JP4708686B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP4708686B2
JP4708686B2 JP2003153088A JP2003153088A JP4708686B2 JP 4708686 B2 JP4708686 B2 JP 4708686B2 JP 2003153088 A JP2003153088 A JP 2003153088A JP 2003153088 A JP2003153088 A JP 2003153088A JP 4708686 B2 JP4708686 B2 JP 4708686B2
Authority
JP
Japan
Prior art keywords
slab
completion position
solidification
sensor
solidification completion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003153088A
Other languages
Japanese (ja)
Other versions
JP2004351481A (en
Inventor
淳 久保田
俊一 川波
等 藤原
豪伸 渡邉
幸理 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003153088A priority Critical patent/JP4708686B2/en
Publication of JP2004351481A publication Critical patent/JP2004351481A/en
Application granted granted Critical
Publication of JP4708686B2 publication Critical patent/JP4708686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼の連続鋳造方法に関し、詳しくは、スラブ鋳片幅方向の凝固完了位置を制御しながらスラブ鋳片を連続鋳造する方法に関するものである。
【0002】
【従来の技術】
連続鋳造によって製造される鋼のスラブ鋳片(以下、単に「鋳片」と記す)に要求される品質として、鋳片中心部の成分偏析(以下、「中心偏析」と記す)が少ないことが要求される。特に、建築構造用の厚鋼板や原油輸送用のラインパイプ材では、中心偏析が著しいと、水素誘起割れや溶接部の材料強度に多大な影響を及ぼすことが知られている。
【0003】
この中心偏析は、鋳片の凝固収縮に起因して生じる、炭素、燐、硫黄等の溶質元素の濃化した濃化溶鋼の鋳片中心部への移動・集積によって発生する。そのため、中心偏析を軽減する方法として、連続鋳造機の対向するロールとの間隔を鋳片引き抜き方向の下流側ほど狭くし、鋳片の引き抜き方向に沿って鋳片の厚み方向に圧下力を作用させて鋳片を徐々に圧下し、鋳片中心部の体積を減少させ、鋳片の凝固収縮に起因して生じる濃化溶鋼の鋳片中心部への移動を防止する、所謂“軽圧下”が行われている。但し、軽圧下を行う場合に、隣り合うロールとの間で鋳片が溶鋼静圧によって膨らむ(「バルジング」と呼ぶ)と、鋳片の圧下が効率的に行われず、中心偏析の軽減効果が低下する。そこで、軽圧下する場合には、隣り合うロールとのロールピッチを小さくした専用のロールセグメント(以下、「軽圧下帯」と記す)を設けることが一般的である。
【0004】
このように、軽圧下帯はロール径が小さく、ロール本数が多いため、設備投資費が高いのみならず、その後の保守点検整備に費やす時間及び費用が嵩むため、通常、軽圧下帯の鋳造方向長さは必要最小限に抑えられている。従って、鋳片幅方向で凝固完了位置に差が生じ、鋳片の一部の部位が完全に凝固しないままで軽圧下帯から逸脱した場合には、この部位には圧下力が作用しないため、中心偏析が改善されずに却って増大する。
【0005】
このような鋳片の凝固完了位置が幅方向で異なる場合の未凝固層の形状としては、鋳片の短辺側の部位で未凝固層が鋳造方向に伸張したW形の形状が一般的に良く知られている。このW形の形状になる理由としては、(1)連続鋳造機の二次冷却帯における冷却用スプレー水の影響、(2)浸漬ノズルから吐出される溶鋼吐出流による凝固シェルの成長遅れが、知られている。このW形の形状では、軽圧下の有無に拘わらず、未凝固層の伸張した部位における中心偏析が悪化するため、W形の形状を平坦状の形状とすべく、従来種々の対策が提案されている。
【0006】
例えば、特許文献1には、センサーで未凝固層の幅方向形状を求め、基準とする形状との差に応じて、鋳片引き抜き速度又は鋳片幅方向の二次冷却強度を変更する方法が提案されている。しかしながら、鋳片引き抜き速度を減速した場合には、連続鋳造機の生産性が低下すると云う問題点が生じ、又、鋳片幅方向の二次冷却強度を変更するためには、流量制御の可能な二次冷却水回路を鋳片幅方向で複数、独立して設置する必要があり、二次冷却水回路の構造が複雑になると同時に、設備費が極めて高価になると云う問題点がある。
【0007】
一方、浸漬ノズルからの溶鋼吐出流を制御することによってW形の形状を解消するには、例えば特許文献2に開示されたような、吐出口が下向きで且つ吐出口が鋳型幅とほぼ等しいサイズの扁平形浸漬ノズルを用いることで、溶鋼吐出流が、均一化されると同時に特定の凝固シェルの部位に衝突することがないため、解消可能である。しかしながら、このような浸漬ノズルでは、その形状が複雑で且つ大型であるため、慣用の円筒形浸漬ノズルに比べて格段に高価になると云う問題点がある。又、溶鋼の注入量が少なくなった場合には、扁平部全体に溶鋼が行き渡らず、鋳片幅方向で溶鋼吐出流に差が生じる可能性がある。即ち、鋳片引き抜き速度の変化に対応できない可能性がある。
【0008】
【特許文献1】
特公昭59−41829号公報
【0009】
【特許文献2】
特表平10−510216号公報
【0010】
【発明が解決しようとする課題】
本発明は上記事情に鑑みてなされたもので、その目的とするところは、鋼の連続鋳造において、確実に且つ安価に更に連続鋳造機の生産性を損なうことなく、連続鋳造鋳片の幅方向の凝固完了位置を最適な形状に制御することの可能な連続鋳造方法を提供することである。
【0012】
【課題を解決するための手段】
上記課題を解決するための第1の発明に係る鋼の連続鋳造方法は、鋳片を軽圧下するための軽圧下帯が備えられた連続鋳造機を用い、鋳片の中心偏析を低減するべく、鋳片の凝固完了位置を軽圧下帯の範囲内に制御して溶鋼を連続鋳造する際に、前記軽圧下帯の出口から0〜3m上流側の位置に鋳片を挟んで送信用センサー及び受信用センサーを配置し、送信用センサー及び受信用センサーを鋳片幅方向に走査しながら送信用センサーから電磁超音波の横波を鋳片の厚み方向に送信し、受信用センサーにおける前記横波の透過波の伝播時間から求められる鋳片厚み方向平均温度と、凝固完了位置以降の鋳片厚み方向の平均温度を凝固完了位置から下流側への距離の関数として予め伝熱凝固計算により求めた、鋳片厚み方向平均温度と凝固完了位置との関係式と、を照らし合わせることにより、鋳片の凝固完了位置の幅方向形状を求め、当該形状に基づき、浸漬ノズルからの溶鋼吐出流に対する、鋳型の長辺に沿って鋳型の短辺側から浸漬ノズル側へ向かって水平方向に磁界を移動させることによって発生する制動力を調整し、最も上流側の凝固完了位置と最も下流側の凝固完了位置との距離が2m以下になるように鋳片の凝固完了位置の幅方向形状を制御することを特徴とするものである。
【0014】
の発明に係る鋼の連続鋳造方法は、第1の発明において、前記送信用センサー及び受信用センサーは、鋳片を挟んでそれぞれ1個のみ配置されていることを特徴とするものである。
【0016】
本発明では、凝固状態判定装置によって検出される、鋳片の凝固完了位置の幅方向形状に応じて、移動磁場の印加によって発生する、浸漬ノズルからの溶鋼吐出流に対する制動力を調整して連続鋳造するため、換言すれば、溶鋼吐出流に移動磁場によって発生する制動力を作用させて連続鋳造するため、溶鋼吐出流の流速が減速され、鋳片の短辺側の凝固シェルに溶鋼吐出流が衝突することが妨げられ、凝固シェルは鋳片幅方向で均等に成長し、未凝固層がW形になることが妨げられる。このように、移動磁場の強度を調整するだけで、W形の形状を解消することができるため、確実に且つ比較的安価な設備費で実施することができる。又、鋳片引き抜き速度は調整する必要がないため、連続鋳造機の生産性を損なうことがない。
【0017】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を説明する。図1は、本発明を実施したスラブ連続鋳造機の概略図、図2は、図1に示すスラブ連続鋳造機の鋳型部位の概略斜視図、図3は、図1に示すスラブ連続鋳造機の鋳型部位の概略正面図である。
【0018】
図1に示すように、連続鋳造機1には、溶鋼を注入して凝固させるための鋳型2が設置されており、この鋳型2の下方には、対向する一対のロールを1組として複数組の鋳片支持ロール7が設置されている。そして、鋳片支持ロール7の下流側には、複数本の搬送ロール8と、搬送ロール8の上方に位置して鋳片30の鋳片引き抜き速度と同期するガス切断機9とが設置されている。又、鋳片支持ロール7には、鋳型2の直下から下流側に向かって、第1冷却ゾーン11a、11b、第2冷却ゾーン12a、12b、第3冷却ゾーン13a、13b、及び、第4冷却ゾーン14a、14bの合計8つに分割された冷却ゾーンからなる二次冷却帯10が設置されている。
【0019】
二次冷却帯10の各冷却ゾーンには、エアーミストスプレー用又は水スプレー用の複数個のスプレーノズル(図示せず)が設置されており、スプレーノズルから鋳片30の表面に二次冷却水が噴霧される。尚、各冷却ゾーンにおいて、連続鋳造機1の反基準面側(上面側)の冷却ゾーンをaで表示し、基準面側(下面側)の冷却ゾーンをbで表示している。又、冷却ゾーンの設置数は図1では合計8であるが、連続鋳造機1の機長等に応じて幾つに分割してもよい。
【0020】
鋳型2は、図2及び図3に示すように、相対する鋳型長辺3と、この鋳型長辺3内に内装された相対する鋳型短辺4とから構成され、この鋳型2の上方所定位置にタンディッシュ5が配置されている。タンディッシュ5の底部には上ノズル21が設置され、そして、上ノズル21の下面に接して、固定板22、摺動板23及び整流ノズル24からなるスライディングノズル18が配置され、更に、スライディングノズル18の下面に接して、下部に一対の吐出孔19を有する浸漬ノズル6が配置され、タンディッシュ5から鋳型2への溶鋼流出孔25が形成されている。浸漬ノズル6の内壁面へのアルミナ付着防止のために、上ノズル21、固定板22、浸漬ノズル6等から溶鋼流出孔25内にArガスや窒素ガス等の非酸化性ガスが吹き込まれている。
【0021】
鋳型長辺3の背面には、浸漬ノズル6を境として鋳型長辺3の幅方向左右で2つに分割された合計4基の移動磁場発生装置20が、その鋳造方向の中心位置を吐出孔19の直下位置とし、鋳型長辺3を挟んで対向して配置されている。それぞれの移動磁場発生装置20は電源(図示せず)と結線されており、電源から供給される電力により、移動磁場発生装置20から印加される磁場強度及び磁場移動方向がそれぞれ個別に制御されるようになっている。
【0022】
この移動磁場発生装置20により印加される磁場は移動磁場であり、浸漬ノズル6からの溶鋼吐出流31に制動力を与えるべく磁場を印加する場合には、図4に示すように、移動磁場の移動方向を鋳型短辺4側から浸漬ノズル6側とし、一方、浸漬ノズル6からの溶鋼吐出流31に加速力を与えるべく磁場を印加する場合には、図5に示すように、移動磁場の移動方向を浸漬ノズル6側から鋳型短辺4側とする。尚、図4及び図5は、磁場の移動方向を鋳型2の真上から示した図であり、図中の矢印が磁場の移動方向を表している。
【0023】
連続鋳造機1には、図1に示すように、鋳片支持ロール7の一部として鋳片30を軽圧下するための軽圧下帯15が設置されている。軽圧下帯15は複数組の鋳片支持ロール7で構成され、対向する鋳片支持ロール7とのロール間の間隔が鋳片30の鋳造方向下流側に向かって徐々に狭くなるように設定され、鋳片30に対して圧下力を付加することの可能な構造になっている。尚、図1は、軽圧下帯15内で鋳片30の凝固が完了する状態になっているが、図1は中心偏析を防止するために軽圧下帯15内で凝固を完了させている図であり、鋳片30の凝固完了位置32を連続鋳造機1の機端側、即ちガス切断機9側の鋳片支持ロール7の位置まで伸ばした操業も行われる。
【0024】
二次冷却帯10の下流側の鋳片支持ロール7の隙間には、鋳片30の凝固完了位置32を検出するための凝固状態判定装置の一部を構成する送信用センサー16(16a、16b)及び受信用センサー17(17a、17b)が、鋳造方向に3箇所設置されている。図1では、送信用センサー16及び受信用センサー17が鋳造方向に3箇所設置されているが、設置数は3に限る訳ではなく幾つでもよい。多いほど凝固完了位置32を精度良く検出することが可能であるが、後述するように、1つでも凝固完了位置32の鋳片幅方向形状を検出可能であり、検出精度と設備費との兼ね合いから適宜設置数を決めればよい。
【0025】
凝固状態判定装置は、鋳片30を挟んで対向配置させた送信用センサー16及び受信用センサー17からなるセンサー部と、送信用センサー16に送信信号を出力する送信出力系(図示せず)と、受信用センサー17にて受信した受信信号を処理する受信処理系(図示せず)と、からなっている。送信用センサー16及び受信用センサー17は、鋳片30の幅方向に移動可能な取り付け架台(図示せず)に取り付けられており、送信用センサー16と受信用センサー17とが同期して移動することにより、鋳片30の幅全体で凝固完了位置32を検出できる構成となっている。即ち、鋳片幅方向に走査可能であるので、凝固完了位置32の鋳片幅方向の状況を把握することができる。
【0026】
送信用センサー16は、送信信号を横波の電磁超音波として発信し、鋳片30を透過した横波電磁超音波の透過信号を受信用センサー17が受信する。この受信信号を処理することによって凝固完了位置32の検出が行なわれる。横波電磁超音波は、未凝固層29が鋳片30に残留している場合には鋳片30を透過せず、凝固が完了した時点以降で受信用センサー17に送信信号が伝播される。
【0027】
凝固状態判定装置のセンサー部の設置位置は、凝固完了位置32がそれよりも下流側に伸張して欲しくない位置の少し上流側位置、例えば軽圧下帯15の出口から0〜3m上流側等が望ましい。送信する電磁超音波に横波を用い、送信用センサー16及び受信用センサー17をこの位置に設置し、鋳片幅方向に送信用センサー16及び受信用センサー17を走査することで、鋳片幅方向各部位における透過信号の伝播時間から求められる、鋳片30の厚み方向の平均温度に基づいて、幅方向各部位の凝固完了位置32を求めることができるため、センサー部は鋳造方向に1箇所でも構わない。この場合、透過信号がぎりぎり到達した位置が、最も凝固完了位置32が鋳造方向下流側に伸張した位置となる。
【0028】
横波電磁超音波の場合、鋳片温度が低いほど透過速度は速くなる。鋳片幅方向においては、最も上流側の凝固完了位置32に相当する部位の鋳片厚み方向の平均温度が最も低くなり、従ってこの部位で伝播時間が最も短くなる。即ち、横波電磁超音波の伝播時間から、鋳片幅方向各部位の鋳片厚み方向における平均温度を求めることができるため、予め鋳片30の厚み方向における平均温度と凝固完了位置32との関係式を伝熱凝固計算等によって求めておくことで、伝播時間から求めた鋳片の平均温度から凝固完了位置32を推定することができる。このようにして鋳片30の幅方向各部位の凝固完了位置32を検出すること、即ち、未凝固層29の形状を検出することができる。
【0029】
このように構成される連続鋳造機1を用い、以下のようにして溶鋼を連続鋳造する。
【0030】
溶鋼26を取鍋(図示せず)からタンディッシュ5に注入し、タンディッシュ5内の溶鋼量が所定量になったなら、摺動板23を開き、溶鋼流出孔25を介して溶鋼26を鋳型2内に注入する。溶鋼26は、鋳型2内の溶鋼26に浸漬された吐出孔19から、鋳型短辺4に向かう溶鋼吐出流31となって鋳型2内に注入される。鋳型2内に注入された溶鋼26は鋳型2で冷却され、凝固シェル27を形成する。そして、鋳型2内に所定量の溶鋼26が注入されたなら鋳片支持ロール7の内の駆動ロール(「ピンチロール」と呼ぶ)を駆動して、外殻を凝固シェル27とし、内部に溶鋼26の未凝固層29を有する鋳片30の引き抜きを開始する。鋳片30は、鋳片支持ロール7に支持されつつ下方に連続的に引き抜かれる。引き抜き開始後は、溶鋼湯面28の位置を鋳型2内の略一定位置に制御しながら、鋳片引き抜き速度を増速して所定の鋳片引き抜き速度とする。鋳型2内の溶鋼湯面28の上にはモールドパウダー33を添加する。モールドパウダー33は溶融して、溶鋼26の酸化防止や、凝固シェル27と鋳型2との間に流れ込んで潤滑剤としての効果を発揮する。
【0031】
鋳片30は、軽圧下帯15において適宜な量の軽圧下量を付加されつつ二次冷却帯10で冷却され、凝固シェル27の厚みを増大して、やがて中心部まで凝固を完了する。その際に、送信用センサー16及び受信用センサー17を備えた凝固状態判定装置によって、鋳片30の幅方向の凝固完了位置32を検出する。
【0032】
検出された凝固完了位置32の鋳片幅方向の形状に応じて、その形状が所定の形状になるように、移動磁場発生装置20に供給する電力を調整する。前述したように、通常、凝固完了位置32の幅方向形状は鋳片短辺側で伸張したW形であるので、その形状を平坦状の形状とすべく、前述の図4に示した方向で移動磁場を移動させ、溶鋼吐出流31への制動力を強める。そして、鋳造中、検出される凝固完了位置32の鋳片幅方向の形状に応じて、適宜移動磁場発生装置20に供給する電力即ち磁場強度を調整する。
【0033】
中心偏析を低減する目的で鋳造する場合には、鋳片幅方向全体の凝固完了位置32を軽圧下帯15の範囲内に制御する必要があり、従って、例えば最も上流側の凝固完了位置32が軽圧下帯15の中央部位置程度となるように鋳片引き抜き速度及び二次冷却水量を調整し、更に、移動磁場発生装置20に供給する電力を変更し、最も下流側に伸張した凝固完了位置32を上流側に移動させる。中心偏析は、最も上流側の凝固完了位置32と最も下流側に伸張した凝固完了位置32との距離が小さいほど改善されるので、この距離が2m以下になるように制御することが好ましい。
【0034】
連続鋳造機1の生産性を上げるべく、最大鋳片引き抜き速度で鋳造する場合には、凝固完了位置32を連続鋳造機1の出側に位置させる必要があり、従って、例えば最も上流側の凝固完了位置32が図1に示す送信用センサー16aと送信用センサー16bとの間になるように鋳片引き抜き速度及び二次冷却水量を調整し、更に、最も下流側に伸張した凝固完了位置32が送信用センサー16bの位置を超えないように、移動磁場発生装置20に供給する電力を変更する。
【0035】
このようにして鋳造した鋳片30をガス切断機9により切断して鋳片30aを得る。
【0036】
以上説明したように、本発明によれば鋳片幅方向の凝固完了位置32の形状を平坦化しながら鋳片30を製造することが可能であり、中心偏析の改善並びに連続鋳造機1の生産性の向上等の副次的効果を得ることができる。
【0037】
尚、上記説明では軽圧下を実施する前提で説明したが、連続鋳造機1の生産性を上げるべく、最大鋳片引き抜き速度で鋳造する場合には、軽圧下を実施する必要はなく、軽圧下帯15も設置する必要がない。又、上記説明では2枚板構成のスライディングノズル18の例を挙げたが、3枚板構成のスライディングノズルについても上記に沿って本発明を適用することができる。
【0038】
【実施例】
表1に仕様を示す垂直曲げ型スラブ連続鋳造機(機長49.2m)を用い、C:0.11〜0.14質量%、Si:0.1〜0.2質量%、Mn:0.6〜0.8質量%、P:0.030質量%以下、S:0.03質量%以下、Cu:0.08質量%以下、sol.Al:0.015〜0.050質量%、N:0.008質量%以下の組成の440MPa級厚鋼板用炭素鋼を鋳造した。この連続鋳造機では、軽圧下帯が鋳型内の溶鋼湯面位置から14〜30mの範囲に配置してある。
この連続鋳造機に設置されている移動磁場発生装置の仕様を表2に示す。
【0039】
【表1】

Figure 0004708686
【0040】
【表2】
Figure 0004708686
【0041】
そして、鋳片引き抜き速度を1.4m/min(水準A)と1.6m/min(水準B)の2水準とし、移動方向を鋳型短辺側から浸漬ノズル側とした移動磁場の強度を、無印加も含めて3段階に設定して鋳造した。表3に各試験鋳造の鋳造条件を示す。尚、表3に示すEMLSモードとは、磁場の移動方向を鋳型短辺側から浸漬ノズル側として移動磁場を印加する方法である。
【0042】
【表3】
Figure 0004708686
【0043】
連続鋳造機には、軽圧下帯の出口から2m上流側の位置に一対の送信用センサー及び受信用センサーを設置し、これらのセンサーを鋳片幅方向に走査させ、横波電磁超音波の伝播時間を計測した。そして、別途実験室内で高温鋳片を用いた実験により、鋳片の温度と横波電磁超音波の速度との関係を求めておき、この関係を用いて、試験鋳造での伝播時間を、その計測位置における鋳片の厚み方向の平均温度に換算した。更に、試験鋳造の鋳造条件下での伝熱凝固計算により、凝固完了位置以降の鋳片厚み方向の平均温度を、凝固完了位置から下流側への距離の関数として求め、この関数を用いて各計測位置における鋳片厚み方向の平均温度から凝固完了位置を求めた。
【0044】
図6に、水準Aの試験鋳造における凝固完了位置の鋳片幅方向形状を示す。尚、幅方向の形状は、幅方向左右でほぼ対称であったので、鋳片幅中央から鋳片短辺までの1/2幅で表示した。試験水準A−1は、移動磁場を印加しない場合であり、凝固完了位置は幅中央近傍で鋳型内溶鋼湯面位置から22.8m、鋳片幅中央から500mm離れた位置近傍で鋳型内溶鋼湯面位置から21.3m、鋳片短辺近傍では鋳型内溶鋼湯面位置から25.5mとなっており、最も上流側の凝固完了位置(鋳片幅中央から500mm離れた位置近傍に相当)と最も下流側に伸張した凝固完了位置(鋳片短辺近傍に相当)との距離(以下、「突出量」と記す)は4.2mであった。試験水準A−2は、磁束密度を0.03T(テスラ)とした場合であり、短辺側の凝固完了位置は鋳型内溶鋼湯面位置から23.4mの位置となって突出量が2.6mとなり、試験水準A−1に比較して突出量が少なくなった。試験水準A−3は、磁束密度を更に増加して0.06Tとした場合であり、短辺側の凝固完了位置は鋳片幅中央部とほぼ同位置となり、突出量は1.6mとなり更に少なくなった。
【0045】
図7に、水準Bの試験鋳造における凝固完了位置の鋳片幅方向形状を示す。試験水準B−1は、移動磁場を印加しない場合であり、凝固完了位置は幅中央近傍で鋳型内溶鋼湯面位置から24.5m、鋳片短辺近傍の鋳片幅中央から800mm離れた位置近傍では横波電磁超音波が透過せず、伝播時間を計測できなかった。横波電磁超音波は固相中は伝播するが、液相中は伝播しないので、この付近では未だ凝固が完了していなかったことが分かった。この連続鋳造機における軽圧下帯の下流側出口は鋳型内溶鋼湯面位置から30mであるので、試験水準B−1では鋳片短辺近傍の凝固完了位置は軽圧下帯の出口よりも下流側に突出していたと見られる。このような状態では、軽圧下帯の出口よりも下流側に突出した部位には有効な圧下が加えられないため、中心偏析が悪化する可能性が高い。
【0046】
試験水準B−2は、磁束密度を0.04Tとした場合であり、凝固完了位置の突出量は4.7mとなり、試験水準B−1に比較して突出量が少なくなった。そして、鋳片幅方向の全域で横波電磁超音波の透過が認められたことから、凝固完了位置は軽圧下帯を逸脱せず、鋳片幅全域に亘って有効な圧下力が作用したことが分かった。試験水準B−3は、磁束密度を更に増加して0.08Tとした場合であり、凝固完了位置の突出量は1.9mであり、更に少なくなった。
【0047】
以上の結果から、浸漬ノズルからの溶鋼吐出流に対して制動力が加わるように移動磁場を印加することで、凝固完了位置を鋳片幅方向で平坦化することが可能であることが分かった。
【0048】
凝固完了位置の鋳片幅制御による中心偏析の低減効果を確認するため、水準B−1及び水準B−3の鋳造条件で鋳造した鋳片を厚鋼板に圧延し、厚鋼板を超音波探傷試験して超音波探傷試験の合格率を移動磁場印加の有無で比較調査した。一般に、鋳片の中心偏析が悪化すると、厚鋼板の超音波探傷試験で不合格となる頻度が高くなることが知られている。表4に超音波探傷試験の結果を示す。
【0049】
【表4】
Figure 0004708686
【0050】
表4に示すように、移動磁場を印加して鋳片幅方向の凝固完了位置を平坦化した鋳片の方が、超音波探傷試験の合格率が格段に高く、本発明方法によって鋳片の中心偏析が低減されることが確認できた。
【0051】
【発明の効果】
本発明によれば、鋳片引き抜き速度の広い範囲において、鋳片幅方向の凝固完了位置の形状を平坦化しながら鋳造することができ、その結果、鋳片の中心偏析の低減、並びに、鋳片引き抜き速度上限値までの増速による生産性の向上等が可能となり、工業上有益な効果がもたらされる。
【図面の簡単な説明】
【図1】本発明を実施したスラブ連続鋳造機の概略図である。
【図2】図1に示すスラブ連続鋳造機の鋳型部位の概略斜視図である。
【図3】図1に示すスラブ連続鋳造機の鋳型部位の概略正面図である。
【図4】溶鋼吐出流に制動力を与えるべく移動磁場を印加する場合の磁場印加方法を模式的に示す図である。
【図5】溶鋼吐出流に加速力を与えるべく移動磁場を印加する場合の磁場印加方法を模式的に示す図である。
【図6】水準Aの試験鋳造における凝固完了位置の鋳片幅方向形状を示す図である。
【図7】水準Bの試験鋳造における凝固完了位置の鋳片幅方向形状を示す図である。
【符号の説明】
1 連続鋳造機
2 鋳型
5 タンディッシュ
6 浸漬ノズル
7 鋳片支持ロール
8 搬送ロール
9 ガス切断機
10 二次冷却帯
15 軽圧下帯
16 送信用センサー
17 受信用センサー
20 移動磁場発生装置
26 溶鋼
27 凝固シェル
28 溶鋼湯面
29 未凝固層
30 鋳片
31 溶鋼吐出流
32 凝固完了位置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel continuous casting method, and more particularly to a method for continuously casting a slab slab while controlling a solidification completion position in the slab slab width direction.
[0002]
[Prior art]
As the quality required for steel slab slabs manufactured by continuous casting (hereinafter simply referred to as “slabs”), there is little component segregation (hereinafter referred to as “center segregation”) at the center of the slab. Required. In particular, in thick steel plates for building structures and line pipe materials for transporting crude oil, it is known that significant center segregation significantly affects hydrogen-induced cracking and the material strength of welds.
[0003]
This center segregation occurs due to the movement and accumulation of concentrated molten steel concentrated in the slab of solute elements such as carbon, phosphorus, sulfur and the like caused by solidification shrinkage of the slab. Therefore, as a method of reducing the center segregation, the distance from the facing roll of the continuous casting machine is made narrower toward the downstream side in the slab drawing direction, and a reduction force is applied in the slab thickness direction along the slab drawing direction. So that the slab is gradually reduced, the volume of the slab center is reduced, and the movement of the concentrated molten steel to the slab center caused by the solidification shrinkage of the slab is prevented. Has been done. However, when light reduction is performed, if the slab swells between adjacent rolls due to molten steel static pressure (referred to as “bulging”), the reduction of the center segregation is not achieved because the slab is not efficiently reduced. descend. Therefore, in the case of light reduction, it is common to provide a dedicated roll segment (hereinafter referred to as “light reduction belt”) in which the roll pitch between adjacent rolls is reduced.
[0004]
In this way, the light pressure lower belt has a small roll diameter and a large number of rolls, so not only the capital investment cost is high, but also the time and cost for subsequent maintenance and inspection are increased. The length is kept to the minimum necessary. Therefore, there is a difference in the solidification completion position in the slab width direction, and when the part of the slab deviates from the light pressure lowering zone without completely solidifying, the reduction force does not act on this part. The central segregation increases without improvement.
[0005]
The shape of the unsolidified layer when the solidification completion position of the slab differs in the width direction is generally a W-shaped shape in which the unsolidified layer extends in the casting direction at the short side of the slab. Well known. Reasons for this W-shape are (1) the influence of spray water for cooling in the secondary cooling zone of the continuous casting machine, and (2) the growth delay of the solidified shell due to the molten steel discharge flow discharged from the immersion nozzle. Are known. With this W-shaped shape, central segregation at the stretched part of the unsolidified layer is aggravated regardless of whether light pressure is applied. Various measures have been proposed in the past to make the W-shaped shape flat. ing.
[0006]
For example, Patent Document 1 discloses a method in which a width direction shape of an unsolidified layer is obtained by a sensor, and a slab drawing speed or a secondary cooling strength in the slab width direction is changed according to a difference from a reference shape. Proposed. However, when the slab drawing speed is reduced, there is a problem that the productivity of the continuous casting machine is lowered, and in order to change the secondary cooling strength in the slab width direction, flow control is possible. It is necessary to install a plurality of such secondary cooling water circuits independently in the width direction of the slab, and there is a problem that the structure of the secondary cooling water circuit is complicated and the equipment cost is extremely high.
[0007]
On the other hand, in order to eliminate the W-shaped shape by controlling the molten steel discharge flow from the immersion nozzle, for example, as disclosed in Patent Document 2, the discharge port is downward and the discharge port is substantially equal to the mold width. By using the flat submerged nozzle, the molten steel discharge flow is made uniform, and at the same time, it does not collide with a specific solidified shell portion. However, such an immersion nozzle has a problem that its shape is complicated and large, so that it is much more expensive than a conventional cylindrical immersion nozzle. Moreover, when the injection amount of molten steel decreases, molten steel does not spread over the whole flat part, and a difference may arise in molten steel discharge flow in the slab width direction. That is, there is a possibility that it cannot cope with a change in the slab drawing speed.
[0008]
[Patent Document 1]
Japanese Patent Publication No.59-41829
[Patent Document 2]
Japanese National Patent Publication No. 10-510216
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and the object of the present invention is to reliably and inexpensively reduce the productivity of a continuous casting slab in the continuous casting of steel without compromising the productivity of the continuous casting machine. It is an object of the present invention to provide a continuous casting method capable of controlling the solidification completion position of the steel to an optimum shape.
[0012]
[Means for Solving the Problems]
In order to reduce the center segregation of a slab, the continuous casting method for steel according to the first invention for solving the above problem uses a continuous casting machine provided with a light reduction belt for lightly reducing the slab. When the molten steel is continuously cast by controlling the solidification completion position of the slab within the range of the light pressure lower belt , a transmission sensor with the slab sandwiched at a position 0 to 3 m upstream from the outlet of the light pressure lower belt A receiving sensor is arranged, and while transmitting the transmitting sensor and the receiving sensor in the slab width direction, an electromagnetic ultrasonic transverse wave is transmitted from the transmitting sensor in the thickness direction of the slab, and the transverse sensor transmits the transverse wave. the slab thickness direction average temperature obtained from the wave propagation time of, was determined in advance by heat transfer solidification calculated as a function of the distance downstream the average temperature of the slab thickness direction after the solidification completion position from the coagulation completion position, Slab thickness direction average temperature and solidification completion The width direction shape at the solidification completion position of the slab is obtained by comparing the relational expression with the device, and based on the shape, the short side of the mold along the long side of the mold with respect to the molten steel discharge flow from the immersion nozzle is obtained. The braking force generated by moving the magnetic field in the horizontal direction from the side toward the immersion nozzle is adjusted so that the distance between the most upstream solidification completion position and the most downstream solidification completion position is 2 m or less. it is characterized in that control the width direction shape of the solidification completion position of the slab on.
[0014]
The continuous casting method of steel according to the second invention is characterized in that, in the first invention , only one of the transmitting sensor and the receiving sensor is disposed with a cast piece interposed therebetween. .
[0016]
In the present invention, the braking force for the molten steel discharge flow from the immersion nozzle generated by applying the moving magnetic field is continuously adjusted according to the width direction shape of the solidification completion position of the slab detected by the solidification state determination device. In order to perform casting, in other words, to continuously cast the molten steel discharge flow by applying the braking force generated by the moving magnetic field, the flow velocity of the molten steel discharge flow is reduced, and the molten steel discharge flow is applied to the solidified shell on the short side of the slab. Are prevented from colliding, the solidified shell grows uniformly in the slab width direction, and the unsolidified layer is prevented from becoming W-shaped. As described above, since the W-shaped shape can be eliminated simply by adjusting the strength of the moving magnetic field, it can be carried out reliably and at relatively low equipment costs. Moreover, since it is not necessary to adjust the slab drawing speed, the productivity of the continuous casting machine is not impaired.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic view of a continuous slab caster embodying the present invention, FIG. 2 is a schematic perspective view of a mold part of the continuous slab caster shown in FIG. 1, and FIG. 3 is a schematic view of the continuous slab caster shown in FIG. It is a schematic front view of a casting_mold | template part.
[0018]
As shown in FIG. 1, a continuous casting machine 1 is provided with a mold 2 for injecting and solidifying molten steel, and a plurality of sets of a pair of opposing rolls are provided below the mold 2. The slab support roll 7 is installed. Further, on the downstream side of the slab support roll 7, a plurality of transport rolls 8 and a gas cutting machine 9 that is located above the transport roll 8 and synchronizes with the slab drawing speed of the slab 30 are installed. Yes. In addition, the slab support roll 7 includes a first cooling zone 11a, 11b, a second cooling zone 12a, 12b, a third cooling zone 13a, 13b, and a fourth cooling from directly below the mold 2 toward the downstream side. A secondary cooling zone 10 comprising cooling zones divided into a total of eight zones 14a and 14b is installed.
[0019]
In each cooling zone of the secondary cooling zone 10, a plurality of spray nozzles (not shown) for air mist spraying or water spraying are installed, and secondary cooling water is applied from the spray nozzles to the surface of the slab 30. Is sprayed. In each cooling zone, the cooling zone on the side opposite to the reference surface (upper surface side) of the continuous casting machine 1 is indicated by a, and the cooling zone on the reference surface side (lower surface side) is indicated by b. Further, although the total number of cooling zones is 8 in FIG. 1, it may be divided into several according to the length of the continuous casting machine 1 or the like.
[0020]
As shown in FIGS. 2 and 3, the mold 2 is composed of opposed mold long sides 3 and opposed mold short sides 4 housed in the mold long sides 3, and a predetermined position above the mold 2. The tundish 5 is disposed on the side. An upper nozzle 21 is installed at the bottom of the tundish 5, and a sliding nozzle 18 including a fixed plate 22, a sliding plate 23, and a rectifying nozzle 24 is disposed in contact with the lower surface of the upper nozzle 21. Further, the sliding nozzle An immersion nozzle 6 having a pair of discharge holes 19 at the bottom is disposed in contact with the lower surface of 18, and a molten steel outflow hole 25 from the tundish 5 to the mold 2 is formed. In order to prevent alumina from adhering to the inner wall surface of the immersion nozzle 6, non-oxidizing gas such as Ar gas and nitrogen gas is blown into the molten steel outflow hole 25 from the upper nozzle 21, the fixing plate 22, the immersion nozzle 6 and the like. .
[0021]
On the back side of the mold long side 3, a total of four moving magnetic field generators 20 divided into two on the left and right in the width direction of the mold long side 3 with the immersion nozzle 6 as a boundary are disposed at the center of the casting direction as discharge holes. It is located directly below 19 and is opposed to the long side 3 of the mold. Each moving magnetic field generator 20 is connected to a power source (not shown), and the magnetic field strength and the magnetic field moving direction applied from the moving magnetic field generator 20 are individually controlled by the power supplied from the power source. It is like that.
[0022]
The magnetic field applied by the moving magnetic field generator 20 is a moving magnetic field. When a magnetic field is applied to apply a braking force to the molten steel discharge flow 31 from the immersion nozzle 6, as shown in FIG. In the case where the moving direction is from the mold short side 4 side to the immersion nozzle 6 side, and a magnetic field is applied to apply acceleration force to the molten steel discharge flow 31 from the immersion nozzle 6, as shown in FIG. The moving direction is from the immersion nozzle 6 side to the mold short side 4 side. 4 and 5 are diagrams showing the moving direction of the magnetic field from right above the mold 2, and the arrows in the drawings indicate the moving direction of the magnetic field.
[0023]
As shown in FIG. 1, the continuous casting machine 1 is provided with a light reduction belt 15 for lightly reducing the slab 30 as a part of the slab support roll 7. The light pressure lower belt 15 is composed of a plurality of sets of slab support rolls 7 and is set so that the interval between the opposed slab support rolls 7 gradually decreases toward the downstream side of the slab 30 in the casting direction. In this structure, a rolling force can be applied to the slab 30. 1 shows a state in which solidification of the slab 30 is completed in the light pressure lower belt 15, but FIG. 1 is a diagram in which solidification is completed in the light pressure lower belt 15 to prevent center segregation. The solidification completion position 32 of the slab 30 is extended to the end of the continuous casting machine 1, that is, the position of the slab support roll 7 on the gas cutting machine 9 side.
[0024]
In a gap between the slab support rolls 7 on the downstream side of the secondary cooling zone 10, a transmission sensor 16 (16 a, 16 b) that constitutes a part of the solidification state determination device for detecting the solidification completion position 32 of the slab 30. ) And receiving sensors 17 (17a, 17b) are provided at three locations in the casting direction. In FIG. 1, the transmission sensor 16 and the reception sensor 17 are installed at three locations in the casting direction, but the number of installation is not limited to three and may be any number. It is possible to detect the solidification completion position 32 with higher accuracy as the number increases. However, as will be described later, it is possible to detect the shape of the solidification completion position 32 in the slab width direction, and the balance between the detection accuracy and the equipment cost. The number of installations can be determined as appropriate.
[0025]
The solidification state determination device includes a sensor unit including a transmission sensor 16 and a reception sensor 17 that are arranged to face each other with a slab 30 interposed therebetween, and a transmission output system (not shown) that outputs a transmission signal to the transmission sensor 16. And a reception processing system (not shown) for processing a reception signal received by the reception sensor 17. The transmission sensor 16 and the reception sensor 17 are attached to a mounting base (not shown) that can move in the width direction of the slab 30, and the transmission sensor 16 and the reception sensor 17 move in synchronization. Thus, the solidification completion position 32 can be detected over the entire width of the slab 30. That is, since the scanning is possible in the slab width direction, the situation of the solidification completion position 32 in the slab width direction can be grasped.
[0026]
The transmission sensor 16 transmits a transmission signal as a transverse electromagnetic ultrasonic wave, and the reception sensor 17 receives a transmission signal of the transverse electromagnetic ultrasonic wave transmitted through the slab 30. The coagulation completion position 32 is detected by processing this received signal. When the unsolidified layer 29 remains on the slab 30, the transverse electromagnetic ultrasonic wave does not pass through the slab 30, and a transmission signal is propagated to the receiving sensor 17 after the solidification is completed.
[0027]
The position of the sensor unit of the coagulation state determination device is a slightly upstream position where the coagulation completion position 32 is not desired to extend further downstream, for example, 0-3 m upstream from the outlet of the light pressure lower belt 15. desirable. A transverse wave is used for the electromagnetic ultrasonic wave to be transmitted, the transmission sensor 16 and the reception sensor 17 are installed at this position, and the transmission sensor 16 and the reception sensor 17 are scanned in the width direction of the slab, so Since the solidification completion position 32 of each part in the width direction can be obtained based on the average temperature in the thickness direction of the slab 30 obtained from the propagation time of the transmission signal in each part, the sensor part can be even at one place in the casting direction. I do not care. In this case, the position at which the transmission signal has reached the limit is the position at which the solidification completion position 32 extends most downstream in the casting direction.
[0028]
In the case of transverse electromagnetic ultrasonic waves, the transmission speed increases as the slab temperature decreases. In the slab width direction, the average temperature in the slab thickness direction of the part corresponding to the most upstream solidification completion position 32 is the lowest, and therefore the propagation time is the shortest in this part. That is, since the average temperature in the slab thickness direction of each part in the slab width direction can be obtained from the propagation time of the transverse electromagnetic ultrasonic wave, the relationship between the average temperature in the thickness direction of the slab 30 and the solidification completion position 32 in advance. By obtaining the equation by heat transfer solidification calculation or the like, the solidification completion position 32 can be estimated from the average temperature of the slab obtained from the propagation time. In this way, the solidification completion position 32 of each part in the width direction of the slab 30 can be detected, that is, the shape of the unsolidified layer 29 can be detected.
[0029]
Using the continuous casting machine 1 configured as described above, molten steel is continuously cast as follows.
[0030]
When the molten steel 26 is poured into the tundish 5 from a ladle (not shown) and the amount of molten steel in the tundish 5 reaches a predetermined amount, the sliding plate 23 is opened and the molten steel 26 is removed via the molten steel outflow hole 25. Inject into the mold 2. The molten steel 26 is injected into the mold 2 as a molten steel discharge flow 31 toward the mold short side 4 from the discharge hole 19 immersed in the molten steel 26 in the mold 2. The molten steel 26 injected into the mold 2 is cooled by the mold 2 to form a solidified shell 27. When a predetermined amount of molten steel 26 is injected into the mold 2, the driving roll (referred to as “pinch roll”) of the slab support roll 7 is driven to make the outer shell a solidified shell 27, and the molten steel is contained inside. Drawing of the slab 30 having 26 unsolidified layers 29 is started. The slab 30 is continuously drawn downward while being supported by the slab support roll 7. After the start of drawing, the slab drawing speed is increased to a predetermined slab drawing speed while controlling the position of the molten steel surface 28 to a substantially constant position in the mold 2. Mold powder 33 is added on the molten steel surface 28 in the mold 2. The mold powder 33 melts to prevent oxidation of the molten steel 26 and flows between the solidified shell 27 and the mold 2 to exert an effect as a lubricant.
[0031]
The slab 30 is cooled in the secondary cooling zone 10 while adding an appropriate amount of light reduction in the light reduction zone 15, increases the thickness of the solidified shell 27, and eventually completes solidification to the center. At that time, the solidification completion position 32 in the width direction of the slab 30 is detected by the solidification state determination device including the transmission sensor 16 and the reception sensor 17.
[0032]
In accordance with the detected shape of the solidification completion position 32 in the slab width direction, the electric power supplied to the moving magnetic field generator 20 is adjusted so that the shape becomes a predetermined shape. As described above, since the shape in the width direction of the solidification completion position 32 is usually the W shape extended on the short side of the slab, the shape shown in FIG. 4 is used in order to make the shape flat. A moving magnetic field is moved and the braking force to the molten steel discharge flow 31 is strengthened. Then, the electric power supplied to the moving magnetic field generator 20, that is, the magnetic field strength is appropriately adjusted according to the shape in the slab width direction of the solidification completion position 32 detected during casting.
[0033]
When casting for the purpose of reducing the center segregation, it is necessary to control the solidification completion position 32 in the entire width direction of the slab within the range of the light pressure lower belt 15, and therefore, for example, the most upstream solidification completion position 32 is The slab drawing speed and the amount of secondary cooling water are adjusted so as to be about the center position of the light pressure lower belt 15, and the power supplied to the moving magnetic field generator 20 is changed, and the solidification completion position extended to the most downstream side 32 is moved upstream. Since the center segregation is improved as the distance between the solidification completion position 32 on the most upstream side and the solidification completion position 32 extended to the most downstream side is smaller, it is preferable to control this distance to be 2 m or less.
[0034]
In order to increase the productivity of the continuous casting machine 1, when casting at the maximum slab drawing speed, it is necessary to position the solidification completion position 32 on the exit side of the continuous casting machine 1, and thus, for example, the most upstream solidification is performed. The slab drawing speed and the amount of secondary cooling water are adjusted so that the completion position 32 is between the transmission sensor 16a and the transmission sensor 16b shown in FIG. The power supplied to the moving magnetic field generator 20 is changed so as not to exceed the position of the transmission sensor 16b.
[0035]
The slab 30 thus cast is cut by the gas cutter 9 to obtain a slab 30a.
[0036]
As described above, according to the present invention, it is possible to manufacture the slab 30 while flattening the shape of the solidification completion position 32 in the slab width direction, improving the center segregation and the productivity of the continuous casting machine 1. It is possible to obtain secondary effects such as improvement of the above.
[0037]
In the above description, the explanation is based on the assumption that light reduction is performed. However, in order to increase the productivity of the continuous casting machine 1, when casting at the maximum slab drawing speed, it is not necessary to perform light reduction. It is not necessary to install the belt 15 as well. Further, in the above description, the example of the sliding nozzle 18 having the two-plate configuration is given, but the present invention can be applied to the sliding nozzle having the three-plate configuration along the above.
[0038]
【Example】
Using a vertical bending slab continuous casting machine (machine length: 49.2 m) whose specifications are shown in Table 1, C: 0.11 to 0.14 mass%, Si: 0.1 to 0.2 mass%, Mn: 0.00. 6 to 0.8 mass%, P: 0.030 mass% or less, S: 0.03 mass% or less, Cu: 0.08 mass% or less, sol.Al: 0.015 to 0.050 mass%, N : Carbon steel for 440 MPa class thick steel plate having a composition of 0.008% by mass or less was cast. In this continuous casting machine, the light pressure lower belt is arranged in a range of 14 to 30 m from the position of the molten steel surface in the mold.
Table 2 shows the specifications of the moving magnetic field generator installed in this continuous casting machine.
[0039]
[Table 1]
Figure 0004708686
[0040]
[Table 2]
Figure 0004708686
[0041]
And the slab drawing speed is 1.4 m / min (level A) and 1.6 m / min (level B), and the strength of the moving magnetic field with the moving direction from the mold short side to the immersion nozzle side, Casting was carried out at three stages including no application. Table 3 shows the casting conditions for each test casting. The EMLS mode shown in Table 3 is a method of applying a moving magnetic field with the moving direction of the magnetic field from the short side of the mold to the immersion nozzle.
[0042]
[Table 3]
Figure 0004708686
[0043]
In the continuous casting machine, a pair of transmitting and receiving sensors are installed at a position 2m upstream from the exit of the light pressure lower belt. These sensors are scanned in the width direction of the slab, and the propagation time of the transverse electromagnetic wave is transmitted. Was measured. In addition, a relationship between the temperature of the slab and the speed of the transverse electromagnetic ultrasonic wave is obtained by an experiment using a high-temperature slab separately in the laboratory, and the propagation time in the test casting is measured using this relationship. It converted into the average temperature of the thickness direction of the slab in a position. Furthermore, the average temperature in the slab thickness direction after the solidification completion position is calculated as a function of the distance from the solidification completion position to the downstream side by heat transfer solidification calculation under the test casting conditions. The solidification completion position was determined from the average temperature in the slab thickness direction at the measurement position.
[0044]
FIG. 6 shows the shape in the slab width direction at the solidification completion position in the level A test casting. Since the shape in the width direction was substantially symmetrical on the left and right in the width direction, it was displayed with a ½ width from the center of the slab width to the short side of the slab. Test level A-1 is the case where no moving magnetic field is applied, and the solidification completion position is near the center of the width, 22.8 m from the molten steel surface position in the mold, and near the position 500 mm away from the center of the slab width. 21.3m from the surface position and 25.5m from the molten steel surface position in the mold near the short side of the slab, the most upstream solidification completion position (corresponding to the vicinity of the position 500mm away from the center of the slab width) The distance (hereinafter referred to as “protrusion amount”) from the solidification completion position (corresponding to the vicinity of the short side of the slab) extending to the most downstream side was 4.2 m. The test level A-2 is a case where the magnetic flux density is 0.03 T (Tesla), and the solidification completion position on the short side is 23.4 m from the molten steel surface position in the mold, and the protrusion amount is 2. 6 m, and the amount of protrusion was small compared to test level A-1. Test level A-3 is a case where the magnetic flux density is further increased to 0.06 T, and the solidification completion position on the short side is substantially the same position as the center part of the slab width, and the protrusion amount is 1.6 m. Less.
[0045]
FIG. 7 shows the slab width direction shape at the solidification completion position in the level B test casting. Test level B-1 is a case where no moving magnetic field is applied, and the solidification completion position is 24.5 m from the molten steel surface position in the mold near the center of the width, and a position 800 mm away from the center of the slab width near the slab short side. In the vicinity, transverse electromagnetic ultrasonic waves could not be transmitted and the propagation time could not be measured. Transverse electromagnetic ultrasonic waves propagate in the solid phase, but do not propagate in the liquid phase, indicating that solidification has not yet been completed in this vicinity. Since the downstream outlet of the light pressure lower zone in this continuous casting machine is 30 m from the molten steel surface position in the mold, at the test level B-1, the solidification completion position near the short side of the slab is downstream from the outlet of the light pressure lower zone. It seems to have protruded. In such a state, since effective reduction is not applied to a portion protruding downstream from the exit of the light reduction belt, there is a high possibility that the center segregation is deteriorated.
[0046]
Test level B-2 was a case where the magnetic flux density was 0.04T, and the protrusion amount at the solidification completion position was 4.7 m, which was smaller than the test level B-1. And since the transmission of the transverse electromagnetic ultrasonic waves was recognized in the whole area of the slab width direction, the solidification completion position did not deviate from the light reduction band, and an effective reduction force was applied over the entire width of the slab. I understood. Test level B-3 was a case where the magnetic flux density was further increased to 0.08 T, and the amount of protrusion at the solidification completion position was 1.9 m, which was further reduced.
[0047]
From the above results, it was found that the solidification completion position can be flattened in the slab width direction by applying a moving magnetic field so that a braking force is applied to the molten steel discharge flow from the immersion nozzle. .
[0048]
In order to confirm the effect of reducing center segregation by controlling the slab width at the solidification completion position, the slab cast under the casting conditions of Level B-1 and Level B-3 is rolled into a thick steel plate, and the thick steel plate is subjected to an ultrasonic flaw detection test. Then, the pass rate of the ultrasonic flaw detection test was compared and examined with and without the application of a moving magnetic field. In general, it is known that when the center segregation of a slab deteriorates, the frequency of failing in the ultrasonic flaw detection test of a thick steel plate increases. Table 4 shows the results of the ultrasonic flaw detection test.
[0049]
[Table 4]
Figure 0004708686
[0050]
As shown in Table 4, the slab in which the moving magnetic field is applied and the solidification completion position in the slab width direction is flattened has a remarkably high pass rate of the ultrasonic flaw detection test. It was confirmed that the center segregation was reduced.
[0051]
【The invention's effect】
According to the present invention, casting can be performed while flattening the shape of the solidification completion position in the slab width direction in a wide range of the slab drawing speed. As a result, the center segregation of the slab is reduced, and the slab is cast. Productivity can be improved by increasing the speed up to the upper limit of the drawing speed, and industrially beneficial effects are brought about.
[Brief description of the drawings]
FIG. 1 is a schematic view of a slab continuous casting machine embodying the present invention.
FIG. 2 is a schematic perspective view of a mold part of the slab continuous casting machine shown in FIG.
FIG. 3 is a schematic front view of a mold part of the slab continuous casting machine shown in FIG. 1;
FIG. 4 is a diagram schematically showing a magnetic field application method when a moving magnetic field is applied to give a braking force to a molten steel discharge flow.
FIG. 5 is a diagram schematically showing a magnetic field application method in the case where a moving magnetic field is applied to give an acceleration force to a molten steel discharge flow.
FIG. 6 is a diagram showing a shape in the slab width direction at a solidification completion position in level A test casting.
FIG. 7 is a diagram showing a shape in the width direction of a slab at a solidification completion position in a level B test casting.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Continuous casting machine 2 Mold 5 Tundish 6 Immersion nozzle 7 Casting piece support roll 8 Conveyance roll 9 Gas cutting machine 10 Secondary cooling zone 15 Light pressure lower zone 16 Transmitting sensor 17 Receiving sensor 20 Moving magnetic field generator 26 Molten steel 27 Solidification Shell 28 Molten steel surface 29 Unsolidified layer 30 Slab 31 Molten steel discharge flow 32 Solidification completion position

Claims (2)

鋳片を軽圧下するための軽圧下帯が備えられた連続鋳造機を用い、鋳片の中心偏析を低減するべく、鋳片の凝固完了位置を軽圧下帯の範囲内に制御して溶鋼を連続鋳造する際に、前記軽圧下帯の出口から0〜3m上流側の位置に鋳片を挟んで送信用センサー及び受信用センサーを配置し、送信用センサー及び受信用センサーを鋳片幅方向に走査しながら送信用センサーから電磁超音波の横波を鋳片の厚み方向に送信し、受信用センサーにおける前記横波の透過波の伝播時間から求められる鋳片厚み方向平均温度と、凝固完了位置以降の鋳片厚み方向の平均温度を凝固完了位置から下流側への距離の関数として予め伝熱凝固計算により求めた、鋳片厚み方向平均温度と凝固完了位置との関係式と、を照らし合わせることにより、鋳片の凝固完了位置の幅方向形状を求め、当該形状に基づき、浸漬ノズルからの溶鋼吐出流に対する、鋳型の長辺に沿って鋳型の短辺側から浸漬ノズル側へ向かって水平方向に磁界を移動させることによって発生する制動力を調整し、最も上流側の凝固完了位置と最も下流側の凝固完了位置との距離が2m以下になるように鋳片の凝固完了位置の幅方向形状を制御することを特徴とする、鋼の連続鋳造方法。 In order to reduce the center segregation of the slab, the solidification completion position of the slab is controlled within the range of the light-pressed belt to reduce the center segregation of the slab. When continuously casting, a transmission sensor and a reception sensor are arranged with a slab sandwiched between 0 to 3 m upstream from the exit of the light pressure lower belt, and the transmission sensor and the reception sensor are arranged in the slab width direction. While scanning, a transverse wave of electromagnetic ultrasonic waves is transmitted from the transmitting sensor in the thickness direction of the slab, the average temperature in the slab thickness direction obtained from the propagation time of the transmitted wave of the transverse wave in the receiving sensor, and the position after the solidification completion position slab were determined from the average temperature of coagulation completion position in the thickness direction in advance by heat transfer solidification calculated as a function of the distance to the downstream side, a relational expression between the solidification completion position and the slab thickness direction average temperature, it collates the To complete solidification of the slab By determining the shape in the width direction of the device and moving the magnetic field in the horizontal direction from the short side of the mold toward the immersion nozzle side along the long side of the mold with respect to the molten steel discharge flow from the immersion nozzle based on the shape adjust the braking force generated, characterized in that control the width direction shape of the solidification completion position of the slab such that the distance between the most downstream side of the solidification completion position and the most upstream coagulation completion position is below 2m A continuous casting method of steel. 前記送信用センサー及び受信用センサーは、鋳片を挟んでそれぞれ1個のみ配置されていることを特徴とする、請求項1に記載の鋼の連続鋳造方法。  2. The continuous casting method for steel according to claim 1, wherein only one of the transmission sensor and the reception sensor is disposed with a cast piece interposed therebetween.
JP2003153088A 2003-05-29 2003-05-29 Steel continuous casting method Expired - Lifetime JP4708686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153088A JP4708686B2 (en) 2003-05-29 2003-05-29 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153088A JP4708686B2 (en) 2003-05-29 2003-05-29 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2004351481A JP2004351481A (en) 2004-12-16
JP4708686B2 true JP4708686B2 (en) 2011-06-22

Family

ID=34048140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153088A Expired - Lifetime JP4708686B2 (en) 2003-05-29 2003-05-29 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP4708686B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5949316B2 (en) * 2012-08-20 2016-07-06 Jfeスチール株式会社 Manufacturing method of continuous cast slab

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5055529A (en) * 1973-09-17 1975-05-15
JPH01127161A (en) * 1987-11-11 1989-05-19 Kawasaki Steel Corp Method for measuring profile of crater end solidification in continuous casting
JPH10137911A (en) * 1996-11-01 1998-05-26 Nkk Corp Method for continuously casting steel
JP2003033851A (en) * 2001-07-23 2003-02-04 Nkk Corp Method for manufacturing cast steel slab by continuous casting

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448651A (en) * 1987-08-13 1989-02-23 Nippon Steel Corp Method for assuming crater end

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5055529A (en) * 1973-09-17 1975-05-15
JPH01127161A (en) * 1987-11-11 1989-05-19 Kawasaki Steel Corp Method for measuring profile of crater end solidification in continuous casting
JPH10137911A (en) * 1996-11-01 1998-05-26 Nkk Corp Method for continuously casting steel
JP2003033851A (en) * 2001-07-23 2003-02-04 Nkk Corp Method for manufacturing cast steel slab by continuous casting

Also Published As

Publication number Publication date
JP2004351481A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
FI105325B (en) Casting of metal strip
US7669638B2 (en) Control system, computer program product, device and method
JP5092642B2 (en) Steel continuous casting method and continuous casting machine
KR20160146914A (en) Method and device for thin-slab strand casting
JPWO2014020860A1 (en) Steel continuous casting method
EP2868405B1 (en) Breakout prevention method in continuous casting
JP4483187B2 (en) Manufacturing method of continuous cast slab
JP2010274299A (en) Continuous casting method for steel
JP4708686B2 (en) Steel continuous casting method
EP3597328B1 (en) Continuous casting method for steel
JP2003290896A (en) Method for producing continuously cast slab
JP4407260B2 (en) Steel continuous casting method
JP2001087846A (en) Continuous casting method of steel slab and continuous casting device
JP4910357B2 (en) Steel continuous casting method
JP2001321901A (en) Method for continuously casting steel
JP2607334B2 (en) Flow control device for molten steel in continuous casting mold
KR102487307B1 (en) Apparatus of manufacturing for continuous casting and methods of manufacturing high-quality strand
JP2867894B2 (en) Continuous casting method
JP3395717B2 (en) Continuous casting method
JP3077572B2 (en) Continuous casting method
JP4300955B2 (en) Steel continuous casting method
JP3225894B2 (en) Continuous casting method
JP3538967B2 (en) Continuous casting method
JP2607335B2 (en) Flow control device for molten steel in continuous casting mold
JPH0890178A (en) Method for reducing defect just below surface skin of continuously cast slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060710

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110317

R150 Certificate of patent or registration of utility model

Ref document number: 4708686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term