JPH04260721A - Premixing type gas turbine combustor - Google Patents

Premixing type gas turbine combustor

Info

Publication number
JPH04260721A
JPH04260721A JP2312491A JP2312491A JPH04260721A JP H04260721 A JPH04260721 A JP H04260721A JP 2312491 A JP2312491 A JP 2312491A JP 2312491 A JP2312491 A JP 2312491A JP H04260721 A JPH04260721 A JP H04260721A
Authority
JP
Japan
Prior art keywords
stage
combustion
combustion chamber
stage combustion
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2312491A
Other languages
Japanese (ja)
Inventor
Yoji Ishibashi
石橋 洋二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2312491A priority Critical patent/JPH04260721A/en
Publication of JPH04260721A publication Critical patent/JPH04260721A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce NOx in combustion exhaust has by a method wherein combustion air at the first stage is supplied from a swirl as a non-swirl in a two-stage type combustor. CONSTITUTION:A first stage combustion chamber 1 showing a dispersion type combustion is disposed at an upstream side of a combustor and then the second stage combustion chamber 2 for supplying mixture gas of fuel and air so as to perform a premixing and combustion is disposed at a downstream side. Combustion air for the first stage combustion chamber 1 is supplied by a swirler of which swirlting angle can be varied, wherein a flame holding action is kept in the first stage combustion chamber 1 to keep the flame at the first stage and then ignition is carried out there. At this time, the combustion air for the first stage combustion chamber 1 is supplied as the non-swirl, thereby the flame holding action within the first stage combustion chamber 1 is diminished and the flame is held at the second stage combustion flame in the second stage combustion chamber 2 so as to perform a combustion there. In this way, all fuels can be premixed and ignited and then NOx in the exhaust gas can be reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は産業用ガスタービンに係
り、特に、燃焼排気中のNOx 濃度が低い予混合型ガ
スタービン燃焼器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an industrial gas turbine, and more particularly to a premixed gas turbine combustor with a low NOx concentration in combustion exhaust.

【0002】0002

【従来の技術】従来の低NOx ガスタービン燃焼器の
主流は、燃焼器の流れ方向に燃焼域をそれぞれ一段目,
二段目に分離したいわゆる二段燃焼方式である。ここで
は、空気過剰燃焼による低温燃焼化によりNOx の発
生を抑制するものである。一段目の燃焼は低NOx 化
の面では不利であるが、火炎の安定性の高い拡散燃焼が
用いられ、二段目は低NOx 効果の高い予混合燃焼が
用いられる。代表的な例として、米国特許第42928
01号低NOx 燃焼器が開示されている。本燃焼器で
は、燃焼器の上流側に配置された複数の第一段バーナと
燃焼室の内部に突出して設けられた第二段バーナをもち
、燃焼室はほぼ中間で径を縮小した喉部によって上流側
の燃焼と下流側の燃焼に分けられる。燃料は最初、第一
段バーナに供給され、点火栓で点火され、第一段バーナ
の燃焼によりガスタービンは起動,昇速される。その後
、第二段バーナへ燃料が供給され、第二段バーナが作動
する。この状態では、第一段バーナ,第二段バーナとも
拡散燃焼である。その後、第一段バーナの燃料を減少さ
せつつ、この燃料を第二段バーナへ移し、最終的には第
一段バーナの燃料を全て第二段バーナから供給すること
により、第一段バーナを消炎させる。そののち、第一段
バーナへ燃料を再投入することにより、一段バーナは単
なる燃料と空気の混合室として作用させ、ここで形成さ
れた可燃混合気を第二段バーナ炎で保炎して予混合燃焼
を実現し、NOx の発生を抑制する。
[Prior Art] The main stream of conventional low NOx gas turbine combustors is the combustion zone in the flow direction of the combustor.
This is a so-called two-stage combustion method in which the combustion is separated into the second stage. Here, the generation of NOx is suppressed by lower temperature combustion due to excessive air combustion. Although the first stage combustion is disadvantageous in terms of reducing NOx, diffusion combustion with high flame stability is used, and the second stage uses premix combustion, which is highly effective in reducing NOx. A typical example is U.S. Patent No. 42928.
A No. 01 low NOx combustor is disclosed. This combustor has a plurality of first-stage burners placed upstream of the combustor and a second-stage burner protruding inside the combustion chamber, and the combustion chamber has a throat with a reduced diameter approximately in the middle. It can be divided into upstream combustion and downstream combustion. Fuel is first supplied to the first-stage burner, ignited by a spark plug, and the gas turbine is started and speeded up by combustion in the first-stage burner. Thereafter, fuel is supplied to the second stage burner, and the second stage burner is activated. In this state, both the first stage burner and the second stage burner perform diffusion combustion. After that, while decreasing the fuel in the first stage burner, this fuel is transferred to the second stage burner, and finally, by supplying all the fuel in the first stage burner from the second stage burner, the first stage burner is Extinguish inflammation. After that, by reinjecting fuel into the first-stage burner, the first-stage burner acts as a mere mixing chamber for fuel and air, and the combustible mixture formed here is flame-stabilized by the second-stage burner flame. Achieves mixed combustion and suppresses NOx generation.

【0003】従来型低NOx 燃焼器では、予混合燃焼
への移行時には、全量ないしはほとんど全量に近い燃料
を第二段バーナへ投入することになるので、第二段バー
ナでの燃焼量が過大となり、燃焼器壁が高温になりやす
く、信頼性,寿命の確保には冷却強化等の対策が必要に
なる。更に、本燃焼器では、第一段バーナが予混合燃焼
化された運転状態でも、第二段バーナはNOxの発生が
大きい拡散燃焼であり、ここで発生するNOxを効果的
に抑制する必要がある。
[0003] In a conventional low NOx combustor, when transitioning to premix combustion, the entire amount or almost the entire amount of fuel is injected into the second stage burner, so the amount of combustion in the second stage burner becomes excessive. , the combustor wall tends to reach high temperatures, and measures such as enhanced cooling are required to ensure reliability and longevity. Furthermore, in this combustor, even when the first stage burner is in premixed combustion mode, the second stage burner performs diffusion combustion, which generates a large amount of NOx, and it is necessary to effectively suppress the NOx generated here. be.

【0004】0004

【課題を解決するための手段】本発明の目的は、ガスタ
ービンに好適な低NOx 燃焼器を提供することにある
。 また、本発明の他の目的は一層の低NOx化を可能とす
る全予混合燃焼型の低NOx 燃焼器を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a low NOx combustor suitable for a gas turbine. Another object of the present invention is to provide a fully premixed combustion type low NOx combustor that enables further reduction in NOx.

【0005】上記の目的を達成するために、本発明は燃
焼器の上流側に拡散燃焼である一段目燃焼室、下流側に
燃料と空気の混合気を供給して予混合燃焼させる二段目
燃焼室を配置し、一段目燃焼室の保炎作用を作用させた
り消滅させることによって、一段目火炎の形成位置と燃
焼形態を制御する。具体的には一段目燃焼室への燃焼空
気を旋回角度を可変とする旋回器により供給し、ここで
一段目燃焼室へ燃焼空気を旋回流として供給することで
一段目燃焼室内に保炎作用を持たせて、ここに一段目火
炎を保持し、また一段目燃焼室へ燃焼空気を非旋回流と
して供給することで一段目燃焼室内の保炎作用を消滅さ
せ、ここでの火炎を吹消し二段目燃焼室で燃焼させるよ
うにしたものである。
In order to achieve the above object, the present invention provides a first stage combustion chamber for diffusion combustion on the upstream side of the combustor, and a second stage combustion chamber for premix combustion by supplying a mixture of fuel and air on the downstream side. The formation position and combustion form of the first-stage flame are controlled by arranging the combustion chamber and applying or extinguishing the flame-holding effect of the first-stage combustion chamber. Specifically, combustion air is supplied to the first stage combustion chamber by a swirler that has a variable swirl angle, and by supplying the combustion air to the first stage combustion chamber as a swirling flow, a flame holding effect is achieved within the first stage combustion chamber. By holding the first stage flame here and supplying combustion air to the first stage combustion chamber as a non-swirling flow, the flame holding effect in the first stage combustion chamber is extinguished and the flame here is blown out. It is designed to be burned in a second stage combustion chamber.

【0006】[0006]

【作用】一段目燃焼室の上流端に設けられた旋回角度を
可変とする旋回器により、一段目燃焼空気を旋回空気流
として供給することによって、一段目燃焼室の中心部に
は逆流領域が形成される。一段目燃料ノズルから供給さ
れた燃料の一部分は、この逆流領域に引き込まれ、火炎
はこの領域に保持されて安定燃焼し、これを火種として
一段目燃焼室内に一段目燃焼火炎を形成する。一方、旋
回器の旋回羽根の取付け角度を小さくする、ないしは零
とすることにより、一段目燃焼空気を実質上非旋回空気
流として供給すると、一段目燃焼室内の流れは逆流を伴
わない順流場となる。この流れ場では保炎作用をもつ逆
流領域がなくなるので、一段目燃焼火炎は一段目燃焼室
内に留まることができず下流へ流れ去る。この時、二段
目燃焼室で予混合燃焼火炎が形成されていると、一段目
燃焼火炎は二段目燃焼火炎に保炎されて燃焼を持続する
。この場合、一段目燃焼室内では一段目燃料と一段目燃
焼空気の混合が進行するので、二段目燃焼室は一段目燃
料,二段目燃料とも予混合燃焼することになる。逆に、
この状態で、旋回羽根の取付け角度を大きくすると、一
段目燃焼空気は旋回空気流として供給されることになる
ので、一段目燃焼室の中心部には逆流領域が形成され、
火炎はこの部分をつたわって上流側にさかのぼり、一段
目燃焼室内に一段目燃焼火炎を形成する。すなわち、一
段目燃焼室内に供給する一段目燃焼空気のフローパター
ンを変えることにより一段目燃焼室の保炎作用の有無を
制御し、燃料供給方法などの切り替え操作なしで燃焼パ
ターンを拡散燃焼から予混合燃焼へ、逆に、予混合燃焼
から拡散燃焼へ切り替えることができる。
[Operation] By supplying the first stage combustion air as a swirling air flow using a swirler with a variable swirl angle installed at the upstream end of the first stage combustion chamber, a backflow region is created in the center of the first stage combustion chamber. It is formed. A portion of the fuel supplied from the first-stage fuel nozzle is drawn into this backflow region, and the flame is held in this region for stable combustion, which is used as a spark to form a first-stage combustion flame in the first-stage combustion chamber. On the other hand, if the first stage combustion air is supplied as a substantially non-swirling air flow by reducing the installation angle of the swirl vanes of the swirler or making it zero, the flow inside the first stage combustion chamber becomes a forward flow field with no backflow. becomes. In this flow field, there is no backflow region that has a flame-holding effect, so the first-stage combustion flame cannot remain in the first-stage combustion chamber and flows away downstream. At this time, if a premixed combustion flame is formed in the second stage combustion chamber, the first stage combustion flame is flame held by the second stage combustion flame and combustion continues. In this case, since mixing of the first stage fuel and first stage combustion air progresses in the first stage combustion chamber, premix combustion of both the first stage fuel and the second stage fuel occurs in the second stage combustion chamber. vice versa,
In this state, if the installation angle of the swirl vanes is increased, the first stage combustion air will be supplied as a swirling air flow, so a backflow region will be formed in the center of the first stage combustion chamber.
The flame travels upstream through this part and forms a first-stage combustion flame within the first-stage combustion chamber. In other words, by changing the flow pattern of the first-stage combustion air supplied into the first-stage combustion chamber, the presence or absence of a flame-holding effect in the first-stage combustion chamber can be controlled, and the combustion pattern can be changed from diffuse combustion to predetermined combustion without switching the fuel supply method. It is possible to switch to mixed combustion, or vice versa, from premixed combustion to diffusion combustion.

【0007】[0007]

【実施例】以下、本発明の実施例を図を引用して説明す
る。図1は本発明の一実施例を示したものである。ガス
タービン燃焼器は円筒型であり、タービンケーシング2
6に取り付けられた燃焼器外筒22,22′及び燃焼器
外筒カバー23によって収納された一段目燃焼室1と二
段目燃焼室2及び尾筒25からなり、尾筒25の下流端
はタービン静翼27へつながっている。圧縮機からの突
出空気100は各燃焼室内1,2へ導かれ、一段目燃料
系統200、及び二段目燃料系統201より供給される
燃料を燃焼させて高温燃焼ガス106を発生させ、これ
をタービンへ供給する。上流側の一段目燃焼室は径を絞
った一段目燃焼筒3を持ち、その上流端は滑らかに外周
側へ拡大する一対の空気導入部材4,4′に繋がる。空
気導入部材4,4′は所定の間隔を持ち、上流端を燃焼
器外周側、下流端を一段目燃焼室内に開口する一段目燃
焼空気流路5を形成し、さらに、一段目燃焼空気流路5
の内部には複数枚の旋回羽根6が歯車をもつ回転軸7に
よって一段目燃焼空気流路壁に取付けられており、回転
軸の歯車は燃焼器外筒カバー23を介して回転装置8よ
り延びる回転リンク9で駆動される回転制御歯車10に
よって旋回羽根の取付け角度が自由に調節可能となって
いる。一段目燃焼室頭部中心部には一段目燃料ノズル1
1が空気導入部材4に接するように取り付けられており
、燃料噴孔12より一段目燃料200′が一段目燃焼室
内1へ噴射される。
[Embodiments] Hereinafter, embodiments of the present invention will be explained with reference to the drawings. FIG. 1 shows an embodiment of the present invention. The gas turbine combustor is cylindrical, and the turbine casing 2
The downstream end of the transition piece 25 consists of the first stage combustion chamber 1, the second stage combustion chamber 2, and the transition piece 25, which are housed by the combustor outer cylinders 22, 22' and the combustor outer cylinder cover 23 attached to the combustion chamber 6. It is connected to the turbine stationary blade 27. Projected air 100 from the compressor is guided to each combustion chamber 1, 2, and burns the fuel supplied from the first stage fuel system 200 and second stage fuel system 201 to generate high temperature combustion gas 106, which is then Supply to the turbine. The first-stage combustion chamber on the upstream side has a first-stage combustion tube 3 with a narrowed diameter, and its upstream end is connected to a pair of air introduction members 4, 4' that smoothly expand toward the outer circumference. The air introduction members 4 and 4' have a predetermined interval and form a first stage combustion air passage 5 whose upstream end is open to the combustor outer circumferential side and whose downstream end is open into the first stage combustion chamber. Road 5
Inside, a plurality of swirling vanes 6 are attached to the wall of the first stage combustion air passage by a rotating shaft 7 having gears, and the gears of the rotating shaft extend from the rotating device 8 via the combustor outer cylinder cover 23. A rotation control gear 10 driven by a rotation link 9 allows the mounting angle of the swirl vane to be freely adjusted. The first stage fuel nozzle 1 is located in the center of the head of the first stage combustion chamber.
1 is attached so as to be in contact with the air introduction member 4, and the first stage fuel 200' is injected into the first stage combustion chamber 1 from the fuel injection hole 12.

【0008】二段目燃焼室は二段目燃焼筒13をもち、
一段目燃焼筒3とは二段目燃焼用予混合器20によって
互いに接合するように組み立てられる構造となっている
。二段目燃焼用予混合器20は内周流路15と外周流路
16によって区画された二段目燃焼空気流路17内に二
段目燃料ノズル21が取り付けられている。、また、二
段目燃焼用予混合器20の下流位置に対応する燃焼筒1
3の内面には保炎器14が取り付けられており、さらに
、二段目燃焼筒13の下流側には燃焼ガス温度調節用の
希釈空気口28が設けられている。各燃焼筒には図示さ
れていないが壁面を冷却するための冷却空気口が設けら
れている。圧縮機から吐出された空気100は燃焼筒の
外周に添って流れながら、燃焼室内へそれぞれ希釈空気
101,二段目燃焼空気102,一段目燃焼空気104
および冷却空気として流入する。
The second stage combustion chamber has a second stage combustion cylinder 13,
The first stage combustion cylinder 3 and the second stage combustion premixer 20 are assembled so as to be joined to each other. In the second-stage combustion premixer 20 , a second-stage fuel nozzle 21 is installed in a second-stage combustion air passage 17 defined by an inner circumferential passage 15 and an outer circumferential passage 16 . , and the combustion tube 1 corresponding to the downstream position of the second-stage combustion premixer 20.
A flame stabilizer 14 is attached to the inner surface of the combustion chamber 3, and a dilution air port 28 for controlling combustion gas temperature is further provided on the downstream side of the second stage combustion tube 13. Although not shown, each combustion cylinder is provided with a cooling air port for cooling the wall surface. Air 100 discharged from the compressor flows along the outer periphery of the combustion tube and enters the combustion chamber as dilution air 101, second stage combustion air 102, and first stage combustion air 104, respectively.
and flows in as cooling air.

【0009】次に、かかる燃焼器の作動方法についての
ベる。図2は燃料の供給方法を説明したものであり、横
軸は時間、縦軸は全体の燃料流量に対するそれぞれ一段
目燃料200および二段目燃料201の流量比を示す。 ガスタービンはまず、時間■の起動点火において一段目
燃料200のみが供給され、点火栓24で点火されて一
段目燃焼室に一段目燃焼火炎を形成し、定格回転数条件
まではこの状態で運転される。なお、この時、一段目燃
焼空気は旋回流として供給される。時間■の燃料切り替
えでは二段目燃料201を投入しながら一段目燃料20
0を減じることによって二段目燃焼を作動させ、それぞ
れ一段目燃焼室に拡散燃焼火炎、二段目燃焼室に予混合
燃焼火炎が形成される。時間■の燃焼モード切り替えは
一段目燃焼空気を旋回流から非旋回流として供給するこ
とによって一段目燃焼火炎を下流に流し、二段目燃焼火
炎により一段目燃料を着火,保炎して二段目燃焼室にて
燃焼させることによって達成される。その後、それぞれ
一段目燃料200,二段目燃料201を増加させ時間■
で定格出力運転になる。図3,4はそれぞれ時間■の燃
焼モード切り替え前後の動作と作用を説明したものであ
る。図3(a)は燃焼モード切り替え前の旋回羽根の取
付け状態、図3(b)は一段目燃焼室内の流動パターン
を示す。旋回羽根の取付けは図3(a)に示すように旋
回角度Aを持つように取り付けられてあり、一段目燃焼
空気104はこの旋回羽根により周方向に旋回する速度
成分を持って一段目燃焼室内に導入される。従って一段
目燃焼室内では、同図(b)に示すような旋回流107
が形成される。旋回流107の中心部は旋回運動に伴う
遠心力作用により、その外周部よりも圧力が小さくなる
ため点線で示すような燃焼器の下流から上流に向かう逆
流108が引き起こされる。このような流れ場に燃料が
噴射され点火装置により点火されると二段目燃焼火炎の
一部をふくむ高温火炎一部はこの逆流に引き込まれて高
温の燃焼ガスを燃焼器の上流側へ搬送することになるの
で、この高温ガスによって燃焼が促進され、逆流を伴う
低速域に火炎が保持されてガスタービン燃焼器のような
高速気流中でも燃焼が持続可能となり、これらの作用に
よって一段目燃焼室に火炎が安定に形成される。なお、
この燃焼は燃焼室内で燃料と空気が混合しながら燃焼す
るいわゆる拡散燃焼でありNOx の発生量は比較的大
きいが安定燃焼性は高い。図5にこの時の火炎形成状態
を示す。一段目燃焼室に一段目燃焼火炎300、二段目
燃焼室に二段目燃焼火炎301が形成されている。次に
、燃焼切り替えの操作として図4(a)に示すように旋
回羽根の取付け角Aが零近くにセットされると、一段目
燃焼空気104はこの旋回羽根により整流されてほとん
ど軸方向速度成分のみを持って一段目燃焼室内に導入さ
れる。従って一段目燃焼室内では、同図(b)に示すよ
うに大部分の流れは燃焼器の上流から下流に向かって流
れる順流109が形成される。このような流れ場では火
炎を保持するための低速域がないので極端に燃焼器内の
気流流速が遅くない限り火炎は燃焼器の下流側へ流され
、一段目燃焼室内に留まることは出来ない。この時、一
段目燃焼室の下流に配置された二段目燃焼室に二段目燃
焼火炎を形成させることによって、一段目燃焼の燃料と
空気の可燃混合気を二段目燃焼室で二段目燃焼火炎の加
熱作用により着火,保炎して燃焼する。この時の、火炎
形成状態を図6に示す。二段目燃焼室の二段目燃焼火炎
301に保炎されて一段目燃焼火炎300が同じく二段
目燃焼室内に形成されている。このような燃焼切り替え
により一段目燃料,二段目燃料ともぞれぞれの燃焼用空
気と燃焼前に混合された状態で燃焼する、いわゆる、予
混合燃焼となるので、火炎温度は拡散燃焼に比べて一様
であり、燃料を希薄混合比として供給し、低温燃焼させ
ることにより、NOx の発生を抑制することが出来る
Next, a method of operating such a combustor will be described. FIG. 2 illustrates the fuel supply method, with the horizontal axis representing time and the vertical axis representing the flow rate ratio of the first-stage fuel 200 and the second-stage fuel 201 to the total fuel flow rate, respectively. First, the gas turbine is supplied with only the first-stage fuel 200 at the start-up ignition at time ■, which is ignited by the ignition plug 24 to form a first-stage combustion flame in the first-stage combustion chamber, and operates in this state until the rated rotation speed condition is reached. be done. Note that at this time, the first stage combustion air is supplied as a swirling flow. During the fuel change at time ■, the first stage fuel 201 is injected while the second stage fuel 201 is injected.
By subtracting 0, the second stage combustion is activated, and a diffusion combustion flame and a premix combustion flame are formed in the first stage combustion chamber and the second stage combustion chamber, respectively. The switching of the combustion mode at time ■ involves supplying the first stage combustion air from a swirling flow to a non-swirling flow to allow the first stage combustion flame to flow downstream, and the second stage combustion flame ignites the first stage fuel, holds the flame, and then the second stage combustion air is supplied as a non-swirling flow. This is achieved by combustion in a combustion chamber. After that, increase the first stage fuel by 200 and the second stage fuel by 201 for a time
The rated output operation will be achieved. 3 and 4 respectively explain the operation and effect before and after switching the combustion mode at time (3). FIG. 3(a) shows the installed state of the swirl vane before switching the combustion mode, and FIG. 3(b) shows the flow pattern in the first stage combustion chamber. The swirl vanes are installed so as to have a swirl angle A as shown in FIG. will be introduced in Therefore, in the first stage combustion chamber, a swirling flow 107 as shown in FIG.
is formed. Because the pressure at the center of the swirling flow 107 is lower than that at the outer periphery due to the centrifugal force caused by the swirling motion, a backflow 108 from the downstream to the upstream of the combustor as shown by the dotted line is caused. When fuel is injected into such a flow field and ignited by the igniter, a portion of the high-temperature flame, including a portion of the second-stage combustion flame, is drawn into this reverse flow and transports the high-temperature combustion gas to the upstream side of the combustor. As a result, combustion is promoted by this high-temperature gas, and the flame is maintained in a low-velocity region with reverse flow, making it possible to sustain combustion even in high-speed airflow such as in a gas turbine combustor. A flame is formed stably. In addition,
This combustion is so-called diffusion combustion in which the fuel and air are mixed and burned in the combustion chamber, and although the amount of NOx generated is relatively large, the combustion stability is high. Figure 5 shows the flame formation state at this time. A first combustion flame 300 is formed in the first combustion chamber, and a second combustion flame 301 is formed in the second combustion chamber. Next, as a combustion switching operation, when the mounting angle A of the swirl vane is set close to zero as shown in FIG. It is introduced into the first stage combustion chamber with a chisel. Therefore, in the first-stage combustion chamber, a forward flow 109 is formed in which most of the flow flows from upstream to downstream of the combustor, as shown in FIG. 3(b). In such a flow field, there is no low-velocity region to hold the flame, so unless the airflow velocity inside the combustor is extremely slow, the flame will flow downstream of the combustor and will not be able to remain in the first stage combustion chamber. . At this time, by forming a second-stage combustion flame in the second-stage combustion chamber located downstream of the first-stage combustion chamber, the combustible mixture of fuel and air from the first-stage combustion is transferred to the second-stage combustion chamber. The heating effect of the combustion flame ignites, holds the flame, and burns. The state of flame formation at this time is shown in FIG. A first stage combustion flame 300 is also formed in the second stage combustion chamber, being flame stabilized by a second stage combustion flame 301 of the second stage combustion chamber. This switching of combustion results in so-called premixed combustion, in which the first stage fuel and second stage fuel are mixed with their respective combustion air before combustion, resulting in so-called premixed combustion, so the flame temperature does not change to diffuse combustion. By supplying fuel at a lean mixture ratio and performing low-temperature combustion, it is possible to suppress the generation of NOx.

【0010】0010

【発明の効果】本発明によれば、二段燃焼器で一段目燃
焼空気を旋回空気流から非旋回空気流として供給するこ
とにより、一段目が拡散燃焼、二段目が予混合燃焼の燃
焼状態から二段目燃焼室で全燃料が予混合燃焼する燃焼
状態へ移行させることが出来るので、NOx を効果的
に低減することが出来る。更に、燃焼モード切り替えが
燃料供給方法の変更無くして行えるので、ガスタービン
の円滑な運転を保ちつつ、また、燃焼器ハードに対して
過大な熱応力等を発生させずして、燃焼モードのきりか
えができ、燃焼器制御機器が簡素化できる。
Effects of the Invention According to the present invention, by supplying the first stage combustion air from a swirling air flow to a non-swirling air flow in a two-stage combustor, diffusion combustion is achieved in the first stage and premix combustion is achieved in the second stage. Since it is possible to transition from this state to a combustion state in which all the fuel is premixed and combusted in the second stage combustion chamber, NOx can be effectively reduced. Furthermore, since the combustion mode can be switched without changing the fuel supply method, the combustion mode can be switched without changing the fuel supply method, while maintaining smooth operation of the gas turbine and without causing excessive thermal stress to the combustor hardware. It can be replaced and the combustor control equipment can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の予混合燃焼型ガスタービン燃焼機の断
面図。
FIG. 1 is a sectional view of a premix combustion type gas turbine combustor of the present invention.

【図2】本発明の燃料供給方法を示した特性図。FIG. 2 is a characteristic diagram showing the fuel supply method of the present invention.

【図3】旋回羽根の取付け角度による一段目燃焼室内の
火炎の状態を異にした空気流動状況の説明図。
FIG. 3 is an explanatory diagram of air flow conditions with different flame conditions in the first stage combustion chamber depending on the mounting angle of the swirl vanes.

【図4】旋回羽根の取付け角度による一段目燃焼室内の
火炎の状態を異にした空気流動状況の説明図。
FIG. 4 is an explanatory diagram of air flow conditions with different flame conditions in the first stage combustion chamber depending on the mounting angle of the swirl vanes.

【図5】燃焼切り替え前後の火炎の形成状況を示した断
面図。
FIG. 5 is a cross-sectional view showing the state of flame formation before and after combustion switching.

【図6】燃焼切り替え前後の異なる火炎の形成状況を示
した断面図。
FIG. 6 is a cross-sectional view showing different flame formation states before and after combustion switching.

【符号の説明】[Explanation of symbols]

1…一段目燃焼室、2…二段目燃焼室、3…一段目燃焼
筒、5…一段目燃焼空気流路、6…旋回羽根、11…一
段目燃料ノズル、13…二段目燃焼筒、21…二段目燃
料ノズル。
DESCRIPTION OF SYMBOLS 1...1st stage combustion chamber, 2...2nd stage combustion chamber, 3...1st stage combustion tube, 5...1st stage combustion air flow path, 6...Swirling vane, 11...1st stage fuel nozzle, 13...2nd stage combustion tube , 21...Second stage fuel nozzle.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃焼器の上流側に一段目燃焼用の燃料と空
気を供給して燃焼する一段目燃焼室と、その下流側に燃
料と空気とを予め混合し、可燃混合気を供給して燃焼さ
せる二段目燃焼室から構成されるガスタービン燃焼器で
あり、前記一段目燃焼室の頭部端の燃焼器外周側には旋
回角度を変えることができる一段目燃焼用の空気旋回器
を配置し、また、前記一段目燃焼室の頭部端の内周側に
は一段目燃料ノズルを備え、前記二段目燃焼室は前記一
段目燃焼室の下流端につながり、その接続部の近傍の燃
焼器外周側には燃料と空気の可燃混合気を供給して燃焼
させる予混合バーナを備え、前記ガスタービン燃焼器の
運転は一段目燃焼用の空気を旋回流として供給すること
により前記一段目燃焼室内に一段目燃焼火炎を形成し、
また、一段目燃焼用の空気を非旋回流として供給するこ
とにより前記一段目燃焼火炎を下流に移して二段目燃焼
火炎によって保持させて二段目燃焼室で燃焼させること
を特徴とする予混合燃焼型ガスタービン燃焼器。
Claim 1: A first-stage combustion chamber in which fuel and air for first-stage combustion are supplied to the upstream side of the combustor for combustion, and a combustible mixture is supplied by pre-mixing fuel and air to the downstream side thereof. This gas turbine combustor is composed of a second-stage combustion chamber that performs combustion, and an air swirler for first-stage combustion that can change the swirling angle is located on the outer circumferential side of the combustor at the head end of the first-stage combustion chamber. Further, a first-stage fuel nozzle is provided on the inner circumferential side of the head end of the first-stage combustion chamber, and the second-stage combustion chamber is connected to the downstream end of the first-stage combustion chamber, and the connection part thereof is connected to the downstream end of the first-stage combustion chamber. A premix burner for supplying and combusting a combustible mixture of fuel and air is provided on the outer peripheral side of the combustor near the combustor, and the gas turbine combustor is operated by supplying air for first-stage combustion as a swirl flow. A first stage combustion flame is formed in the first stage combustion chamber,
In addition, the first stage combustion flame is moved downstream by supplying air for the first stage combustion as a non-swirling flow, held by the second stage combustion flame, and combusted in the second stage combustion chamber. Mixed combustion gas turbine combustor.
JP2312491A 1991-02-18 1991-02-18 Premixing type gas turbine combustor Pending JPH04260721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2312491A JPH04260721A (en) 1991-02-18 1991-02-18 Premixing type gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2312491A JPH04260721A (en) 1991-02-18 1991-02-18 Premixing type gas turbine combustor

Publications (1)

Publication Number Publication Date
JPH04260721A true JPH04260721A (en) 1992-09-16

Family

ID=12101767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2312491A Pending JPH04260721A (en) 1991-02-18 1991-02-18 Premixing type gas turbine combustor

Country Status (1)

Country Link
JP (1) JPH04260721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539512A (en) * 2010-08-06 2013-10-24 エクソンモービル アップストリーム リサーチ カンパニー Stoichiometric combustion optimization system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013539512A (en) * 2010-08-06 2013-10-24 エクソンモービル アップストリーム リサーチ カンパニー Stoichiometric combustion optimization system and method
US9903279B2 (en) 2010-08-06 2018-02-27 Exxonmobil Upstream Research Company Systems and methods for optimizing stoichiometric combustion
US10174682B2 (en) 2010-08-06 2019-01-08 Exxonmobil Upstream Research Company Systems and methods for optimizing stoichiometric combustion

Similar Documents

Publication Publication Date Title
US5127229A (en) Gas turbine combustor
JP2644745B2 (en) Gas turbine combustor
US5121597A (en) Gas turbine combustor and methodd of operating the same
JP3628747B2 (en) Nozzle for diffusion mode combustion and premixed mode combustion in a turbine combustor and method for operating a turbine combustor
JP3183053B2 (en) Gas turbine combustor and gas turbine
JP3958767B2 (en) Gas turbine combustor and ignition method thereof
US5323614A (en) Combustor for gas turbine
JPH02309124A (en) Combustor and operating method thereof
JPH0771759A (en) Fixed combustor for gas turbine of low discharge ratio
JP2003262336A (en) Gas turbine combustor
JP2008275299A (en) Method and system to reduce nox emission in combustion system
JPS6232370B2 (en)
JP2002257345A (en) Premix combustor for gas turbine and its fuel supply controller and controlling method
JP3179871B2 (en) Gas turbine combustor and method of operating the same
JPH07318059A (en) Gas turbine burner
JPS59183202A (en) Low nox burner
JPH04260721A (en) Premixing type gas turbine combustor
JPH03207917A (en) Gas turbine combustion device
JP2544515B2 (en) Gas combustor
JP3449802B2 (en) Gas combustion equipment
JPH07248117A (en) Combustion method for gas turbine premixing combustor
JP2004028352A (en) LOW NOx COMBUSTOR COMPRISING FUEL INJECTION VALVE FOR PREVENTING BACKFIRE AND SELF-IGNITION
JPH11248158A (en) Combustion device for gas turbine
KR101041466B1 (en) The low NOx gas turbine combustor having the multi-fuel mixing device
JPH1130423A (en) Low nox combustor for gas turbine