JPH05121685A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH05121685A
JPH05121685A JP3279405A JP27940591A JPH05121685A JP H05121685 A JPH05121685 A JP H05121685A JP 3279405 A JP3279405 A JP 3279405A JP 27940591 A JP27940591 A JP 27940591A JP H05121685 A JPH05121685 A JP H05121685A
Authority
JP
Japan
Prior art keywords
wiring
well
type
diffusion layer
type well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3279405A
Other languages
Japanese (ja)
Inventor
Yasuyuki Yoshikawa
康幸 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC IC Microcomputer Systems Co Ltd
Original Assignee
NEC IC Microcomputer Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC IC Microcomputer Systems Co Ltd filed Critical NEC IC Microcomputer Systems Co Ltd
Priority to JP3279405A priority Critical patent/JPH05121685A/en
Publication of JPH05121685A publication Critical patent/JPH05121685A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce chip size by burying wiring for supplying power and wiring for grounding in a semiconductor substrate. CONSTITUTION:Wiring 3 and wiring 4 are formed on an N-type well 2 formed in a P-type silicon substrate 1 and on the region except the N-type well 2. An N-type well 2a is formed in a P-type silicon layer 6 formed on the surface containing the wiring 3 and the wiring 4, so as to conform with the N-type well 2, and the wiring 3 is electrically isolated from the wiring 4. A MOS transistor is formed on each of the N-type well 2a and the P-type silicon layer 6, and connected with the wiring 3 and the wiring 4 in the substrate. Thereby chip size is reduced, and, at the same time, a signal line can be freely arranged on elements. Electric potential of the well and the substrate is stabilized in virture of existance of the wiring 3 and the wiring 4, so that latch-up can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体集積回路に関し、
特にCMOSトランジスタを有する半導体集積回路に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit,
In particular, it relates to a semiconductor integrated circuit having a CMOS transistor.

【0002】[0002]

【従来の技術】従来の半導体集積回路は図3に示すよう
に、P型シリコン基板1に設けたN型ウェル2と、N型
ウェル2を含むP型シリコン基板1の表面に設けて素子
形成領域を区画するフィールド酸化膜7と、素子形成領
域上に設けたゲート電極8に整合してN型ウェル2に設
けたP型拡散層9及びP型シリコン基板1に設けたN型
拡散層10と、ゲート電極8を含む表面に設けた層間絶
縁膜11と、層間絶縁膜11に設けたコンタクトホール
を介してP型拡散層9及びN型拡散層10のそれぞれと
接続して設けた電源用配線15,GND用配線16,信
号用配線12とを有して構成される。
2. Description of the Related Art As shown in FIG. 3, a conventional semiconductor integrated circuit is provided with an N-type well 2 provided on a P-type silicon substrate 1 and a P-type silicon substrate 1 including the N-type well 2 to form an element. The P-type diffusion layer 9 provided in the N-type well 2 and the N-type diffusion layer 10 provided in the P-type silicon substrate 1 in alignment with the field oxide film 7 that divides the region and the gate electrode 8 provided on the element formation region. And an interlayer insulating film 11 provided on the surface including the gate electrode 8 and a power supply provided by being connected to each of the P-type diffusion layer 9 and the N-type diffusion layer 10 through a contact hole provided in the interlayer insulating film 11. The wiring 15, the GND wiring 16, and the signal wiring 12 are provided.

【0003】[0003]

【発明が解決しようとする課題】この従来の半導体集積
回路では、電源用配線及びGND用配線が一般の信号用
配線と同一の配線層上に混在して形成される構成となっ
ている。
In this conventional semiconductor integrated circuit, the power supply wiring and the GND wiring are mixedly formed on the same wiring layer as the general signal wiring.

【0004】現在、マイクロコンピュータ等の構成の複
雑さ、規模の大きさからトランジスタ素子そのものの大
きさよりも素子同志を接続する配線及び素子に電力を供
給する電源用配線及びGND用配線が占める領域により
チップの面積が決定され、集積度向上のネックになって
いる。この対策として、配線層を多層化する事により、
1層当たりの負担の軽減を図るという方法が一般的に採
用されているが、この方法の場合、配線層が上層になる
程下層の拡散層・ゲート電極等への接続が難しくなり、
かつ接続するために必要なコンタクト領域も大きくなる
ため、集積度は必ずしも向上できないという問題点があ
った。
At present, due to the complexity and scale of the structure of microcomputers and the like, the area occupied by the wiring connecting elements to each other and the power supply wiring for supplying power to the elements and the GND wiring is larger than the size of the transistor element itself. The area of the chip is determined, which is a bottleneck in improving the degree of integration. As a measure against this, by making the wiring layer multilayer,
A method of reducing the load per layer is generally adopted. In this method, however, as the wiring layer becomes the upper layer, the connection to the lower diffusion layer / gate electrode becomes more difficult.
In addition, the contact area required for connection becomes large, so that there is a problem in that the degree of integration cannot always be improved.

【0005】[0005]

【課題を解決するための手段】本発明の半導体集積回路
は、一導電型半導体基板の一主面に設けた逆導電型の第
1のウェルと、前記第1のウェル及び第1のウェル以外
の領域のそれぞれの上に設けた電源又はGND用の配線
と、前記配線を含む表面に設けた一導電型半導体層と、
前記第1のウェルに整合して前記一導電型半導体層内に
設け且つ前記第1のウェル上に設けた配線と前記第1の
ウェル以外の領域上に設けた配線とを電気的に分離する
逆導電型の第2のウェルと、前記第2のウェル及び前記
一導電型半導体層のそれぞれに設け且つ前記それぞれの
領域に埋込まれた前記配線と接続するMOSトランジス
タとを有する。
According to another aspect of the present invention, there is provided a semiconductor integrated circuit including a first well of opposite conductivity type provided on one main surface of a semiconductor substrate of one conductivity type, the first well and the first well other than the first well. A wiring for power supply or GND provided on each of the regions, and a semiconductor layer of one conductivity type provided on the surface including the wiring,
The wiring provided in the one conductivity type semiconductor layer in alignment with the first well and provided on the first well is electrically separated from the wiring provided on a region other than the first well. A second well of opposite conductivity type and a MOS transistor provided in each of the second well and the one conductivity type semiconductor layer and connected to the wiring embedded in the respective regions are provided.

【0006】[0006]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0007】図1(a),(b)は本発明の第1の実施
例を説明するための断面図及び切欠斜視図である。
1A and 1B are a sectional view and a cutaway perspective view for explaining a first embodiment of the present invention.

【0008】図1(a)に示す様に、まず、P型シリコ
ン基板の一主面にN型不純物をイオン注入してN型ウェ
ル2を形成する。次にN型ウェル2を含む表面にアルミ
ニウム又はタングステン等の金属層を堆積し、ホトリソ
グラフィ技術を用いてパターニングし、電源用配線3と
GND用配線4とを形成する。この配線3,4を含む表
面にPSG膜5を形成した後、配線3,4が露出するま
で研磨して配線3,4間にPSG膜5を埋込み、この上
にP型シリコン層6をヘトロエピタキシャル法により成
長させる。次に、N型ウェル2aをN型ウェル2と整合
してP型シリコン層6内に形成して電源用配線3とGN
D用配線4を電気的に分離する。次に、N型ウェル2a
を含むP型シリコン層6の表面を選択的に酸化して素子
形成領域を区画るフィールド酸化膜7を形成し、素子形
成領域上に設けたゲート電極8に整合してN型ウェル2
a内にP型拡散層9を形成し、N型ウェル2a以外の領
域のP型シリコン層6内にN型拡散層10を形成する。
ここで、P型拡散層9及びN型拡散層10のそれぞれに
選択的に配線3及び配線4に達する拡散層を深く形成し
て配線3とP型拡散層9とを接続し、配線4とN型拡散
層10とを接続する。次に、ゲート電極8を含む表面に
層間絶縁膜11を堆積してコンタクトホールを設け、P
型拡散層9及びN型拡散層10と接続する信号用配線1
2を形成する。
As shown in FIG. 1A, first, an N-type well 2 is formed by ion-implanting N-type impurities into one main surface of a P-type silicon substrate. Next, a metal layer such as aluminum or tungsten is deposited on the surface including the N-type well 2 and patterned by using the photolithography technique to form the power supply wiring 3 and the GND wiring 4. After forming the PSG film 5 on the surface including the wirings 3 and 4, the PSG film 5 is buried between the wirings 3 and 4 by polishing until the wirings 3 and 4 are exposed, and the P-type silicon layer 6 is formed thereon. It is grown by the epitaxial method. Next, the N-type well 2a is formed in the P-type silicon layer 6 in alignment with the N-type well 2 to form the power supply wiring 3 and the GN.
The D wiring 4 is electrically separated. Next, the N-type well 2a
The surface of the P-type silicon layer 6 containing P is selectively oxidized to form a field oxide film 7 for partitioning the element formation region, and the N-type well 2 is aligned with the gate electrode 8 provided on the element formation region.
A P-type diffusion layer 9 is formed in a, and an N-type diffusion layer 10 is formed in the P-type silicon layer 6 in a region other than the N-type well 2a.
Here, a diffusion layer selectively reaching the wirings 3 and 4 is deeply formed in each of the P-type diffusion layer 9 and the N-type diffusion layer 10 to connect the wiring 3 and the P-type diffusion layer 9 to each other. It is connected to the N-type diffusion layer 10. Next, an interlayer insulating film 11 is deposited on the surface including the gate electrode 8 to form a contact hole, and P
Signal wiring 1 connected to the type diffusion layer 9 and the N type diffusion layer 10
Form 2.

【0009】図1(b)に示すように、電源用配線3と
GND用配線4の配置は、半導体基板上に形成するPチ
ャネルトランジスタの領域とNチャネルトランジスタの
領域を分離し、それぞれのトランジスタ群に対する電源
端子20及びGND端子21からの電位の供給が互いに
交差する事無く行えるように各トランジスタ群を配置す
る。この状態において前述した拡散層の下に埋設した電
源用配線3及びGND用配線4を各トランジスタの拡散
層に接続すると、各トランジスタへの電源またはGND
電位の供給は拡散層の直下から行えるため、拡散層の上
は信号用の配線を自由に配置する事が出来、信号線が電
源配線又は062敗線を跨ぐためのコンタクト領域も必
要なくなるため、電源用配線3及びGND用配線4の占
める領域に相当する面積以上にチップサイズを縮小でき
る利点がある。
As shown in FIG. 1B, the power supply wiring 3 and the GND wiring 4 are arranged such that the P-channel transistor region and the N-channel transistor region formed on the semiconductor substrate are separated from each other. Each transistor group is arranged so that potentials from the power supply terminal 20 and the GND terminal 21 can be supplied to the group without crossing each other. In this state, if the power supply wiring 3 and the GND wiring 4 buried under the diffusion layer described above are connected to the diffusion layer of each transistor, the power supply to each transistor or the GND
Since the potential can be supplied from directly below the diffusion layer, the signal wiring can be freely arranged on the diffusion layer, and the contact area for the signal line to cross the power supply wiring or the 062 line is not required. There is an advantage that the chip size can be reduced more than the area corresponding to the area occupied by the power supply wiring 3 and the GND wiring 4.

【0010】図2は本発明の第2の実施例を説明するた
めの断面図である。
FIG. 2 is a sectional view for explaining the second embodiment of the present invention.

【0011】図2に示すように、第1の実施例と同様の
工程により、P型シリコン基板1の一主面にN型ウェル
2を形成し、N型ウェル2の上に電源用配線3及びN型
ウェル2以外の領域にGND用配線4をそれぞれ形成す
る。次に配線3,4を含む表面にP型シリコン層6を形
成してN型ウェル2に整合するN型ウェル2aを形成
し、配線3と配線4とを電気的に分離する。次に、第1
の実施例と同様にゲート電極8に整合してP型拡散層9
及びN型拡散層10を形成する。次に、ゲート電極8を
含む表面に層間絶縁膜11を堆積してP型拡散層9及び
N型拡散層10に対するコンタクトホールと、配線3,
4に対するコンタクトホールを形成し、これらのコンタ
クトホールを含む表面にアルミニウム等の金属層を堆積
してパターニングし、信号用配線12及び配線3とP型
拡散層9とを接続する配線13,配線4とN型拡散層1
0とを接続する配線14のそれぞれを形成する。
As shown in FIG. 2, the N-type well 2 is formed on one main surface of the P-type silicon substrate 1 by the same process as in the first embodiment, and the power supply wiring 3 is formed on the N-type well 2. And the GND wiring 4 is formed in the regions other than the N-type well 2. Next, a P-type silicon layer 6 is formed on the surface including the wirings 3 and 4 to form an N-type well 2a matching the N-type well 2, and the wiring 3 and the wiring 4 are electrically separated. Then the first
The P-type diffusion layer 9 is aligned with the gate electrode 8 in the same manner as in the above embodiment.
And the N-type diffusion layer 10 is formed. Next, an interlayer insulating film 11 is deposited on the surface including the gate electrode 8 to form contact holes for the P-type diffusion layer 9 and the N-type diffusion layer 10, the wiring 3,
4 are formed, and a metal layer of aluminum or the like is deposited on the surface including these contact holes and patterned to connect the signal wiring 12 and the wiring 3 and the wiring 13 and the wiring 4 to each other. And N-type diffusion layer 1
Each of the wirings 14 for connecting to 0 is formed.

【0012】ここで、配線3と配線4との電気的分離を
N型ウェル2,2aのPN接合面のみで実現しており、
工程を簡略化でき、また、配線3,4と拡散層9,10
との接続を金属配線で接続しており、低抵抗の接続がで
きるという利点がある。
Here, electrical isolation between the wiring 3 and the wiring 4 is realized only by the PN junction surface of the N-type wells 2 and 2a.
The process can be simplified, and the wirings 3, 4 and the diffusion layers 9, 10 can be simplified.
Since it is connected with a metal wiring, there is an advantage that a low resistance connection can be made.

【0013】[0013]

【発明の効果】以上説明した様に本発明は、電源端子か
ら発しN型ウェル領域内に内包されて拡散層の下に埋設
された配線層と、GND端子から発しP型基板領域に内
包されて拡散層の下に埋設された配線層とを有する事に
より、電源配線及びGND配線の占める領域及び信号線
が電源配線又はGND配線を跨ぐ領域に相当するチップ
サイズを縮小できるという効果を有する。
As described above, according to the present invention, the wiring layer which is emitted from the power supply terminal and is included in the N-type well region and buried under the diffusion layer is included in the P-type substrate region which is emitted from the GND terminal. By having the wiring layer buried under the diffusion layer, the chip size corresponding to the region occupied by the power supply line and the GND line and the region where the signal line straddles the power supply line or the GND line can be reduced.

【0014】また、基板及びウェルに直接電気的に低抵
抗で接続する電源配線及びGND配線をチップ全面にわ
たって有する事となるため、電源及びGND電位の安定
化を図る事が出来、ラッチアップ等が発生しにくくでき
るという効果を有する。
Further, since the power supply wiring and the GND wiring which are electrically connected to the substrate and the well directly with low resistance are provided over the entire surface of the chip, the power supply and the GND potential can be stabilized, and latch-up and the like can be achieved. It has an effect that it is difficult to occur.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を説明するための断面図
及び切欠斜視図。
FIG. 1 is a sectional view and a cutaway perspective view for explaining a first embodiment of the present invention.

【図2】本発明の第2の実施例を説明するための断面
図。
FIG. 2 is a sectional view for explaining a second embodiment of the present invention.

【図3】従来の半導体集積回路を説明するための断面
図。
FIG. 3 is a sectional view for explaining a conventional semiconductor integrated circuit.

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 2,2a N型ウェル 3,4,12,13,14,15,16 配線 5 PSG膜 6 P型シリコン層 7 フィールド酸化膜 8 ゲート電極 9 P型拡散層 10 N型拡散層 11 層間絶縁膜 1 P-type silicon substrate 2, 2a N-type well 3, 4, 12, 13, 14, 15, 15, 16 Wiring 5 PSG film 6 P-type silicon layer 7 Field oxide film 8 Gate electrode 9 P-type diffusion layer 10 N-type diffusion layer 11 Interlayer insulation film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一導電型半導体基板の一主面に設けた逆
導電型の第1のウェルと、前記第1のウェル及び第1の
ウェル以外の領域のそれぞれの上に設けた電源又はGN
D用の配線と、前記配線を含む表面に設けた一導電型半
導体層と、前記第1のウェルに整合して前記一導電型半
導体層内に設け且つ前記第1のウェル上に設けた配線と
前記第1のウェル以外の領域上に設けた配線とを電気的
に分離する逆導電型の第2のウェルと、前記第2のウェ
ル及び前記一導電型半導体層のそれぞれに設け且つ前記
それぞれの領域に埋込まれた前記配線と接続するMOS
トランジスタとを有することを特徴とする半導体集積回
路。
1. A first well of opposite conductivity type provided on one main surface of a one conductivity type semiconductor substrate, and a power supply or GN provided on each of the first well and a region other than the first well.
Wiring for D, semiconductor layer of one conductivity type provided on the surface including the wiring, wiring provided in the semiconductor layer of one conductivity type aligned with the first well and provided on the first well A second well of opposite conductivity type that electrically separates a wiring provided on a region other than the first well, and the second well and the one conductivity type semiconductor layer, and Connected to the wiring embedded in the region
A semiconductor integrated circuit having a transistor.
【請求項2】 配線がアルミニウム,タングステン等の
金属層である請求項1記載の半導体集積回路。
2. The semiconductor integrated circuit according to claim 1, wherein the wiring is a metal layer of aluminum, tungsten or the like.
JP3279405A 1991-10-25 1991-10-25 Semiconductor integrated circuit Pending JPH05121685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3279405A JPH05121685A (en) 1991-10-25 1991-10-25 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3279405A JPH05121685A (en) 1991-10-25 1991-10-25 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH05121685A true JPH05121685A (en) 1993-05-18

Family

ID=17610651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3279405A Pending JPH05121685A (en) 1991-10-25 1991-10-25 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH05121685A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844595B2 (en) * 2000-01-11 2005-01-18 Winbond Electronics Corp. Electrostatic discharge protection circuit with high triggering voltage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844595B2 (en) * 2000-01-11 2005-01-18 Winbond Electronics Corp. Electrostatic discharge protection circuit with high triggering voltage

Similar Documents

Publication Publication Date Title
JPH021928A (en) Semiconductor integrated circuit
JPH09283632A (en) Semiconductor integrated circuit device
JPH1084083A (en) Semiconductor device having static electricity protection circuit
US5643832A (en) Semiconductor device and method for fabrication thereof
KR100449874B1 (en) Semiconductor integrated circuit device
JPS6355960A (en) Semiconductor device
JPS6234150B2 (en)
JPH05121685A (en) Semiconductor integrated circuit
JPH0775246B2 (en) Semiconductor integrated circuit device
JPH0122736B2 (en)
JPH0666412B2 (en) Stacked semiconductor integrated circuit
JP3168651B2 (en) Semiconductor storage device
JP2993041B2 (en) Complementary MOS semiconductor device
JPH06163843A (en) Manufacture of semiconductor device
KR910008989B1 (en) Integrated circuit masterslice
JP3191924B2 (en) Semiconductor device and manufacturing method thereof
JPH08148579A (en) Semiconductor device and its manufacture
JPH03169073A (en) Semiconductor integrated circuit device
JP2680846B2 (en) Semiconductor memory device
JP2834186B2 (en) Semiconductor device
JPH0779137B2 (en) Semiconductor device
JPH0550140B2 (en)
JPH05152515A (en) Semiconductor device
JPH0750739B2 (en) Multilayer wiring structure of semiconductor integrated circuit
JPH0298194A (en) Integrated circuit