JPH0343534B2 - - Google Patents

Info

Publication number
JPH0343534B2
JPH0343534B2 JP59173296A JP17329684A JPH0343534B2 JP H0343534 B2 JPH0343534 B2 JP H0343534B2 JP 59173296 A JP59173296 A JP 59173296A JP 17329684 A JP17329684 A JP 17329684A JP H0343534 B2 JPH0343534 B2 JP H0343534B2
Authority
JP
Japan
Prior art keywords
stage
combustion
air
fuel
stage combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59173296A
Other languages
Japanese (ja)
Other versions
JPS6152523A (en
Inventor
Yoji Ishibashi
Isao Sato
Michio Kuroda
Yoshihiro Uchama
Katsuo Wada
Nobuyuki Iizuka
Fumio Kato
Yorihide Segawa
Takashi Oomori
Shigeyuki Akatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17329684A priority Critical patent/JPS6152523A/en
Publication of JPS6152523A publication Critical patent/JPS6152523A/en
Publication of JPH0343534B2 publication Critical patent/JPH0343534B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/26Controlling the air flow

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は2段燃焼形の低NOxガスタービン燃
焼器に係り、特に燃料切換前後に良好な燃焼性能
を与える燃焼用空気量の調整機構を備えたガスタ
ービン燃焼器に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a two-stage combustion type low NOx gas turbine combustor, and particularly includes a combustion air amount adjustment mechanism that provides good combustion performance before and after fuel switching. The present invention relates to a gas turbine combustor.

〔発明の背景〕[Background of the invention]

ガスタービン燃焼器は起動から定格負荷にわた
つて作動範囲が非常に広いのが特徴の一つであり
特にガスタービンの負荷運転時は基本的にはほぼ
空気量一定の条件で燃料流量のみの加減により運
転される。このため軽負荷時には燃料流量を絞つ
て運転するので燃焼器内の燃料と空気の比率が小
さくなり、良好な燃焼状態が維持できなくなり未
燃分が増大し、また条件によつては振動燃焼を起
し燃焼器の寿命に悪影響を与える。一方、近年は
ガスタービンから排出されるNOxが環境保全上
問題となつて来ており、ガスタービン燃焼器内で
発生するNOxを抑制することが大きな技術課題
となつている。このNOxは燃料中に空気分を含
まない所謂クリーン燃料の場合には、燃焼空気中
の窒素が高温燃焼火炎中で酸化されて生成するも
のである。従つてNOx抑制には低温燃焼化が最
も効果が大きく、これを達成するためには燃焼器
内の燃焼領域に過剰の空気を導入して燃料希薄の
条件で燃焼させる低NOx燃焼器の開発が必要で
ある。ところで前述した如く軽負荷運転時は燃料
が希薄となり燃焼条件が厳しくなるので、低
NOx化のための希薄燃焼度は軽負荷時の過剰希
薄による末燃分の増大や燃焼特性の劣化により制
限される。高負荷時NOx低減と軽負荷時の未燃
分を抑制するための公知の技術としては、燃焼用
の一次空気量と二次空気量及び希釈空気量をガス
タービンの負荷に応じて調節し、全作動域にわた
つてそれぞれの燃空比を良好な比率で燃焼させる
方法がある。例えば特公昭53−43号公報には、一
次燃焼帯と二次燃焼帯の間の空気通路にバツフル
装置を設け、軽負荷運転時は燃焼用一次空気を減
じるとともに二次空気を増加させることにより一
次燃焼帯が過剰希薄となることを回避し、また、
高負荷運転時には、それぞれの空気が抵抗なく流
入する如くバツフル板の位置を調節し、NOxの
発生を抑制する燃焼器が開示されている。しかし
ながら、ガスタービンの軽負荷時を担当する第1
段燃焼部と高負荷時を担当する第2段燃焼部によ
り構成された二段燃焼形燃焼器においては、軽負
荷運転時と高負荷運転時の問題の外に、一段燃焼
から二段燃焼への移行時の燃焼性能及び排出物特
性の問題が存在し、公知の空気制御では燃焼切換
とその前後の燃焼性能を良好に作動させることは
困難である。
One of the characteristics of a gas turbine combustor is that it has a very wide operating range from startup to rated load. In particular, when the gas turbine is operating under load, basically only the fuel flow rate is adjusted under the condition that the air amount is almost constant. Driven by. For this reason, when the load is light, the fuel flow rate is reduced and the ratio of fuel to air in the combustor becomes small, making it impossible to maintain good combustion conditions and increasing the amount of unburned matter. This will adversely affect the life of the combustor. On the other hand, in recent years, NOx emitted from gas turbines has become a problem in terms of environmental conservation, and suppressing NOx generated within gas turbine combustors has become a major technical issue. In the case of a so-called clean fuel that does not contain air, this NOx is produced when nitrogen in the combustion air is oxidized in a high-temperature combustion flame. Therefore, low-temperature combustion is the most effective way to suppress NOx, and in order to achieve this, it is necessary to develop a low-NOx combustor that introduces excess air into the combustion region of the combustor and burns under lean fuel conditions. is necessary. By the way, as mentioned above, during light load operation, the fuel becomes leaner and the combustion conditions become more severe.
The lean burn-up for NOx production is limited by the increase in end combustion and deterioration of combustion characteristics due to excessive lean at light loads. Known techniques for reducing NOx during high loads and suppressing unburned gas during light loads include adjusting the amount of primary air for combustion, the amount of secondary air, and the amount of dilution air according to the load of the gas turbine. There is a method of burning each fuel-air ratio at a good ratio over the entire operating range. For example, in Japanese Patent Publication No. 53-43, a buffing device is installed in the air passage between the primary combustion zone and the secondary combustion zone, and during light load operation, the primary air for combustion is reduced and the secondary air is increased. Avoiding excessive dilution of the primary combustion zone, and
A combustor has been disclosed that suppresses the generation of NOx by adjusting the position of the baffle plate so that each air flows in without resistance during high-load operation. However, the first
In a two-stage combustion type combustor, which consists of a stage combustion section and a second stage combustion section that handles high-load operations, in addition to problems during light-load operation and high-load operation, there are also problems when switching from one-stage combustion to two-stage combustion. There are problems with combustion performance and emission characteristics at the time of transition, and it is difficult to achieve good combustion performance during combustion switching and before and after the switching with known air control.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ガスタービンの起動着火から
燃焼切換点を含む全作動域で良好な燃焼性能と有
害物質の低排出化を可能とするための空気量調節
構を持つガスタービン燃焼器の提供にある。
An object of the present invention is to provide a gas turbine combustor that has an air volume adjustment mechanism that enables good combustion performance and low emissions of harmful substances in the entire operating range of the gas turbine, from startup ignition to the combustion switching point. It is in.

〔発明の概要〕[Summary of the invention]

すなわち本発明は、第一段燃焼用の空気供給口
と第二段燃焼用の空気供給口とに、それぞれ空気
流路の面積を可変とするガイドリングを設け、 このガイドリングに、 第一段燃焼室の燃焼時には、第一段燃焼空気流
路の面積を増し、第二段燃焼空気流路の面積を減
じ、 第一段燃焼から第二段燃焼への切り換え時に
は、第一段燃焼空気流路と第二段燃焼空気流路の
論積を同時に減じ、 高負荷運転時には、ガスタービンの出力増加の
対応する燃料流量の増加とともに第一段燃焼空気
流路の面積と第二段燃焼空気流路の面積を拡大す
るように ガイドリングを制御する制御器を設けるように
なし所期の目的を達成するようにしたものであ
る。
That is, in the present invention, a guide ring is provided in each of the air supply port for first-stage combustion and the air supply port for second-stage combustion, and the area of the air flow path is variable. During combustion in the combustion chamber, the area of the first stage combustion air flow path is increased and the area of the second stage combustion air flow path is decreased, and when switching from the first stage combustion to the second stage combustion, the first stage combustion air flow is increased. Simultaneously reduces the area of the first stage combustion air passage and the second stage combustion air flow, and during high load operation, the area of the first stage combustion air passage and the second stage combustion air flow increase with the corresponding increase in fuel flow rate as the output of the gas turbine increases. The intended purpose was achieved by installing a controller to control the guide ring so as to expand the area of the road.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明す
る。ガスタービンは圧縮機50、燃焼器51及び
タービン52より構成され、タービンで得た動力
で負荷53を駆動する定置形ガスタービンへ適用
した例である。燃焼器51は上流側に第1段燃焼
室A、下流側に第2段燃焼室Bを設え、第1段燃
焼室は複数の燃焼空気口2を周壁に有する第1段
燃焼筒1とそれにほぼ同軸上に内筒コーン5を挿
入することにより形成される環状の空間とし、複
数本の第1段燃料ノズル6は第1段燃焼筒1の上
流端部に相当する環状部に設けられたエンドカバ
ー3にあけられた円孔23を通して環状燃焼室内
に突出させて取付けられている。第1段燃料ノズ
ル6はエンドプレート21に固着されたブラケツ
ト4に一体化され、ブラケツト4に1次燃料10
8が供給されるようになつている。第2段燃焼室
Bには第1段燃焼筒1の下流端部の外周側に内周
リング9と外周リング8及び旋回羽根7からなる
第2段燃焼空気流路を開口させ、第2段燃料ノズ
ル15を前記内周リング9の壁を貫通させて空気
流路内に複数本取付け、外周リング8の外側に設
けられた第2段燃焼筒12に囲まれた空間として
形成されている。第2段燃料ノズル15はL字形
に曲つた燃料配管14の先端に固着され、配管1
4はエンドプレート21に固着され、2段目燃料
110がここに供給される。前記外周リング8と
内周リング9は第2段燃料空気流が平滑に流れる
よう適当な円弧形状で助走区間を取り、終端部は
第1段目燃焼筒1壁と燃焼器外筒20の空気通路
部に流路を他の空気流路とは区画されて半径方向
に開口している。また、内周リング9の終端開口
部は同一直径で上流側へ延長して延びる流路制約
のスリーブ10が取付けられており、これには第
1段燃焼空気が流入するための1次空気窓11が
あけられている。更に、スリーブ10の外周側に
は燃焼器外筒20を貫通して取付けられたリンク
機構とレバー18,19によつて移動可能なスラ
イドリング16が取付けられている。スライドリ
ング16には適当な位置に2次空気窓17が切つ
てあり、この窓と第2段空気流路の開口部が重複
する有効開口面積から第2段燃焼空気が流入す
る。一方、第1段燃焼空気はスリーブ10に設け
られた1次空気窓11とスライドリングの上流端
部で囲まれた有効開口面積で制御され、燃料空気
孔2からの空気105と、内筒コーン内から外側
に流れる空気107となつて第1段燃焼室Aに流
入する。かかる構造により、スライドリング16
を一般に良く用いられているリンク機構によつて
燃焼器の軸方向に移動させることによりそれぞれ
第1段、第2段の有効開口面積を可変とすること
ができる。次に燃焼器の作動を空気及び燃料の流
れを説明しながら述べる。大気100は圧縮機5
0によつて約12気圧に昇圧され圧縮空気101と
して第1段燃焼筒1、第2段燃焼筒12と燃焼器
外筒20で囲まれた環状部を燃焼器頭部に向つて
流れながら希釈空気口13から希釈空気流102
として、2次空気の有効開口部から流量を調節さ
れた2次空気流103として、更に、1次空気の
有効開口部から流量を調節された1次空気流10
4として流入する。この1次空気流104は第1
次燃焼筒1壁に設けられた燃焼空気孔2とエンド
カバー3に設けられた1次燃料ノズルの挿入用円
孔23及び円筒コーン5へそれぞれ分配されて、
円環状の第1次燃焼室A内へ流入する。第1段燃
料は第1次燃焼室内へエンドカバー3に設けられ
た円孔23を通して突出して取付けられた複数本
の第1段燃料ノズル6の先端部から第1次燃料噴
流109として噴出させて供給される。第2次燃
料は外周リング7と内周リング8により形成され
た2空気流路内に複数筒の第2次燃料ノズル15
から分散して供給され、燃料と空気の予混合気流
111として第2次燃焼室内へ供給される。ガス
タービンの起動着火は第1段燃料のみ供給して、
第1段燃料ノズル6の下流に設けられた一般に用
いられる電気火炎点火式の着火装置(第1図には
示さず)にて着火される。第1段燃焼火炎はそれ
ぞれの燃料ノズル6の突出し部のエンドカバー3
近傍に形成される再循環流れによつて安定化さ
れ、燃料が空気流中へ分散供給されて燃焼するの
で希薄燃焼させることにより従来の単一燃料ノズ
ルよりも効果的に低NOx燃焼する。ガスタービ
ンの起動と軽負荷時は第1段燃料のみの増減によ
り運転され、あるいは負荷帯以上において第2段
燃料の投入により2段燃焼に移行させて運転され
る。この場合、第2段燃焼は第1段燃焼の高温ガ
スによつて自己着火されるので、着火装置は不要
となる。しかし、第2段燃焼は効果的な低NOx
燃焼を行なわせる目的で予混合気の供給によつて
燃焼させるものであり、安定な着火と未燃分の発
生のすくない良好な燃焼性能を得るためにはすく
なくとも燃料と温度によつて定まる可燃混合比範
囲内の燃料と空気流量比で供給されねばならな
い。このため、ガスタービンの負荷が出来るだけ
小さい時点で2段燃焼化に移行させてガスタービ
ンの全体動域にわたつて低NOx化を達成するた
めには、第2段燃焼空気と第1段燃焼空気を減じ
るとともに、第1段燃料を第1段目と第2段目に
適量切換えることによつてそれぞれの燃焼域の燃
料と空気の比率を適正値内に納めることで可能と
なる。説明を理解しやすくするために第2図と第
3図にメタンを燃料とした場合の第1段燃焼、第
2段燃焼のNOx、CO特性を示す。第1段燃焼に
ついては、NOxと未燃分の少ない適正な第1段
燃料(F1)と第1段燃焼空気(A1)の比は0.008
から0.025となる。また、第2段燃焼は同じく第
2段燃焼(F2)と第2段燃焼空気(A2)との比
は0.03から0.045であり、特にこの場合の下限値
は第2段燃焼を着火させるための限界値である。
かかる特性を有する第1段燃焼と第2段燃焼とを
ともに良好な燃焼を維持させながらガスタービン
の全作動域を運転可能とする制御方法の実施例を
第4図に示す。第4図は横座標にガスタービン出
力(%)をとり、縦座標にそれぞれ燃料流量、空
気流量及び空気流量調節用スライドリング開度の
調節の仕方を示すものである。即ち、着火から軽
負荷時は第1段燃料のみで運転され、この時はス
ライドリングの開度は全開に保たれ、それぞれの
空気は流量が制約されることなく、燃焼筒にあけ
られた空気孔の面積と流入抵抗によつて定まる量
が供給される。このときの第1段空気は約52%、
第2段空気は約28%である。ガスタービン出力25
%が燃焼切換点になつており、この点で1段燃焼
から2段燃焼に移行される。この場合、スライド
リング16はリンク機構18,19によつて燃焼
器の上流側に可動させることによりそれぞれ第1
段空気及び第2段空気の流入窓が絞り込まれ、流
入空気量が減じられる。これとともに第1段燃料
を減じながら第2段燃料が全体流量を一定に保ち
ながら供給され、燃料流量比が50%−50%におい
て燃料の切換は完了し、2段燃料に移行する。こ
の時の空気流量は第1段空気は約40%、第2段空
気は13%まで絞り込まれ、それぞれの燃焼域の燃
料と空気の流量比を適正値に納めることが出来
る。2段燃焼に移行後はガスタービンの出力とと
もにそれぞれの燃料流量を増加させ、これに伴な
つてスライドリング開度をあけることにより、空
気量も増加させNOxの発生を抑えるべく所定の
燃空比を保つて運転される。第4図では燃料切換
を燃料流量比50%−50%で行なつているが、空気
配分との関係において他の流量比に設定すること
は勿論可能である。また、燃料切換の瞬間におい
ては通常一般のガスタービン燃焼器の着火動作時
に行なわれる如く、第2段燃料のある量を過剰投
入することにより、よりすみやかな着火が可能と
なる。また第1図の実施例では、空気流量はスラ
イドリングにより第1段空気と第2段空気が連動
して調節されるが、これを別々に可動する調節装
置によつて行なうことも可能であり、また、流路
面積の調節方法も、可動板を燃焼筒の周方向に移
動させることによつても同様の作用が発揮され
る。また、本発明の空気調節方法の他の実施例を
第5図に示す。スリーブ10には図の如く燃焼器
の上流方向に向つて面積が拡大する台形の1次空
気窓11があけられ、スライドリング16には同
じく燃焼器の上流方向に向つて面積が拡大する台
形の2次空気窓17があけられており、これは外
周リンク8と内周リンク9で形成された第2段燃
焼空気口が対応して開口している。スライドリン
グ16を矢印方向に移動させることによりそれぞ
れ斜線でした部分の空気窓の面積が絞られること
になる。この時スライドリングの動きに対して、
2次空気窓17の絞り面積が1次空気窓11のそ
れより大きいため、スライドリングのある移動範
囲までは第2段空気量が先行して絞り込まれ、第
1段空気は第2段空気の減少分の1部が加算さ
れ、逆に増加するような空気調節が出来る。即
ち、かかる空気調節を第1段燃料が増加し、第1
段目のNOxが高濃度となり始める時点から燃料
切換点の負荷帯まで行なわせることにより、軽負
荷時のNOxを更に抑制した運転が可能となる。
第6図にこれを適用した場合のそれぞれ燃料、空
気量及びスライドリング開度を示す。第7図は以
上説明してきた本発明のガスタービン燃焼器の
NOxとCO濃度特性を示すものであり、これらは
基本的には第2図、第3図に示す第1段燃焼と第
2段燃焼のNOxとCO濃度特性を燃料切換点でつ
なぎ合せた特性となる。即ち25%出力までは第1
段燃焼のみで運転するのでガスタービンの出力増
加とともにNOxが増加し、逆にCOは減少する。
ガスタービン出力25%で燃料切換が行なわれ、2
段燃焼に移行するのでNOxは減少する。COは第
1段目の燃料が第1段と第2段へ分割して供給さ
れるので、燃空比が小さい方へ移行するが、それ
ぞれの空気量が減じられるため、若干増加するも
ののその増加は極めて低く抑えられる。2段燃焼
に移行後は燃料流量の増加とともに燃焼空気量も
スライドリング開度を大きくしていくことにより
増大させて運転されるので、NOxは緩るやかな
増加に抑えられ、高出力時も低濃度となる。更
に、第6図において説明した如く、第1段燃焼時
に第2段空気量を先行して絞り込む操作により、
第1段燃焼時のNOxが抑制される。
An embodiment of the present invention will be described below with reference to FIG. The gas turbine is composed of a compressor 50, a combustor 51, and a turbine 52, and is an example applied to a stationary gas turbine that drives a load 53 with the power obtained from the turbine. The combustor 51 has a first-stage combustion chamber A on the upstream side and a second-stage combustion chamber B on the downstream side. An annular space is formed by inserting an inner cylinder cone 5 almost coaxially, and a plurality of first stage fuel nozzles 6 are provided in an annular part corresponding to the upstream end of the first stage combustion cylinder 1. The end cover 3 is attached so as to protrude into the annular combustion chamber through a circular hole 23 formed therein. The first stage fuel nozzle 6 is integrated into a bracket 4 fixed to an end plate 21, and a primary fuel 10 is injected into the bracket 4.
8 is now being supplied. In the second stage combustion chamber B, a second stage combustion air flow path consisting of an inner ring 9, an outer ring 8, and a swirling vane 7 is opened on the outer peripheral side of the downstream end of the first stage combustion tube 1. A plurality of fuel nozzles 15 are inserted into the air flow path by penetrating the wall of the inner ring 9, and are formed as a space surrounded by a second stage combustion cylinder 12 provided outside the outer ring 8. The second stage fuel nozzle 15 is fixed to the tip of the L-shaped fuel pipe 14.
4 is fixed to the end plate 21, and the second stage fuel 110 is supplied here. The outer circumferential ring 8 and the inner circumferential ring 9 have a run-up section in an appropriate arc shape so that the second stage fuel air flow flows smoothly, and the terminal end is connected to the first stage combustion cylinder 1 wall and the air of the combustor outer cylinder 20. A flow path in the passage portion is separated from other air flow paths and opens in the radial direction. Further, a flow path restriction sleeve 10 having the same diameter and extending toward the upstream side is attached to the terminal opening of the inner peripheral ring 9, and this has a primary air window for the first stage combustion air to flow into. 11 is open. Further, a slide ring 16 is attached to the outer peripheral side of the sleeve 10 and is movable by means of a link mechanism and levers 18 and 19 that are attached through the combustor outer cylinder 20. A secondary air window 17 is cut at an appropriate position in the slide ring 16, and the second stage combustion air flows in through the effective opening area where this window and the opening of the second stage air flow path overlap. On the other hand, the first stage combustion air is controlled by the effective opening area surrounded by the primary air window 11 provided in the sleeve 10 and the upstream end of the slide ring, and is controlled by the air 105 from the fuel air hole 2 and the inner cylinder cone. The air flows into the first stage combustion chamber A as air 107 flowing from the inside to the outside. With this structure, the slide ring 16
By moving the combustor in the axial direction of the combustor using a commonly used link mechanism, the effective opening areas of the first and second stages can be made variable. Next, the operation of the combustor will be described while explaining the flow of air and fuel. Atmosphere 100 is compressor 5
The compressed air 101 is pressurized to approximately 12 atmospheres by 0 and is diluted as it flows through the annular area surrounded by the first stage combustion tube 1, second stage combustion tube 12, and combustor outer tube 20 toward the combustor head. Dilution air flow 102 from air port 13
, a secondary air flow 103 whose flow rate is adjusted from the effective opening for secondary air, and a primary air flow 10 whose flow rate is adjusted from the effective opening for primary air.
It flows in as 4. This primary airflow 104 is
The combustion air is distributed to the combustion air hole 2 provided in the wall of the secondary combustion cylinder 1, the circular hole 23 for insertion of the primary fuel nozzle provided in the end cover 3, and the cylindrical cone 5, respectively.
It flows into the annular primary combustion chamber A. The first stage fuel is injected into the first combustion chamber as a first fuel jet 109 from the tips of a plurality of first stage fuel nozzles 6 which are attached to protrude through circular holes 23 provided in the end cover 3. Supplied. The secondary fuel is supplied through a plurality of secondary fuel nozzles 15 in two air passages formed by the outer ring 7 and the inner ring 8.
The premixed fuel and air are distributed and supplied into the secondary combustion chamber as a premixed air flow 111 of fuel and air. The gas turbine is started and ignited by supplying only the first stage fuel.
The fuel is ignited by a commonly used electric flame ignition type ignition device (not shown in FIG. 1) provided downstream of the first stage fuel nozzle 6. The first stage combustion flame is the end cover 3 of the protrusion of each fuel nozzle 6.
Stabilized by the nearby recirculating flow, the fuel is distributed and combusted in the airflow, resulting in lean combustion and more effective low-NOx combustion than conventional single-fuel nozzles. When the gas turbine is started and under light load, the gas turbine is operated by increasing or decreasing only the first stage fuel, or, above the load range, the gas turbine is operated by shifting to two stage combustion by inputting the second stage fuel. In this case, since the second stage combustion is self-ignited by the high temperature gas of the first stage combustion, an ignition device is not required. However, the second stage combustion is an effective way to reduce NOx.
Combustion is performed by supplying a premixture for the purpose of combustion, and in order to achieve stable ignition and good combustion performance with little unburned matter, the combustible mixture must be determined by at least the fuel and temperature. Must be supplied with fuel and air flow ratios within the ratio range. Therefore, in order to achieve low NOx over the entire motion range of the gas turbine by transitioning to two-stage combustion when the load on the gas turbine is as low as possible, it is necessary to This can be achieved by reducing the amount of air and switching an appropriate amount of first stage fuel between the first stage and second stage to keep the ratio of fuel and air in each combustion zone within an appropriate value. To make the explanation easier to understand, Figures 2 and 3 show the NOx and CO characteristics of first-stage combustion and second-stage combustion when methane is used as fuel. Regarding the first stage combustion, the ratio of the appropriate first stage fuel (F 1 ) with low NOx and unburned content to the first stage combustion air (A 1 ) is 0.008.
becomes 0.025. In addition, in the second stage combustion, the ratio of the second stage combustion (F 2 ) to the second stage combustion air (A 2 ) is 0.03 to 0.045, and in particular, the lower limit in this case is the one that ignites the second stage combustion. This is the limit value for
FIG. 4 shows an embodiment of a control method that allows the gas turbine to operate over the entire operating range while maintaining good combustion in both the first stage combustion and the second stage combustion having such characteristics. In FIG. 4, the abscissa shows the gas turbine output (%), and the ordinate shows how to adjust the fuel flow rate, air flow rate, and opening degree of the slide ring for adjusting the air flow rate, respectively. In other words, from ignition to light load, the first stage is operated with only fuel, and at this time the slide ring is kept fully open, and the air flow rate is not restricted and the air is fed into the combustion tube. A quantity determined by the area of the hole and the inflow resistance is supplied. At this time, the first stage air is approximately 52%,
The second stage air is about 28%. Gas turbine output 25
% is the combustion switching point, and at this point the first-stage combustion is shifted to the second-stage combustion. In this case, the slide rings 16 are moved to the upstream side of the combustor by the link mechanisms 18 and 19, respectively.
The inlet windows for stage air and second stage air are narrowed down to reduce the amount of incoming air. At the same time, the second stage fuel is supplied while reducing the first stage fuel while keeping the overall flow rate constant, and when the fuel flow rate ratio is 50%-50%, the fuel switching is completed and a transition is made to the second stage fuel. At this time, the air flow rate is reduced to approximately 40% for the first stage air and 13% for the second stage air, making it possible to maintain the fuel and air flow rate ratio in each combustion zone at an appropriate value. After transitioning to two-stage combustion, the output of the gas turbine and the flow rate of each fuel are increased, and by opening the slide ring accordingly, the amount of air is also increased and the predetermined fuel-air ratio is maintained in order to suppress the generation of NOx. is operated while maintaining Although fuel switching is performed at a fuel flow rate ratio of 50% to 50% in FIG. 4, it is of course possible to set the flow rate ratio to another value in relation to air distribution. Further, at the moment of fuel switching, a certain amount of second stage fuel is injected in excess, as is normally done during the ignition operation of a general gas turbine combustor, thereby making it possible to ignite more quickly. Furthermore, in the embodiment shown in FIG. 1, the air flow rate is adjusted by the slide ring in conjunction with the first stage air and the second stage air, but this can also be done by separately movable adjusting devices. Furthermore, the same effect can be achieved by moving the movable plate in the circumferential direction of the combustion cylinder in the method of adjusting the flow path area. Further, another embodiment of the air conditioning method of the present invention is shown in FIG. As shown in the figure, the sleeve 10 has a trapezoidal primary air window 11 whose area increases toward the upstream side of the combustor, and the slide ring 16 also has a trapezoidal primary air window 11 whose area expands toward the upstream side of the combustor. A secondary air window 17 is opened, in which a second stage combustion air opening formed by the outer circumferential link 8 and the inner circumferential link 9 opens correspondingly. By moving the slide ring 16 in the direction of the arrow, the area of the air window in each shaded area is narrowed down. At this time, for the movement of the slide ring,
Since the constriction area of the secondary air window 17 is larger than that of the primary air window 11, the second stage air volume is narrowed in advance up to a certain movement range of the slide ring, and the first stage air is reduced by the second stage air. A portion of the decrease is added, and air conditioning can be made to increase the amount. That is, the first stage fuel increases such air conditioning, and the first stage
By carrying out the operation from the time when NOx in the stage starts to reach a high concentration up to the load zone of the fuel switching point, it becomes possible to operate with further suppressed NOx during light loads.
FIG. 6 shows the fuel, air amount, and slide ring opening when this is applied. FIG. 7 shows the gas turbine combustor of the present invention explained above.
This shows the NOx and CO concentration characteristics, and these are basically the characteristics that connect the NOx and CO concentration characteristics of the first stage combustion and second stage combustion shown in Figures 2 and 3 at the fuel switching point. becomes. In other words, up to 25% output, the first
Since it operates only with staged combustion, NOx increases as the gas turbine output increases, while CO decreases.
Fuel switching is performed at 25% of the gas turbine output, and 2
NOx decreases as the combustion shifts to staged combustion. For CO, the fuel in the first stage is divided and supplied to the first and second stages, so the fuel-air ratio shifts to the smaller one, but since the amount of air in each is reduced, there is a slight increase, but the The increase will be kept very low. After shifting to two-stage combustion, the fuel flow rate increases and the amount of combustion air is also increased by increasing the slide ring opening, so NOx is suppressed to a gradual increase, even at high output. The concentration will be low. Furthermore, as explained in FIG. 6, by reducing the second stage air amount in advance during the first stage combustion,
NOx during the first stage combustion is suppressed.

第8図に制御装置のブロツク図を示している。
制御器200は、ガスタービンの出力指令信号2
01と実際の出力信号202とが取り込まれ、実
出力が出力指令に一致するように、第1段燃料制
御弁203、第2段燃料制御弁204に開度指令
が発せられる。これと共にガイドリングアクチユ
エータ206にも開度指令が発せられる。
FIG. 8 shows a block diagram of the control device.
The controller 200 outputs an output command signal 2 for the gas turbine.
01 and the actual output signal 202 are taken in, and an opening command is issued to the first stage fuel control valve 203 and the second stage fuel control valve 204 so that the actual output matches the output command. At the same time, an opening command is also issued to the guide ring actuator 206.

燃料制御弁203、204、アクチユエータ2
06には、例えば第4図もしくは第6図に示す如
く、ガスタービンの出力に応じて開度特性が決め
られている。したがつて、タービンの負荷に応じ
て、第1段燃料及び空気、第2段燃料及び空気が
所望の比になるように制御可能である。
Fuel control valves 203, 204, actuator 2
06, as shown in FIG. 4 or FIG. 6, for example, the opening characteristic is determined according to the output of the gas turbine. Therefore, it is possible to control the ratio of first stage fuel and air and second stage fuel and air to a desired ratio depending on the load of the turbine.

尚、210は第1段燃料に点火するための点火
器である。
Note that 210 is an igniter for igniting the first stage fuel.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように本発明によれば、ガス
タービンの起動着火から燃焼切換点を含む全作動
域で良好な燃焼性能と有害物質の低排出化を可能
としたガスタービン燃焼器を得ることができる。
As described above, according to the present invention, it is possible to obtain a gas turbine combustor that enables good combustion performance and low emissions of harmful substances in the entire operating range from startup ignition to the combustion switching point of the gas turbine. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃焼器の縦断面図、第2図は第1段燃
焼のNOx、CO特性、第3図は第2段燃焼の
NOx、CO特性、第4図は運転制御方法の説明
図、第5図は空気調節部まわりの平面図、第6図
は運転制御方法の説明図、第7図はガスタービン
燃焼器のNOx、CO特性、第8図は制御ブロツク
図である。 1……第1段燃焼筒、6……第1段燃料ノズ
ル、12……第2段燃焼筒、15……第2段燃料
ノズル、10……スリーブ、16……スライドリ
ング、11……1次空気窓、17……2次空気
窓、200……制御器。
Figure 1 is a longitudinal cross-sectional view of the combustor, Figure 2 is the NOx and CO characteristics of the first stage combustion, and Figure 3 is the second stage combustion.
NOx, CO characteristics, Figure 4 is an explanatory diagram of the operation control method, Figure 5 is a plan view around the air conditioning section, Figure 6 is an explanatory diagram of the operation control method, Figure 7 is NOx of the gas turbine combustor, CO characteristics, Figure 8 is a control block diagram. 1... First stage combustion tube, 6... First stage fuel nozzle, 12... Second stage combustion tube, 15... Second stage fuel nozzle, 10... Sleeve, 16... Slide ring, 11... Primary air window, 17...Secondary air window, 200...Controller.

Claims (1)

【特許請求の範囲】 1 燃焼機の上流部に配置され、かつ第一段燃焼
用の燃料供給手段と空気供給口とを有し、ガスタ
ービンの起動から軽負荷運転までの間燃焼運転さ
れる第一段燃焼室と、 前記第一段燃焼室の下流側に配置され、かつ第
二段燃焼用の燃料供給手段と空気供給口とを有
し、ガスタービンの高負荷運転時に燃焼運転され
る第二段燃料室と、 を備えた二段燃焼型ガスタービン燃焼器におい
て、 前記第一段燃焼用の空気供給口と第二段燃焼用
の空気供給口とに、それぞれ空気流路の面積を可
変とするガイドリングを設け、 該ガイドリングに、 第一段燃焼室の燃焼時には、第一段燃焼空気流
路の面積を増し、第二段燃焼空気流路の面積を減
じ、 第一段燃焼から第二段燃焼への切り換え時に
は、第一段燃焼空気流路と第二段燃焼空気流路の
面積を同時に減じ、 高負荷運転時には、ガスタービンの出力増加に
対応する燃料流量の増加とともに第一段燃焼空気
流路の面積と第二段燃焼空気流路の面積を拡大す
るように ガイドリングを制御する制御器を設けたことを
特徴とするガスタービン燃焼器。
[Scope of Claims] 1. A combustor that is disposed upstream of the combustor and has a fuel supply means and an air supply port for first-stage combustion, and is operated for combustion from the startup of the gas turbine to light load operation. A first stage combustion chamber, disposed downstream of the first stage combustion chamber, and having a fuel supply means and an air supply port for second stage combustion, and is operated for combustion during high load operation of the gas turbine. In a two-stage combustion gas turbine combustor comprising a second-stage fuel chamber and A variable guide ring is provided, and the guide ring is configured to increase the area of the first stage combustion air flow path and reduce the area of the second stage combustion air flow path during combustion in the first stage combustion chamber. When switching from to second-stage combustion, the area of the first-stage combustion air passage and the second-stage combustion air passage are simultaneously reduced. A gas turbine combustor characterized in that a controller is provided for controlling a guide ring so as to expand the area of a first-stage combustion air flow path and the area of a second-stage combustion air flow path.
JP17329684A 1984-08-22 1984-08-22 Gas turbine combustor Granted JPS6152523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17329684A JPS6152523A (en) 1984-08-22 1984-08-22 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17329684A JPS6152523A (en) 1984-08-22 1984-08-22 Gas turbine combustor

Publications (2)

Publication Number Publication Date
JPS6152523A JPS6152523A (en) 1986-03-15
JPH0343534B2 true JPH0343534B2 (en) 1991-07-02

Family

ID=15957811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17329684A Granted JPS6152523A (en) 1984-08-22 1984-08-22 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JPS6152523A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527170B2 (en) * 1986-12-15 1996-08-21 株式会社日立製作所 Operation method of gas turbine two-stage combustor
JP2644745B2 (en) * 1987-03-06 1997-08-25 株式会社日立製作所 Gas turbine combustor
JP3037804B2 (en) * 1991-12-02 2000-05-08 株式会社日立製作所 Control method and control device for gas turbine combustor
JPH05203146A (en) * 1992-01-29 1993-08-10 Hitachi Ltd Gas turbine combustion apparatus and gas turbine power generator
JP2954480B2 (en) * 1994-04-08 1999-09-27 株式会社日立製作所 Gas turbine combustor
US9291098B2 (en) 2012-11-14 2016-03-22 General Electric Company Turbomachine and staged combustion system of a turbomachine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956022A (en) * 1982-09-20 1984-03-31 Toshiba Corp Combustor for gas turbine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956022A (en) * 1982-09-20 1984-03-31 Toshiba Corp Combustor for gas turbine

Also Published As

Publication number Publication date
JPS6152523A (en) 1986-03-15

Similar Documents

Publication Publication Date Title
US5054280A (en) Gas turbine combustor and method of running the same
US5069029A (en) Gas turbine combustor and combustion method therefor
US7752850B2 (en) Controlled pilot oxidizer for a gas turbine combustor
US5339635A (en) Gas turbine combustor of the completely premixed combustion type
US5343693A (en) Combustor and method of operating the same
US5081843A (en) Combustor for a gas turbine
EP0335978A1 (en) Gas turbine combustor
US5309710A (en) Gas turbine combustor having poppet valves for air distribution control
JPH02183720A (en) Gas turbine combustor
JPH0343534B2 (en)
US5398495A (en) Combustion chamber with variable oxidizer intakes
JPS6277520A (en) Low nox gas turbine combustor
JPH11343869A (en) Gas turbine combustor and control method thereof
JP3472424B2 (en) Gas turbine and method of operating gas turbine
JPH08128636A (en) Gas combustion apparatus
JP3035410B2 (en) Combustion device and combustion method
JPS629124A (en) Gas turbine combustor
JPH07248117A (en) Combustion method for gas turbine premixing combustor
JPH07190368A (en) Lean premix combustor
JP3205636B2 (en) Gas turbine combustor and method for controlling combustion air amount
JPH05340273A (en) Combustion method for combustor
JPS63156925A (en) Structure of two-staged firing burner
JPH0752015B2 (en) gas turbine
JPS61153316A (en) Combustion of gas turbine and gas turbine combustor
JPH04260721A (en) Premixing type gas turbine combustor