JPH0512066B2 - - Google Patents

Info

Publication number
JPH0512066B2
JPH0512066B2 JP17318288A JP17318288A JPH0512066B2 JP H0512066 B2 JPH0512066 B2 JP H0512066B2 JP 17318288 A JP17318288 A JP 17318288A JP 17318288 A JP17318288 A JP 17318288A JP H0512066 B2 JPH0512066 B2 JP H0512066B2
Authority
JP
Japan
Prior art keywords
slab
amount
molten steel
time difference
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17318288A
Other languages
Japanese (ja)
Other versions
JPH0225257A (en
Inventor
Akira Matsushita
Kazuhiko Nagahashi
Takeyoshi Ninomya
Atsuhiro Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17318288A priority Critical patent/JPH0225257A/en
Publication of JPH0225257A publication Critical patent/JPH0225257A/en
Publication of JPH0512066B2 publication Critical patent/JPH0512066B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は鋼の連続鋳造設備で、連続的に鋳造さ
れる鋳片に発生する中心割れの発生を推定する方
法に関する。 〔従来の技術〕 連続鋳造操業において鋳片内部の凝固状態を均
一化することは近年、製品の高級化を指向される
なかで非常に重要となつてきた。特に鋳片の中心
部に発生する中心割れや中心偏析が圧延後の製品
品質に大きな影響を及ぼすことは従来から知見さ
れていたため、それらを未然に予知する方法が
種々考案されてきた。例えば、本出願人は鋳片の
表裏面に鋳片の表面変位計を設置し、鋳片の表面
変位を測定し、その変位量から鋳片の中心割れを
推定する方法を発明し、先に特開昭57−114850号
公報を提供した。 また、特開昭59−156557号公報に示されるよう
に、鋳造条件から凝固プロフイールを計算し、そ
の凝固プロフイールから、凝固先端部の未凝固溶
鋼の非流動面積と当該部のバルジング量を求め、
濃化溶鋼の吸引指数を算出して、中心偏析を推定
する方法も提案されている。 〔発明が解決しようとする課題〕 前記特開昭57−114850号公報においては、鋳片
の表面変位を直接的に測定するために測定器が損
傷したりし、正確に鋳片の表面変位を測定できな
い場合があり、長時間に渡つて連続的に精度良く
中心割れの発生推定をおこなうことが困難である
という問題があつた。また、特開昭59−156557号
公報においては、予め得られる鋳造条件からシミ
ユレーシヨンをおこない未凝固先端部のプロフイ
ールを求めるために、鋳造中の種々の操業変動、
例えば鋳造速度、溶鋼温度、2次冷却水量等が変
動することによつて未凝固先端部のプロフイール
が複雑に変化することになり、計算で求めた未凝
固先端部のプロフイールと実際のプロフイールが
合致しないことにもなり、結果的に前記濃化溶鋼
の吸引指数の算出誤差が生じ精度良く鋳片の中心
偏析の発生を推定するとができなかつたという問
題点を有していた。 〔課題を解決するための手段〕 本発明は、上記事情に鑑みてなされたものであ
り、機端部に設置されたシエル厚測定器、もしく
は鋳片断面温度測定器による測定値より鋳片の完
全凝固位置を推定するに際し、前記測定器により
設定周期ΔTで検出された測定値より当該測定時
刻を基準とした完全凝固までの時間差tf1を求め、
次回測定時の前記時間差tf2が下記(1)式を満足す
る時に未凝固溶鋼の封込み発生と判定すると共
に、下記(2)式により前記未凝固溶鋼の封込め量を
算出し、該封込め量が、予め前記込め量と中心割
れとの相関から設定された許容限界量を超えたと
きに中心割れの発生を予知することを特徴とする
連続鋳造における中心割れ発生の推定方法であ
る。 tf1>tf2 ……(1) Q=n×Vc×ΔT×{2K(tfi+tfi+o)}0.5 ……(2) ただし、 Q:未凝固溶鋼の封込め量 n:封込め判定が連続発生した回数 ffi:測定時刻での完全凝固までの時間差 ffi+1:n回連続で未凝固溶鋼の封込み判定が発生
した時の前記tfiを得た測定時刻からΔT×n後
での完全凝固までの時間差 Vc:鋳造速度 ΔT:測定周期 〔作用〕 第1図は、周知の連続鋳造設備に本発明方法を
構成するための機器を併せて記述した図である。
第1図において、溶鋼鍋1からタンデイツシユ2
に溶鋼50を一旦注入し、ノズル3を介して鋳型
4に溶鋼50が注入される。鋳型4に注入された
溶鋼50は、鋳型4から熱を奪われ鋳型4に接触
した側から凝固殻5を形成していく。凝固殻5は
鋳型4以降に配置された案内ロール6で支持さ
れ、引き抜きロール7で連続的に吹き抜かれる。
凝固5は鋳型4以降の2次冷却帯8でその外面に
冷却水を噴射されることによつて厚みを増大させ
ていく。完全凝固した鋳片は機端から引き抜かれ
た後、カツター9によつて規定の寸法に切断さ
れ、後工程である圧延工程に供給される。 さて、鋳片に発生する中心割れの状況を第2図
に模式的に示した。周知のとうり中心割れは、鋳
片の厚みの中央部に発生する割れであり、第2図
に示したようにある間隔で割れが発生している。
この間隔は一般的に言われているように、水平部
のロールの周長にほぼ等しい。前述したように鋳
片カツターで規定の寸法に切断されるため、その
切断位置によつては中心割れが切断面に現われる
ことになる。中心割れが切断面に出た状態で圧延
をおこなえば圧延中に端部から口を開き、圧延が
不可能となるトラブルが発生することにも繋が
る。このように、切断面に中心割れが出ている場
合は、一般的には鋳片の端部を切断し、切断面に
中心割れが無い状態とした後に圧延をおこなつて
いる。 また、切断面に中心割れが出ていなくても割れ
の程度によつては圧延後の製品の品質、例えば製
品厚み方向の強度不足や延びの不足等にもなる。 一般的には、この中心割れは未凝固溶鋼の先端
(以下、クレーターエンドという)部が鋳造方向
に大きく変動する場合に発生すると考えられてい
る。クレーターエンドが鋳造方向に変動する原因
としては、以下のことが考えられる。水平部のロ
ールによつて鋳片が圧下されることによつて鋳片
の厚みが局部的に変動し間接的にクレーターエン
ドの位置が変動する場合、鋳造速度が急変動した
場合にクレーターエンド近傍で溶鋼流動が生じ、
溶鋼の封込めがおこる(クレーターエンド位置が
変動したと同じ効果となる)場合、あるいは、湾
曲型連続鋳造設備では鋳片を水平に矯正するた
め、その矯正によつて発生する矯正歪を低減する
ことを目的として、鋳片に圧縮力を付与する鋳造
方法があり、この圧縮力の周期的な変動によつ
て、凝固殻の厚みが部分的に不均一になり、結果
的に前述した水平部のロールで鋳片を圧下した場
合と同じようにクレーターエンドの位置が変動す
るということが考えられる。 さて、本発明者らは、鋳造厚み、2次冷却条
件、鋳造鋼種、鋳造速度等の鋳造条件によつて予
め第1図に示したクレーターエンド51の位置を
求めておき、その近傍に周知の電磁超音波によつ
て凝固殻の厚みを測定する、あるいは鋳片の厚み
方向の平均温度を求めることができる測定装置1
1(以下、完全凝固位置検出装置という)を設置
した。 まず、クレーターエンドの位置を知るために、
完全凝固となる時刻と測定時刻との時間差を求め
る方法を以下に示す。周知のとうり、クレーター
エンドが完全凝固位置検出装置11より後方、つ
まり、該装置11の位置で未凝固溶鋼が存在する
場合の前記時間差は下記(3)式によつて求めること
ができる。 tf=(D2/4−D×dM+dM)/2/K ……(3) ただし、 tf:完全凝固時刻 dM:凝固殻の厚み D:鋳片厚み K:加速凝固係数 また、該装置11より前方で完全凝固している
場合の前記時間差は下記(4)式によつて求めること
ができる。 tf=CR(θS−θSU −(θAVE−θSU)/KK ……(4) ただし、 CR:中心部冷却速度 θSU:鋳片表面温度 θS:固相温度 KK:定数 θAVE:鋳片厚み方向の平均温度 ここで、測定時刻における完全凝固のとなる時
刻の測定時刻との時間差をtf1、前記測定時刻か
ら測定周期ΔT後の前記時間差をtf2とすると、ク
レーターエンド部の状態は下記(1)、(5)〜(7)式のよ
うに表すことができる。 tf1>tf2 ……(1) tf1+ΔT=tf2 ……(5) tf1+ΔT<tf2 ……(6) tf1<tf2<tf1+ΔT ……(7) 前記(5)式の場合はクレーターエンドの位置が変
動せずに安定し、前記(6)式の場合はクレーターエ
ンドが機端方向に伸長し、前記(7)式の場合はクレ
ーターエンドが鋳型方向に短縮し、前記(1)式の場
合にはクレーターエンドが極端に鋳型方向に短縮
し、クレーターエンド部で溶鋼の封込め(以下、
封込めという)が発生したことを意味する。以上
述べたようにクレーターエンドの状態を4態様と
してどの状態であるかを判定する必要がある。そ
して、tf1>tf2となる(1)式を満足する場合のみ、
封込めが発生したと判定することが重要である。
封込め状況を模式的に記述すると第3図のように
なる。第3図中の斜線部が溶鋼が封込められた部
分である。この時の斜線部の封込め量(以下、封
込め量という)Qを本発明者らは、下記(2)式によ
つて求めた。 Q=n×Vc×ΔT×{2K(tfi+tfi+o)}0.5 ……(2) ただし、 Q:未凝固溶鋼の封込め量 n:封込め判定が連続発生した回数 ffi:測定時刻での完全凝固までの時間差 ffi+1:n回連続で未凝固溶鋼の封込み判定が発生
した時の前記tfiを得た測定時刻からΔT×n後
での完全凝固までの時間差 Vc:鋳造速度 ΔT:測定周期 次に本発明者らは、前述した(2)〜(4)式によつて
時々刻々の測定時刻での完全凝固までの時間差を
求め、封込めが発生したと判断できた時は、その
封込め量を算出し、当該部位の鋳片を冷片として
鋳片の中心部を周知の超音波探傷装置を用いて調
査し、中心割れの発生と前記封込め量の相関を調
査した。その時の鋳造条件を以下の第1表に示
す。
[Industrial Application Field] The present invention relates to a method for estimating the occurrence of center cracks in continuously cast slabs in continuous steel casting equipment. [Prior Art] In recent years, it has become extremely important to uniformize the solidification state inside the slab in continuous casting operations as the trend toward higher quality products has been achieved. In particular, it has long been known that center cracks and center segregation that occur in the center of slabs have a significant effect on the quality of rolled products, and various methods have been devised to predict these in advance. For example, the present applicant has invented a method of installing slab surface displacement meters on the front and back surfaces of a slab, measuring the surface displacement of the slab, and estimating the center crack of the slab from the amount of displacement. JP-A-57-114850 was provided. In addition, as shown in Japanese Patent Application Laid-Open No. 59-156557, the solidification profile is calculated from the casting conditions, and from the solidification profile, the non-flow area of the unsolidified molten steel at the solidified tip and the amount of bulging in that part are determined,
A method of estimating center segregation by calculating the attraction index of concentrated molten steel has also been proposed. [Problems to be Solved by the Invention] In the above-mentioned Japanese Patent Application Laid-Open No. 57-114850, the measuring device may be damaged because the surface displacement of the slab is directly measured, and it is difficult to accurately measure the surface displacement of the slab. There was a problem in that measurement was not possible in some cases, and it was difficult to continuously and accurately estimate the occurrence of center cracks over a long period of time. In addition, in JP-A No. 59-156557, various operational fluctuations during casting,
For example, the profile of the unsolidified tip changes in a complicated manner due to changes in casting speed, molten steel temperature, secondary cooling water volume, etc., and the calculated profile of the unsolidified tip may not match the actual profile. As a result, there was a problem in that an error occurred in calculating the suction index of the concentrated molten steel, and it was not possible to accurately estimate the occurrence of center segregation of the slab. [Means for Solving the Problems] The present invention has been made in view of the above circumstances, and it is possible to determine the thickness of a slab based on the measured value by a shell thickness measuring device installed at the end of the machine or a slab cross-sectional temperature measuring device. When estimating the complete solidification position, calculate the time difference t f1 until complete solidification based on the measurement time from the measurement value detected by the measuring device at the set period ΔT,
When the time difference t f2 at the time of the next measurement satisfies the following formula (1), it is determined that the unsolidified molten steel has been trapped, and the amount of unsolidified molten steel trapped is calculated using the following formula (2), and the sealed molten steel is determined to have occurred. This is a method for estimating the occurrence of a center crack in continuous casting, characterized in that the occurrence of a center crack is predicted when the amount of filling exceeds an allowable limit amount preset from the correlation between the amount of filling and the center crack. t f1 > t f2 ……(1) Q=n×Vc×ΔT×{2K(t fi +t fi+o )} 0.5 ……(2) However, Q: Confinement amount of unsolidified molten steel n: Confinement Number of consecutive judgments f fi : Time difference until complete solidification at measurement time f fi+1 : ΔT× from the measurement time when the above t fi was obtained when the unsolidified molten steel containment judgment occurred n times in a row Time difference Vc until complete solidification after n: Casting speed ΔT: Measurement period [Function] FIG. 1 is a diagram illustrating a well-known continuous casting facility together with equipment for configuring the method of the present invention.
In Figure 1, from molten steel ladle 1 to tundish 2
The molten steel 50 is once injected into the mold 4 through the nozzle 3. The molten steel 50 injected into the mold 4 loses heat from the mold 4 and forms a solidified shell 5 from the side in contact with the mold 4. The solidified shell 5 is supported by guide rolls 6 disposed after the mold 4, and is continuously blown out by a drawing roll 7.
The solidification 5 increases its thickness by spraying cooling water onto its outer surface in the secondary cooling zone 8 after the mold 4. After the completely solidified slab is pulled out from the end of the machine, it is cut into a specified size by a cutter 9, and then supplied to the subsequent rolling process. Now, Fig. 2 schematically shows the situation of center cracks occurring in slabs. As is well known, center cracks are cracks that occur at the center of the thickness of a slab, and cracks occur at certain intervals as shown in FIG.
This interval is generally said to be approximately equal to the circumference of the horizontal roll. As mentioned above, since the slab cutter is used to cut the slab into specified dimensions, a central crack may appear on the cut surface depending on the cutting position. If rolling is carried out with a central crack appearing on the cut surface, the edges will open during rolling, leading to problems that will make rolling impossible. In this way, when a central crack appears on the cut surface, the ends of the slab are generally cut to ensure that there is no central crack on the cut surface, and then rolling is performed. Furthermore, even if there is no center crack on the cut surface, the quality of the product after rolling may be affected, such as insufficient strength or elongation in the product thickness direction, depending on the degree of cracking. It is generally believed that this center crack occurs when the tip (hereinafter referred to as crater end) of unsolidified molten steel moves significantly in the casting direction. The following may be the cause of the change in the crater end in the casting direction. When the thickness of the slab changes locally due to the slab being rolled down by horizontal rolls, and indirectly the position of the crater end changes, or when the casting speed suddenly changes, Molten steel flow occurs at
When confinement of molten steel occurs (same effect as the crater end position fluctuating), or because the slab is straightened horizontally in curved continuous casting equipment, the straightening distortion that occurs due to straightening is reduced. For this purpose, there is a casting method that applies compressive force to the slab, and due to periodic fluctuations in this compressive force, the thickness of the solidified shell becomes partially uneven, resulting in the above-mentioned horizontal part. It is conceivable that the position of the crater end fluctuates in the same way as when a slab is rolled down with a roll. Now, the inventors of the present invention have determined the position of the crater end 51 shown in FIG. 1 in advance based on casting conditions such as casting thickness, secondary cooling conditions, casting steel type, and casting speed. Measuring device 1 capable of measuring the thickness of a solidified shell or determining the average temperature in the thickness direction of a slab using electromagnetic ultrasonic waves
1 (hereinafter referred to as a complete coagulation position detection device) was installed. First, to know the location of the crater end,
The method for determining the time difference between the time of complete coagulation and the measurement time is shown below. As is well known, when the crater end is behind the completely solidified position detection device 11, that is, when unsolidified molten steel exists at the location of the device 11, the time difference can be determined by the following equation (3). t f = (D 2 /4 - D × d M + d M ) / 2 / K ... (3) where, t f : Time of complete solidification d M : Thickness of solidified shell D : Thickness of slab K : Accelerated solidification coefficient Further, the time difference when complete solidification occurs in front of the device 11 can be determined by the following equation (4). t f =C RS −θ SU −(θ AVE −θ SU )/KK ...(4) where, C R : Center cooling rate θ SU : Slab surface temperature θ S : Solidus temperature KK: Constant θ AVE : Average temperature in the slab thickness direction Here, if the time difference between the measurement time and the time at which complete solidification occurs at the measurement time is t f1 , and the time difference after the measurement period ΔT from the measurement time is t f2 , then The state of the crater end can be expressed as in equations (1) and (5) to (7) below. t f1 > t f2 ...(1) t f1 +ΔT=t f2 ...(5) t f1 +ΔT<t f2 ...(6) t f1 <t f2 <t f1 +ΔT ...(7) In the case of the above formula (5), the position of the crater end is stable without fluctuation, and in the case of the above formula (6) In the case of formula (7), the crater end is shortened in the direction of the mold, and in the case of formula (1), the crater end is extremely shortened in the mold direction, and the crater end is shortened in the mold direction. containment of molten steel (hereinafter referred to as
This means that containment (also known as containment) has occurred. As described above, it is necessary to determine which of the four conditions the crater end is in. Then, only when formula (1) is satisfied, t f1 > t f2 ,
It is important to determine that containment has occurred.
The containment situation can be schematically described as shown in Figure 3. The shaded area in FIG. 3 is the area where molten steel is sealed. At this time, the amount of encapsulation (hereinafter referred to as encapsulation amount) Q in the shaded area was determined by the following equation (2). Q = n × Vc × ΔT × {2K (t fi + t fi + o )} 0.5 ... (2) However, Q: Entrapment amount of unsolidified molten steel n: Number of times confinement judgment occurred continuously f fi : Measurement Time difference until complete solidification at time f fi +1 : Time difference Vc from the measurement time when the above-mentioned t fi was obtained when the unsolidified molten steel is judged to be contained n times in a row until complete solidification after ΔT×n : Casting speed ΔT : Measurement period Next, the present inventors calculated the time difference until complete solidification at each measurement time using equations (2) to (4) described above, and determined that confinement had occurred. Once completed, the amount of containment is calculated, and the center of the slab is examined using a well-known ultrasonic flaw detection device with the slab in question as a cold slab. We investigated the correlation. The casting conditions at that time are shown in Table 1 below.

〔実施例〕〔Example〕

前述した本発明に基づく中心割れ発生の推定方
法を機長37m、月産能力16万トンの湾曲型連続鋳
造設備で実施した。第1図に示した完全凝固位置
検出装置11は鋳型4から34m離れた位置に設置
した。また、鋳造条件は下記第2表に示す条件と
した。
The method for estimating the occurrence of center cracking based on the present invention described above was carried out in a curved continuous casting facility with a machine length of 37 m and a monthly production capacity of 160,000 tons. The complete solidification position detection device 11 shown in FIG. 1 was installed at a position 34 m away from the mold 4. Further, the casting conditions were as shown in Table 2 below.

【表】 許容限界量は前述した方法により、予め鋳片の
欠陥発生指数と封込め量の相関を調査することに
よつて決定しておけばよく。本実施例では許容限
界量は前述と同様に40とし、第2表に示した鋳造
条件で鋳造をおこなつた。第3表に後述する第5
図の各鋳片における封込め判定の有無とその封込
め量と中心割れ予知の有無を示す。
[Table] The allowable limit amount may be determined in advance by investigating the correlation between the defect occurrence index of the slab and the amount of encapsulation using the method described above. In this example, the allowable limit amount was set to 40 as described above, and casting was performed under the casting conditions shown in Table 2. 5, which will be described later in Table 3.
The presence or absence of containment judgment for each slab in the figure, the amount of containment, and the presence or absence of center crack prediction are shown.

〔発明の効果〕〔Effect of the invention〕

本発明により、鋳片の中心部に発生する中心割
れの発生予知が可能となり、しかも適切な処置を
採ることにより中心割れの発生を未然に防止し、
また操業トラブルも回避することができ、欠陥の
無い鋳片を安定的に圧延工程に供給する上で大き
な効力を発揮することは明らかである。
According to the present invention, it is possible to predict the occurrence of center cracks that occur in the center of slabs, and to prevent the center cracks from occurring by taking appropriate measures.
Furthermore, operational troubles can be avoided, and it is clear that this method is highly effective in stably supplying defect-free slabs to the rolling process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は周知の連続鋳造設備に本発明による中
心割れの予知をおこなうために必要な機器の構成
を併記した図、第2図は中心割れを模式的に示し
た図、第3図は溶鋼の封込め状態を模式的に示し
た図、第4図は封込め量と鋳片の欠陥発生指数と
の関係を表す図、第5図は本発明方法を適用した
ときの実鋳片における中心割れの発生状態を示す
図である。 1……鍋、2……タンデイツシユ、3……ノズ
ル、4……鋳型、5……凝固殻、6……支持ロー
ル、7……引き抜きロール、8……二次冷却帯、
9……カツター、10……プロセスコンピユータ
ー、11……完全凝固位置検出装置、12……欠
陥発生予知装置、13……モニター。
Figure 1 is a diagram showing the configuration of equipment necessary for predicting center cracks according to the present invention in well-known continuous casting equipment, Figure 2 is a diagram schematically showing center cracks, and Figure 3 is a diagram showing the configuration of equipment necessary for predicting center cracks according to the present invention. Fig. 4 is a diagram showing the relationship between the amount of containment and the defect occurrence index of the slab, and Fig. 5 is the center of the actual slab when the method of the present invention is applied. FIG. 3 is a diagram showing a state in which cracks occur. DESCRIPTION OF SYMBOLS 1... Pot, 2... Tundishyu, 3... Nozzle, 4... Mold, 5... Solidified shell, 6... Support roll, 7... Drawing roll, 8... Secondary cooling zone,
9... Cutter, 10... Process computer, 11... Complete solidification position detection device, 12... Defect occurrence prediction device, 13... Monitor.

Claims (1)

【特許請求の範囲】 1 機端部に設置されたシエル厚測定器、もしく
は鋳片断面温度測定器による測定値より鋳片の完
全凝固位置を推定するに際し、前記測定器により
設定周期ΔTで検出された測定値より当該測定時
刻を基準とした完全凝固までの時間差tf1を求め、
次回測定時の前記時間差tf2が下記(1)式を満足す
るときに未凝固溶鋼の封込み発生と判定すると共
に、下記(2)式より前記未凝固溶鋼の封込め量を算
出し、該封込め量が、予め前記封込め量と中心割
れとの相関から設定された欠陥発生指数50に相当
する封込め量40である許容限界量を超えたときに
中心割れの発生を予知することを特徴とする連続
鋳造における中心割れ発生の推定方法。 tf1>tf2 ……(1) Q=n×Vc×ΔT×{2K(tfi+tfi+o)}0.5 ……(2) ただし、 tf=CR(θS−θSU −(θAVE−θSU)/KK ……(4) ただし、 CR:中心部冷却速度 θSU:鋳片表面温度 θS:固相温度 KK:定数 θAVE:鋳片厚み方向の平均温度 ここで、測定時刻における完全凝固となる時刻
と測定時刻との時間差をtf1、前記測定時刻から
測定周期ΔT後の前記時間差をtf2とする Q:未凝固溶鋼の封込め量 n:封込め判定が連続発生した回数 tfi:測定時刻での完全凝固までの時間差 tfi+o:n回連続で未凝固溶鋼の封込み判定が発生
した時の前記ffiを得た測定時刻からΔT×n後
での完全凝固までの時間差 Vc:鋳造速度 ΔT:測定周期
[Scope of Claims] 1. When estimating the complete solidification position of a slab from the measured value by a shell thickness measuring device or a slab cross-sectional temperature measuring device installed at the end of the machine, the measuring device detects at a set period ΔT. From the measured value, calculate the time difference t f1 until complete solidification based on the measurement time, and
When the time difference t f2 at the next measurement satisfies the following formula (1), it is determined that the unsolidified molten steel has been trapped, and the amount of unsolidified molten steel trapped is calculated from the following formula (2), and It is possible to predict the occurrence of a center crack when the amount of containment exceeds the allowable limit amount, which is a containment amount of 40, which corresponds to a defect occurrence index of 50, which is set in advance from the correlation between the amount of containment and the center crack. A method for estimating the occurrence of center cracks in continuous casting. t f1 > t f2 ……(1) Q=n×Vc×ΔT×{2K(t fi +t fi+o )} 0.5 ……(2) However, t f =C RS −θ SU −( θ AVE −θ SU )/KK ...(4) where, C R : Center cooling rate θ SU : Slab surface temperature θ S : Solidus temperature KK : Constant θ AVE : Average temperature in the slab thickness direction Here , the time difference between the time at which complete solidification occurs and the measurement time is t f1 , and the time difference after the measurement period ΔT from the measurement time is t f2 Q: Confinement amount of unsolidified molten steel n: Confinement judgment is Number of consecutive occurrences t fi : Time difference until complete solidification at measurement time t fi+o : ΔT×n after the measurement time at which f fi was obtained when the unsolidified molten steel is judged to have been contained n times in a row Time difference until complete solidification Vc: Casting speed ΔT: Measurement period
JP17318288A 1988-07-12 1988-07-12 Method of estimating generation of central crack in continuous casting Granted JPH0225257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17318288A JPH0225257A (en) 1988-07-12 1988-07-12 Method of estimating generation of central crack in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17318288A JPH0225257A (en) 1988-07-12 1988-07-12 Method of estimating generation of central crack in continuous casting

Publications (2)

Publication Number Publication Date
JPH0225257A JPH0225257A (en) 1990-01-26
JPH0512066B2 true JPH0512066B2 (en) 1993-02-17

Family

ID=15955613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17318288A Granted JPH0225257A (en) 1988-07-12 1988-07-12 Method of estimating generation of central crack in continuous casting

Country Status (1)

Country Link
JP (1) JPH0225257A (en)

Also Published As

Publication number Publication date
JPH0225257A (en) 1990-01-26

Similar Documents

Publication Publication Date Title
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
US7669638B2 (en) Control system, computer program product, device and method
US5242010A (en) Method for controlling the taper of narrow faces of a liquid-cooled mold
JP4802718B2 (en) Method for predicting surface defect occurrence risk region in continuous cast slab and method for producing continuous cast slab
JPH0512066B2 (en)
JPS5941829B2 (en) Continuous steel casting method
JPS6330102B2 (en)
JP3188148B2 (en) Continuous casting machine
US4729420A (en) Method for concluding the operation of the continuous casting of strip metal
JP6816523B2 (en) Continuous steel casting method
JPH0790343B2 (en) Breakout prediction method in continuous casting
JPH0771726B2 (en) Continuous casting method
KR102487307B1 (en) Apparatus of manufacturing for continuous casting and methods of manufacturing high-quality strand
JPH06339762A (en) Method and device for controlling cutting of continuously cast slab
JP3062723B2 (en) Measurement method of slab surface dent shape due to solidification shrinkage in mold
KR20130099289A (en) Device for predicting quality of plate in continuous casting and method therefor
JP2720135B2 (en) Slab cutting control method in continuous casting
JP3275828B2 (en) Continuous casting method
JP4708686B2 (en) Steel continuous casting method
JP3251415B2 (en) Slab billing statement adjustment method
JP2004276050A (en) Method for starting continuous casting
JPH0745096B2 (en) Continuous casting method
JPH02137655A (en) Method for measuring fluctuation in molten steel surface and method for controlling such fluctuation
JPH05305408A (en) Casting method at the time of lacking in continuous casting
JPS62148065A (en) Continuous casting method