypass valve 105 increases as the load decreases, so the total cost is $102.
And the total air hole area including the tail @124 becomes larger,
The speed of air flowing into the inner cylinder 102 becomes smaller.

[発明が解決しようとする課題] 上記従来技術はガスタービンの部分負荷時の燃焼器圧力
損失が大きく変化する点についての配慮がされておらず
、全体熱効率の大幅低下ならびに予混合気濃度不均一に
よるNoよ排出値増加の問題があった。
[Problems to be Solved by the Invention] The above-mentioned conventional technology does not take into consideration the fact that the combustor pressure loss changes greatly during partial load of the gas turbine, resulting in a significant decrease in overall thermal efficiency and uneven premixture concentration. There was a problem that the emission value increased due to the No.

本発明は燃焼器圧力損失をガスタービン全負荷帯でほぼ
一定として部分負荷での熱効率を向上し、No工排出濃
度を低減するガスタービン燃焼器を提供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a gas turbine combustor in which the pressure loss of the combustor is kept almost constant throughout the entire load range of the gas turbine, the thermal efficiency is improved at partial load, and the concentration of NOx emissions is reduced.

[課題を解決するための手段] 上記目的を達成するために1本発明のガスタービン燃焼
器は燃料との予混合気形成用空気の流量制御弁を設け、
かつ燃焼生成ガスと混合する空気の流量制御弁(バイパ
ス弁)を設けたものである。
[Means for Solving the Problems] In order to achieve the above object, the gas turbine combustor of the present invention is provided with a flow rate control valve for air for forming a premixture with fuel,
Additionally, a flow rate control valve (bypass valve) for air mixed with the combustion generated gas is provided.

またバイパス弁は燃焼器と他の低圧空間との間に設ける
ようにしたものである。
Further, the bypass valve is provided between the combustor and other low pressure space.

さらに予混合室へ流入する空気の偏流を防止するだめに
、予混合気形成用空気の流量制御弁と予混合室空気入口
との間に整流室を設けたものである。
Furthermore, in order to prevent the air flowing into the premixing chamber from drifting, a rectifying chamber is provided between the flow rate control valve for the air for forming the premixture gas and the air inlet of the premixing chamber.

また予混合室へ流入する空気速度を大きくするために、
流量制御弁を介する流路とは別に、燃料ノズル周囲に流
量制御しない空気流路を設けるようにしたものである。
Also, in order to increase the speed of air flowing into the premixing chamber,
In addition to the flow path through the flow control valve, an air flow path whose flow rate is not controlled is provided around the fuel nozzle.

[作用] 上記ガスタービン燃焼器は予混合気形成用空気の流量制
御弁が供給燃料流量に対して所定比率範囲の空気を供給
するように動作し、バイパス弁が予混合に不必要な空気
を燃焼ガス流路へ流すように動作し、それによって内筒
および尾筒を含めた空気流入口面積の変化がガスタービ
ンの全動作範囲で小さくなり、燃焼器圧力損失の変化が
小さくなる。 またバイパス弁を燃焼器と他の低圧空間
との間に設けることにより、予混合に不必要な空気を燃
焼器外部へ放出すると、予混合気形成用空気の流量制御
弁によって内筒流入口面積が減少した分に相当する内筒
流人空気流量が減少し、燃焼器圧力損失の変化が小さく
なる。
[Function] In the gas turbine combustor, the premixture forming air flow rate control valve operates to supply air in a predetermined ratio range to the supplied fuel flow rate, and the bypass valve operates to remove unnecessary air for premixing. The combustion gas flows into the flow path, thereby reducing changes in the air inlet area including the inner cylinder and transition piece over the entire operating range of the gas turbine, and reducing changes in combustor pressure loss. In addition, by providing a bypass valve between the combustor and other low-pressure spaces, air unnecessary for premixing can be released to the outside of the combustor. The internal cylinder air flow rate corresponding to the decrease in combustor pressure drop decreases, and the change in combustor pressure loss becomes smaller.

さらに予混合気形成用空気の流量制御弁と予混合室空気
入口との間に設けた整流室が予混合室へ流入する空気の
偏流を防ぎ、それによって予混合気の燃料濃度分布を一
様化する。
Furthermore, a rectifying chamber installed between the premixing air flow rate control valve and the premixing chamber air inlet prevents uneven flow of air flowing into the premixing chamber, thereby making the fuel concentration distribution of the premixing uniform. become

また燃料ノズル周囲に設けた流量制御しない空気通路に
は常時に高速の空気が流れ、それによって燃料と空気の
混合が促進されて、予混合気の燃料濃度分布を一様化す
る。
In addition, high-speed air always flows through the air passage provided around the fuel nozzle and whose flow rate is not controlled, thereby promoting the mixing of fuel and air and making the fuel concentration distribution of the premixture uniform.

[実施例〕 以下本発明の実施例を第1図から第6図により説明する
[Example] Examples of the present invention will be described below with reference to FIGS. 1 to 6.

第1図は本発明によるガスタービン燃焼器の一実施例を
示す断面図である。第1図において、入口に吸込流量制
御が可能な案内翼123を有する圧縮機121で圧縮さ
れた空気206は外筒103と内筒102によって形成
される通路を空気206の矢印方向に流れる。内筒10
2には図示しない冷却空気孔のほかに燃焼空気用の空気
孔202、バイパス空気用の空気孔201、パイロット
バーナー用の空気孔219を設ける。空気孔202には
流量制御弁104を設け、空気孔201にはバイパス弁
105を設ける。流量制御弁104は回転軸150、リ
ンク151からなるリンク機構を介してリンク回転用モ
ータ152により開閉制御され、バイパス弁105は回
転軸160、リンク161から成るリンク機構を介して
リンク回転用モータ162により開閉制御される。空気
孔202から流入した空気は整流室204で減速した後
に、空気孔217,218から筒状の予混合室205へ
流入し、燃料ノズル101から供給された燃料130と
混合して予混合気を形成した後に燃焼室220で燃焼す
る。ここでは液体燃料130の例であり、内筒外部空間
22,1と予混合室205とを直接連通する通路を形成
するための空気孔209を設け、この空気を燃料ノズル
101の中心通路211および燃料環状通路213の外
周に設けた環状通路210から予混合室205内へ流し
て、液体燃料130の微粒化および予混合化を促進する
。一方の内筒端部の中心に設けた燃料ノズル107から
も燃料131を供給し、空気孔219からの空気と混合
しながら燃焼室220内で燃焼し、燃焼ガス207をタ
ービン122へ導入する。内筒外部空間221と燃焼室
220を連通ずる空気孔219は旋回流を形成する構造
である。燃料ノズル101へ供給する燃料130は流量
制御弁133によって制御され、燃料ノズル107へ供
給する燃料131は流量制御弁135によって制御され
る。燃料130,131の各々の流量計134,132
の信号は流量制御弁104、バイパス弁105のリンク
回転用モータ152.162へ出力される構造である。
FIG. 1 is a sectional view showing an embodiment of a gas turbine combustor according to the present invention. In FIG. 1, air 206 compressed by a compressor 121 having guide vanes 123 at its inlet that can control the suction flow rate flows through a passage formed by an outer cylinder 103 and an inner cylinder 102 in the direction of the arrow. Inner cylinder 10
2 is provided with an air hole 202 for combustion air, an air hole 201 for bypass air, and an air hole 219 for a pilot burner in addition to cooling air holes (not shown). The air hole 202 is provided with a flow rate control valve 104, and the air hole 201 is provided with a bypass valve 105. The flow rate control valve 104 is opened and closed by a link rotation motor 152 via a link mechanism consisting of a rotation shaft 150 and a link 151, and the bypass valve 105 is controlled to open and close by a link rotation motor 152 via a link mechanism consisting of a rotation shaft 160 and a link 161. Opening/closing is controlled by After the air flowing in from the air hole 202 is decelerated in the rectifying chamber 204, it flows into the cylindrical premixing chamber 205 through the air holes 217 and 218, and mixes with the fuel 130 supplied from the fuel nozzle 101 to form a premixed air. After being formed, it is combusted in the combustion chamber 220. Here, liquid fuel 130 is used as an example, and an air hole 209 is provided to form a passage that directly communicates the inner cylinder external space 22, 1 and the premixing chamber 205, and this air is supplied to the central passage 211 of the fuel nozzle 101 and the premixing chamber 205. The fuel flows into the premixing chamber 205 from the annular passage 210 provided on the outer periphery of the annular fuel passage 213 to promote atomization and premixing of the liquid fuel 130. Fuel 131 is also supplied from a fuel nozzle 107 provided at the center of one end of the inner cylinder, and is combusted in the combustion chamber 220 while being mixed with air from the air hole 219, and the combustion gas 207 is introduced into the turbine 122. The air hole 219 that communicates the inner cylinder outer space 221 and the combustion chamber 220 has a structure that forms a swirling flow. The fuel 130 supplied to the fuel nozzle 101 is controlled by a flow control valve 133, and the fuel 131 supplied to the fuel nozzle 107 is controlled by a flow control valve 135. Flowmeters 134 and 132 for fuels 130 and 131, respectively
The structure is such that the signal is output to the link rotation motors 152 and 162 of the flow control valve 104 and the bypass valve 105.

上記構成のガスタービン燃焼機において、起動時の着火
から自立運転および低負荷運転状態までは燃料ノズル1
07のみから燃料131を供給し、燃焼室220内で燃
焼する。この際の空気流量配分は定格負荷時と同等もし
くは予混合室105通過空気割合を定格負荷時よりもや
や少なくする程度であり、バイパス105は全開もしく
はわずかに開である。一方の流量制御弁104は全開も
しくはわずかに閉であり、内筒全空気孔面積は定格負荷
時とほぼ同じである。この燃焼状態は拡散燃焼であり、
燃料ノズル107からの燃料供給量を流量制御弁133
により増して高負荷運転状態になると、NOx排出濃度
は環境規制以上の濃度となる。そこで負荷を上昇する場
合にはNo工を生成しにくい予混合燃焼を主とした燃焼
状態にすることを考え、燃料ノズル107から供給して
いた燃料131の一部を複数個の燃料ノズル101から
供給するように流量制御弁135により流量制御する。
In the gas turbine combustor with the above configuration, the fuel nozzle 1 is used from ignition at startup to self-sustaining operation and low load operation.
Fuel 131 is supplied only from 07 and combusted in the combustion chamber 220. At this time, the air flow rate distribution is the same as that at the rated load, or the proportion of air passing through the premixing chamber 105 is slightly smaller than that at the rated load, and the bypass 105 is fully open or slightly open. One flow control valve 104 is fully open or slightly closed, and the total air hole area of the inner cylinder is approximately the same as at rated load. This combustion state is diffusion combustion,
The amount of fuel supplied from the fuel nozzle 107 is controlled by the flow rate control valve 133.
As the load increases, the NOx emission concentration exceeds the environmental regulations. Therefore, when increasing the load, it is considered that the combustion state is mainly premixed combustion, which is less likely to generate No. The flow rate is controlled by the flow rate control valve 135 so that the water is supplied.

この際に燃料ノズル101から供給された燃料130が
予混合室205内で空気と予混合した後、燃焼室220
内で燃焼するためには予混合気濃度を一定範囲に保つ必
要があり、空気流量の制御が必要となる。そこで空気の
流量制御弁104を開閉して予混合室205へ流入する
空気流量を制御するが、高温ガスタービンにおいて低N
Oよ化しようとすると予混合室205を通過する空気流
量が全体の50%以上となり、低負荷運転時にも予混合
燃焼しようとすれば流量制御弁1゜4の開度が小さくな
り、燃焼器圧力損失が大きくなりすぎて熱効率が低下し
たり、案内翼123を制御して空気流量を減少している
場合には圧縮機121でサージングを生じる場合がある
ので、バイパス弁105の開度を大きくして燃焼器圧力
損失が許容値以内となるように制御する。負荷を上昇す
る場合には燃料ノズル101から供給する燃料流量を流
量制御弁135により増し、その流量に比例して予混合
室205へ流入する空気流量を増すように流量制御弁1
04を開としてバイパス弁105を閉とする。
At this time, after the fuel 130 supplied from the fuel nozzle 101 is premixed with air in the premixing chamber 205, it is transferred to the combustion chamber 220.
In order to achieve combustion within the combustion chamber, it is necessary to maintain the premixture concentration within a certain range, and the air flow rate must be controlled. Therefore, the flow rate of air flowing into the premixing chamber 205 is controlled by opening and closing the air flow rate control valve 104.
When attempting to oxidize O, the flow rate of air passing through the premixing chamber 205 becomes more than 50% of the total, and if premix combustion is attempted even during low load operation, the opening degree of the flow control valve 1°4 becomes smaller, causing the combustor If the pressure loss becomes too large and the thermal efficiency decreases, or if the guide vanes 123 are controlled to reduce the air flow rate, surging may occur in the compressor 121, so the opening degree of the bypass valve 105 may be increased. control so that the combustor pressure loss is within the allowable value. When increasing the load, the flow control valve 135 increases the flow rate of fuel supplied from the fuel nozzle 101, and the flow control valve 135 increases the flow rate of air flowing into the premixing chamber 205 in proportion to the flow rate.
04 is opened and the bypass valve 105 is closed.

第2図は第1図の予混合気形成用空気の流量制御弁10
4およびバイパス弁105の開閉制御の手順を例示する
フローチャートである。第2図において、燃料ノズル1
07の燃料流量F1を流量計132で計測して、燃料ノ
ズル101の燃料流量F2を流量計134で計測し、大
気温度と圧縮機121の吸込空気流量により燃料流量F
 l + F 2を補正して燃料流量補正値Fl”+F
2*を求める。
Figure 2 shows the premixture forming air flow control valve 10 in Figure 1.
4 is a flowchart illustrating a procedure for opening/closing control of bypass valve 105 and bypass valve 105. FIG. In Figure 2, fuel nozzle 1
07 fuel flow rate F1 is measured by the flow meter 132, the fuel flow rate F2 of the fuel nozzle 101 is measured by the flow meter 134, and the fuel flow rate F is determined based on the atmospheric temperature and the intake air flow rate of the compressor 121.
l + F 2 is corrected to obtain the fuel flow rate correction value Fl”+F
Find 2*.

ついで燃料流量補正値F−、F己の和F、束+F2*を
一定値にと比較し、F、”+F2車<Kのときには流量
制御弁104を全開して、バイパス弁105を全閉する
ように、各々のモータ152の回転角度を制御して、モ
ータ162の回転角度を制御する。またF、X+F2”
>Kのときには燃料流量補正値F2xを一定値Aと比較
し、F2X(Aのときには流量制御弁104を一部間し
て、バイパス弁105を一部間するように、各々のモー
タ152の回転角度を制御して、モータ162の回転角
度を制御する。またF2”>Aのときには流量制御弁1
04の関度をF 2”/ F z’vaaxに比例して
、バイパス弁105の開度を(F 2”1.laχ−F
 2本) / F 2”ma2に比例するように、各々
のモータ152の回転角度を制御して、モータ162の
回転速度を制御する。
Next, the fuel flow rate correction value F-, the sum of F, F, and the bundle+F2* are compared with a constant value, and when F, "+F2 car<K, the flow control valve 104 is fully opened and the bypass valve 105 is fully closed. The rotation angle of each motor 152 is controlled to control the rotation angle of the motor 162 as shown in FIG.
>K, the fuel flow rate correction value F2x is compared with a constant value A, and when F2X (A), the rotation of each motor 152 is adjusted such that the flow rate control valve 104 is partially closed and the bypass valve 105 is partially closed. The rotation angle of the motor 162 is controlled by controlling the angle.Furthermore, when F2''>A, the flow control valve 1
04 is proportional to F 2"/F z'vaax, and the opening degree of the bypass valve 105 is set as (F 2"1.laχ-F
The rotation angle of each motor 152 is controlled so as to be proportional to 2"/F 2"ma2, and the rotation speed of the motor 162 is controlled.

第3図は第1図(第2図)の予混合気形成用空気の流量
制御弁104およびバイパス弁105の開度と燃料ノズ
ル101の燃料流量F2xの関係を例示する特性図であ
る。第3図において、第1図の流量制御弁104および
バイパス弁105の開度(%)は第2図のフローチャー
1へで燃料ノズル107.101の燃料流量補正値F 
l ” + F 2°がF11+F2”:>Kの場合に
、第3図に示すように燃料ノズル101の燃料流量補正
値Fz”(%)が一定値A(25%)以下では流量調節
弁104の開度(%)が一部間(25%)で、バイパス
弁105の開度(%)が一部間(75%)に制御され、
燃料ノズル101の燃料流量補正値F28(%)が−定
1i!A(25%)以上で最大値F2K(100%)ま
では流量調節弁104の開度(%)が燃料ノズル101
の燃料流量F 2’/ F 2”maXに比例して一部
開く25%)から全開(100%)まで制御され、バイ
パス弁105の開度(%)が燃料ノズル101の燃料流
量(F 2”+aa2− F 2本) / F 2”m
aXに比例して一部間(75%)から全閉(0%)まで
制御される。
FIG. 3 is a characteristic diagram illustrating the relationship between the opening degrees of the premixture forming air flow rate control valve 104 and the bypass valve 105 in FIG. 1 (FIG. 2) and the fuel flow rate F2x of the fuel nozzle 101. In FIG. 3, the opening degree (%) of the flow rate control valve 104 and the bypass valve 105 in FIG.
l''+F2° is F11+F2'':>K, as shown in FIG. The opening degree (%) of the bypass valve 105 is controlled to be partially (25%), and the opening degree (%) of the bypass valve 105 is controlled partially (75%).
The fuel flow rate correction value F28 (%) of the fuel nozzle 101 is - constant 1i! A (25%) or more and up to the maximum value F2K (100%), the opening degree (%) of the flow rate control valve 104 is the same as that of the fuel nozzle 101.
The opening degree (%) of the bypass valve 105 is controlled in proportion to the fuel flow rate of the fuel nozzle 101 (F 2 ”+aa2- F 2) / F 2”m
It is controlled from partially closed (75%) to fully closed (0%) in proportion to aX.

第4図(a)、(b)は第1図の予混合気形成用の流量
制御弁104の開閉機構を例示する外筒103の外側お
よび内側の部分上面図である。第4図(a)、(b)に
おいて、第4図(a)に示す外筒103の外側では矢印
方向に回転する回転軸150の一端とリンク回転用モー
タ152により矢印方向に移動するリンク151がリン
ク155.156によりリンク機構を構成し、第4図(
b)に示す外WJ103の内側では矢印方向に回転する
回転軸150の他端と矢印方向に移動して空気孔202
の流量を開閉制御する流量制御弁104がリンク153
,154によりリンク機構を構成している。バイパス弁
105の開閉機構も同様に外筒103の外側では回転軸
160の一端とリンク回転用モータ162により移動す
るリンク161がリンク機構を構成し、外flil○3
の内側では回転軸160の他端と第1図の矢印方向に移
動して空気孔201の流量を開閉制御するバイパス弁1
05がリンク機構を構成している。
4(a) and 4(b) are partial top views of the outside and inside of the outer cylinder 103, illustrating the opening/closing mechanism of the flow rate control valve 104 for forming a premixed gas shown in FIG. 1. In FIGS. 4(a) and 4(b), on the outside of the outer cylinder 103 shown in FIG. 4(a), one end of a rotating shaft 150 rotates in the direction of the arrow and a link 151 moves in the direction of the arrow by the link rotation motor 152. constitutes a link mechanism with links 155 and 156, as shown in Fig. 4 (
Inside the outer WJ 103 shown in b), the other end of the rotating shaft 150 rotates in the direction of the arrow and the air hole 202 moves in the direction of the arrow.
The flow rate control valve 104 that controls opening and closing of the flow rate is connected to the link 153.
, 154 constitute a link mechanism. Similarly, in the opening/closing mechanism of the bypass valve 105, on the outside of the outer cylinder 103, one end of the rotating shaft 160 and a link 161 moved by a link rotation motor 162 constitute a link mechanism, and the outer flil○3
Inside the rotating shaft 160, there is a bypass valve 1 that moves in the direction of the arrow in FIG.
05 constitutes a link mechanism.

本実施例によれば、上記のような予混合気形成用空気の
流量制御弁104およびバイパス弁105による空気孔
202および空気孔201の空気流量制御を行うと、内
筒外部221と予混合室205との圧力比をほぼ一定に
保つことが可能であり、空気孔209を通って予混合室
205へ供給する空気流速がほぼ一定になるので、液体
燃料の微粒化および空気との予混合化をガスタービン1
22の負荷とは無関係に良好な状態に保つことができ、
予混合気燃料濃度を燃焼ガス温度が低くかつ安定して燃
焼できる濃度に保つことにより低NOx化が可能となる
According to this embodiment, when the air flow rate of the air hole 202 and the air hole 201 is controlled by the flow rate control valve 104 and the bypass valve 105 of the premixture forming air as described above, the inner cylinder outside 221 and the premixing chamber 205 can be kept almost constant, and the air flow rate supplied to the premixing chamber 205 through the air hole 209 is almost constant, so that the liquid fuel can be atomized and premixed with air. gas turbine 1
22 can be maintained in good condition regardless of the load,
By keeping the premixture fuel concentration at a concentration that allows stable combustion at a low combustion gas temperature, it is possible to reduce NOx.

また第1図における液体燃料燃焼をガス燃料燃焼に代え
た場合には、空気孔209から常時に高速空気が供給さ
れるので空気孔217,218からの空気流速および燃
料ノズル101からのガス流速が遅くなる低負荷状態に
おいても混合が促進され、局所的に高濃度の燃料が存在
しない予混合気の燃焼が可能となって低NOx化できる
Furthermore, when the liquid fuel combustion in FIG. 1 is replaced with gas fuel combustion, high-speed air is constantly supplied from the air hole 209, so that the air flow rate from the air holes 217, 218 and the gas flow rate from the fuel nozzle 101 are reduced. Mixing is promoted even in low-load conditions where the fuel is slow, and it is possible to burn a premixture without locally high-concentration fuel, thereby reducing NOx.

第5図は本発明によるガスタービン燃焼器の他の実施例
を示す概略断面図である。第5図において、第1図のバ
イパス弁105および空気孔201を尾筒124に設け
た一実施例を示す。低負荷時の燃焼に関与しない空気は
燃焼室220内で燃焼反応が完了する位置からタービン
ノズル入口の間で燃焼ガス207に混合することにより
、ガスタービンは正常に運転できる。したがって第5図
のように尾筒124にバイパス弁105および空気孔2
01を設けることができる。
FIG. 5 is a schematic sectional view showing another embodiment of the gas turbine combustor according to the present invention. FIG. 5 shows an embodiment in which the bypass valve 105 and air hole 201 of FIG. 1 are provided in the transition piece 124. The gas turbine can operate normally by mixing the air not involved in combustion at low load with the combustion gas 207 between the position where the combustion reaction is completed in the combustion chamber 220 and the turbine nozzle inlet. Therefore, as shown in FIG.
01 can be provided.

第6図は本発明によるガスタービン燃焼器のさらに他の
実施例を示す概略断面図である。第6図において、第1
図のバイパス弁105および空気孔201を外筒103
に設けた一実施例を示す。
FIG. 6 is a schematic cross-sectional view showing still another embodiment of the gas turbine combustor according to the present invention. In Figure 6, the first
The bypass valve 105 and air hole 201 shown in the figure are connected to the outer cylinder 103.
An example provided in the figure is shown below.

燃料希薄予混合気燃焼を主としたガスタービン燃焼器で
は空気孔201からの空気が混合する前のNoよ濃度が
全負荷帯でほぼ一定である。予混合空気の流量制御弁1
04を一部間にすると内筒空気孔面積が減少し、全空気
を流す場合には燃焼器部圧力損失が大きくなる。そこで
燃焼器に供給する空気流量をガスタービン負荷に応じて
制御することを考え、第1図および第5図のバイパス弁
1o5と空気孔201を第6図のように外筒103に設
け、低負荷時に燃焼器へ供給する必要のない空気をター
ビン下流の排気ダクトへ流す。
In a gas turbine combustor that mainly performs fuel lean premix combustion, the concentration of air before mixing with the air from the air holes 201 is approximately constant throughout the entire load range. Premixed air flow control valve 1
If 04 is reduced to a part, the area of the air holes in the inner cylinder will decrease, and if all the air is allowed to flow, the pressure loss in the combustor section will increase. Therefore, considering controlling the air flow rate supplied to the combustor according to the gas turbine load, the bypass valve 1o5 and air hole 201 shown in FIGS. 1 and 5 are provided in the outer cylinder 103 as shown in FIG. Air that does not need to be supplied to the combustor during load is directed to the exhaust duct downstream of the turbine.

本実施例によれば、排ガスNoえ濃度および燃焼器圧力
損失は適正になるが、タービンを通過するガス流量が減
少するために熱効率は低下する。
According to this embodiment, the exhaust gas concentration and the combustor pressure loss become appropriate, but the thermal efficiency decreases because the gas flow rate passing through the turbine decreases.

第6図のバイパス弁105を通過する空気をタービン2
段目以後に供給することも考えられるが、第6図の実施
例と同様の効果が得られる。
The air passing through the bypass valve 105 in FIG.
Although it is conceivable to supply it after the second stage, the same effect as the embodiment shown in FIG. 6 can be obtained.

[発明の効果] 本発明によれば、2つの流量制御弁開度を燃料流量に応
じて制御することによりガスタービン負荷に応じた燃焼
用空気流量制御を燃焼器圧力損失の大幅な変化なしにで
きるので、部分負荷時の熱効率を向上できる効果がある
[Effects of the Invention] According to the present invention, by controlling the opening degrees of the two flow control valves according to the fuel flow rate, the combustion air flow rate can be controlled according to the gas turbine load without significantly changing the combustor pressure loss. This has the effect of improving thermal efficiency during partial load.

また燃焼器に供給する空気流量をガスタービン負荷に比
例制御できるので、タービン出口ガス温度を常に高く保
つことになり、排熱回収ボイラを備えたコンバインド発
電システムの部分負荷熱効率を向上できる効果がある。
In addition, since the air flow rate supplied to the combustor can be controlled proportionally to the gas turbine load, the turbine outlet gas temperature is always kept high, which has the effect of improving the partial load thermal efficiency of a combined power generation system equipped with an exhaust heat recovery boiler. .

さらに予混合室へ空気を一様に供給できるので、均一混
合気を形成しやすくなり、燃焼時のNoχ濃度を低減で
きる効果がある。
Furthermore, since air can be uniformly supplied to the premixing chamber, it becomes easier to form a homogeneous air-fuel mixture, which has the effect of reducing the Nox concentration during combustion.

また予混合室へ常に高速の空気を供給できるので、液体
燃料を微粒子に分裂させる性能を高めて空気と燃料の混
合を促進し、低NOx燃焼できる効果がある。ガス燃料
の場合には空気との混合を促進でき、低NOx燃焼でき
る効果がある。
Furthermore, since high-speed air can always be supplied to the premixing chamber, the performance of splitting liquid fuel into fine particles is improved, promoting the mixing of air and fuel, and achieving low NOx combustion. In the case of gas fuel, mixing with air can be promoted, resulting in low NOx combustion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるガスタービン燃焼器の一実施例を
示す断面図、第2図は第1図の流量制御弁104および
バイパス弁105の開閉制御手順を例示するフローチャ
ート、第3図は第1図(第2図)の流量制御弁104お
よびバイパス弁105開度と燃料ノズル101の燃料流
量Fz本の関係を例示する特性図、第4図(a)、(b
)は第1図の流量制御弁104の開閉機構を例示する外
筒103の外側、内側の部分上面図、第5図は本発明に
よるガスタービン燃焼器の他の実施例を示す概略断面図
、第6図は本発吋によるガスタービン燃焼器のさらに他
の実施例を示す概略断面図、第7図は従来のガスタービ
ン燃焼器の一例を示す概略断面図、第8図は従来のガス
タービン燃焼器の他の例を示す概略断面図である。 101・・・燃料ノズル、102・・・内筒、103・
・・外筒、104・・・流量制御弁、105・・流量制
御弁(バイパス弁)、’107・・・燃料ノズル、12
1・・・圧縮機、122・・・タービン、124・・・
尾筒、201.202・・・空気孔、204・・・整流
室、205・・・予混合室、209・・・空気孔、22
0・・・燃焼室。 特許呂原人 株式会社日立裏作所 代理人 弁理士 秋 本 正  実 第 図 餉 図 第 図 (Q) (b) 第 図 第 図 第 図
FIG. 1 is a cross-sectional view showing one embodiment of a gas turbine combustor according to the present invention, FIG. 2 is a flowchart illustrating the opening/closing control procedure of the flow control valve 104 and bypass valve 105 shown in FIG. 1, and FIG. Characteristic diagrams illustrating the relationship between the opening degrees of the flow rate control valve 104 and the bypass valve 105 and the fuel flow rate Fz of the fuel nozzle 101 in FIG. 1 (FIG. 2), FIGS. 4(a) and (b)
) is a partial top view of the outside and inside of the outer cylinder 103 illustrating the opening/closing mechanism of the flow control valve 104 in FIG. 1, and FIG. 5 is a schematic sectional view showing another embodiment of the gas turbine combustor according to the present invention. FIG. 6 is a schematic sectional view showing still another embodiment of a gas turbine combustor according to the present invention, FIG. 7 is a schematic sectional view showing an example of a conventional gas turbine combustor, and FIG. 8 is a schematic sectional view showing an example of a conventional gas turbine combustor. It is a schematic sectional view showing other examples of a combustor. 101... Fuel nozzle, 102... Inner cylinder, 103...
...Outer cylinder, 104...Flow rate control valve, 105...Flow rate control valve (bypass valve), '107...Fuel nozzle, 12
1...Compressor, 122...Turbine, 124...
Tail piece, 201.202... Air hole, 204... Rectification chamber, 205... Premixing chamber, 209... Air hole, 22
0... Combustion chamber. Hitachi Urasakusho Co., Ltd. Representative Patent Attorney Tadashi Akimoto Jitsuzuzusuzuzuzuzu (Q) (b)

Claims (1)

【特許請求の範囲】 1、圧縮機から供給される高圧空気と別系統から供給さ
れる燃料とをその内部空間で混合して燃焼する内筒と、
内筒内部へ燃料を供給する燃料ノズルと、内筒内部で生
成した燃焼ガスを下流のタービンへ導く尾筒と、これら
を収納する外筒とから成るガスタービン燃焼器において
、燃料との予混合気を形成するための空気の内筒流路入
口に第1の流量制御弁を設け、かつ内筒後流または尾筒
に第2の流量制御弁を設け、第1および第2の流量制御
弁の開度を燃料流量に応じで制御する構成としたことを
特徴とするガスタービン燃焼器。 2、第1の流量制御弁の開度を所定値以上での燃料流量
にほぼ比例して増加し、第2の流量制御弁の開度を所定
値以上での燃料流量にほぼ逆比例して減少する構成とし
たことを特徴とする請求項1記載のガスタービン燃焼器
。 3、第2の流量制御弁を外筒と燃焼器外部低圧室との連
結部に設けたことを特徴とする請求項1または請求項2
記載のガスタービン燃焼器。 4、第1の流量制御弁と内筒予混合室の空気入口との間
に流入空気の偏流を防止するための整流室を設けたこと
を特徴とする請求項1から請求項3のいずれか1項に記
載のガスタービン燃焼器。 5、燃料ノズル周囲に内筒外部と予混合室を連通する空
気流路を設けたことを特徴とする請求項1から請求項4
のいずれか1項に記載のガスタービン燃焼器。
[Claims] 1. An inner cylinder that mixes and burns high-pressure air supplied from a compressor and fuel supplied from a separate system in its internal space;
Premixing with fuel is performed in a gas turbine combustor that consists of a fuel nozzle that supplies fuel into the inner cylinder, a transition pipe that guides the combustion gas generated inside the inner cylinder to the downstream turbine, and an outer cylinder that houses these. A first flow control valve is provided at the inlet of the inner cylinder flow path for air to form air, and a second flow control valve is provided at the downstream side of the inner cylinder or at the transition pipe, and the first and second flow control valves are provided. A gas turbine combustor characterized in that the opening degree of the gas turbine combustor is controlled according to the fuel flow rate. 2. The opening degree of the first flow control valve is increased approximately in proportion to the fuel flow rate above a predetermined value, and the opening degree of the second flow control valve is increased approximately in inverse proportion to the fuel flow rate above the predetermined value. The gas turbine combustor according to claim 1, characterized in that the gas turbine combustor is configured to reduce the number of combustors. 3. Claim 1 or Claim 2, characterized in that the second flow rate control valve is provided at a connecting portion between the outer cylinder and the combustor external low pressure chamber.
Gas turbine combustor as described. 4. Any one of claims 1 to 3, characterized in that a rectifying chamber is provided between the first flow rate control valve and the air inlet of the inner cylinder premixing chamber to prevent uneven flow of incoming air. The gas turbine combustor according to item 1. 5. Claims 1 to 4, characterized in that an air flow path is provided around the fuel nozzle to communicate the outside of the inner cylinder and the premixing chamber.
The gas turbine combustor according to any one of the above.
JP24873190A 1990-09-20 1990-09-20 Gas turbine combustion device Pending JPH04131619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24873190A JPH04131619A (en) 1990-09-20 1990-09-20 Gas turbine combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24873190A JPH04131619A (en) 1990-09-20 1990-09-20 Gas turbine combustion device

Publications (1)

Publication Number Publication Date
JPH04131619A true JPH04131619A (en) 1992-05-06

Family

ID=17182516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24873190A Pending JPH04131619A (en) 1990-09-20 1990-09-20 Gas turbine combustion device

Country Status (1)

Country Link
JP (1) JPH04131619A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349812A (en) * 1992-01-29 1994-09-27 Hitachi, Ltd. Gas turbine combustor and gas turbine generating apparatus
US6161225A (en) * 1998-04-30 2000-12-19 Arai; Michio Shield structure of helmet
JP2005265380A (en) * 2004-03-22 2005-09-29 Japan Aerospace Exploration Agency Air flow rate adjustment valve for gas turbine combustor
WO2024043268A1 (en) * 2022-08-25 2024-02-29 三菱パワー株式会社 Gas turbine and gas turbine facility

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349812A (en) * 1992-01-29 1994-09-27 Hitachi, Ltd. Gas turbine combustor and gas turbine generating apparatus
US6161225A (en) * 1998-04-30 2000-12-19 Arai; Michio Shield structure of helmet
JP2005265380A (en) * 2004-03-22 2005-09-29 Japan Aerospace Exploration Agency Air flow rate adjustment valve for gas turbine combustor
WO2024043268A1 (en) * 2022-08-25 2024-02-29 三菱パワー株式会社 Gas turbine and gas turbine facility

Similar Documents

Publication Publication Date Title
US7673454B2 (en) Combustor of gas turbine and combustion control method for gas turbine
US5323614A (en) Combustor for gas turbine
JP2644745B2 (en) Gas turbine combustor
US3958413A (en) Combustion method and apparatus
US6672863B2 (en) Burner with exhaust gas recirculation
US5127229A (en) Gas turbine combustor
US4534166A (en) Flow modifying device
US20020043067A1 (en) Gas turbine combustion system and combustion control method therefor
JPH0771759A (en) Fixed combustor for gas turbine of low discharge ratio
JPS63247536A (en) Gas turbine combustor
JPS62175524A (en) Combustion unit for gas turbine
GB2351343A (en) Telescopically-moveable combustion chamber
JPH02183720A (en) Gas turbine combustor
JPH0544537B2 (en)
JPH0828871A (en) Gas turbine combustion device
JPH04131619A (en) Gas turbine combustion device
JP3116081B2 (en) Air distribution control gas turbine combustor
JPH0115775B2 (en)
JPH09159143A (en) Fuel supply system for multi-burner type combustion device and gas turbine having fuel supply system
JPH04124520A (en) Gas turbine combustor
JP3809465B2 (en) Premixed combustor for gas turbine and fuel supply control device and method thereof
JPH0443726Y2 (en)
JP3472424B2 (en) Gas turbine and method of operating gas turbine
JP7344177B2 (en) Gas turbine combustion control method
JPS6091141A (en) Low nox gas turbine burner