JPH05120378A - Method for predictive wiring length calculation of integrated circuit - Google Patents

Method for predictive wiring length calculation of integrated circuit

Info

Publication number
JPH05120378A
JPH05120378A JP3277627A JP27762791A JPH05120378A JP H05120378 A JPH05120378 A JP H05120378A JP 3277627 A JP3277627 A JP 3277627A JP 27762791 A JP27762791 A JP 27762791A JP H05120378 A JPH05120378 A JP H05120378A
Authority
JP
Japan
Prior art keywords
wiring length
group
net
predictive
predicted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3277627A
Other languages
Japanese (ja)
Other versions
JP2817476B2 (en
Inventor
Tadashi Yokoyama
端 横山
Akio Ishizuka
昭夫 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3277627A priority Critical patent/JP2817476B2/en
Publication of JPH05120378A publication Critical patent/JPH05120378A/en
Application granted granted Critical
Publication of JP2817476B2 publication Critical patent/JP2817476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the precision by adding a constant term, a term obtained by multiplying the half peripheral length of the area of a group that the block of a network belongs to by a constant, and a term obtained by multiplying a value obtained by raising the half peripheral length to 0.5th power by a fan- out minus one and a constant. CONSTITUTION:Predictive wiring length brought under the consideration of the area size (half peripheral length) of the group that the block connected to the network belongs to can be calculated by using L=A+BXH+ CXH<0.5>X(f-1), where L is the predictive wiring length of the network, A, B, and C constants determined by a chip, H the half peripheral length of the area of the group that the block connected to the network belongs to, and f the fan-out of the network. Here, the straight line of a graph varies as the half peripheral length of the group area varies. Namely, the predictive wiring length 13 of the network in a group 9 is short and the predictive wiring length 14 of the network in a group 10 is long, thereby obtaining the predictive wiring length corresponding to the half peripheral length of the group area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は集積回路の予測配線長計
算法に関し、特に、大規模な集積回路の予測配線長計算
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calculating a predicted wiring length of an integrated circuit, and more particularly to a method for calculating a predicted wiring length of a large scale integrated circuit.

【0002】[0002]

【従来の技術】従来、この種の集積回路の予測配線長計
算法においては、ネットの1ファンアウト当りの配線長
を一律として、ネットの予測配線長を第1式を用いて計
算している。
2. Description of the Related Art Conventionally, in the method of calculating the predicted wiring length of an integrated circuit of this type, the predicted wiring length of a net is calculated by using the first equation while the wiring length per fanout of the net is uniform. .

【0003】L=α+β×f …… 第1式 ここで、Lはネットの予測配線長、αおよびβは半導体
基板(以下、チップと呼ぶ)により定まる定数、fはネ
ットのファンアウト数である。
L = α + β × f ## EQU1 ## Here, L is the predicted wiring length of the net, α and β are constants determined by the semiconductor substrate (hereinafter referred to as a chip), and f is the fanout number of the net. .

【0004】図2は、第1式を用いて算出したネットの
予測配線長のファンアウト数による変化の一例である。
従来の予測配線長計算法を用いてネットの予測配線長を
計算する場合、同一チップ上では、ネットの予測配線長
はファンアウト数により一律となる。
FIG. 2 shows an example of a change in the predicted wiring length of the net calculated by using the first equation according to the fanout number.
When the predicted wiring length of a net is calculated using the conventional predicted wiring length calculation method, the predicted wiring length of a net is uniform on the same chip due to the fanout number.

【0005】図3は、チップ上の配置および配線後のレ
イアウト図である。チップ7内に配置されたブロックが
配線により結線されている。また、チップ7内にはいく
つかのグループが存在し、同じグループに属するブロッ
クはそのグループ領域内に収まるように近くに配置され
る。ネット11は領域が小さいグループ9に属するブロ
ックのみに接続し、またネット12は領域が大きいグル
ープ10に属するブロックのみに接続している。従来の
予測配線長計算法では、ネット11とネット12はファ
ンアウト数がともに2と同一であるため、予測配線長も
同じである。しかし、グループ9の領域のサイズはグル
ープ10のものに比べて非常に小さいので、ネット11
の配線長はネット12のものに比べて非常に短くなる可
能性が高い。従って、ネット11はネット12に比べ予
測配線長が短くならなければならない。このように、従
来の予測配線長計算法では、精度の高い予測配線長計算
を行うことができない。
FIG. 3 is a layout diagram after arrangement on the chip and wiring. The blocks arranged in the chip 7 are connected by wiring. Further, there are several groups in the chip 7, and blocks belonging to the same group are arranged close to each other so as to fit within the group area. The net 11 is connected only to blocks belonging to the group 9 having a small area, and the net 12 is connected only to blocks belonging to the group 10 having a large area. In the conventional method of calculating the predicted wiring length, the net 11 and the net 12 both have the same fan-out number of 2, so that the predicted wiring length is also the same. However, since the size of the area of group 9 is much smaller than that of group 10, the net 11
There is a high possibility that the wiring length will be much shorter than that of the net 12. Therefore, the net 11 must have a shorter predicted wiring length than the net 12. As described above, the conventional predicted wiring length calculation method cannot perform highly accurate predicted wiring length calculation.

【0006】[0006]

【発明が解決しようとする課題】上述した従来の予測配
線長計算法は、ネットの予測配線長をファンアウト数に
より一律として計算する。この場合、配線後の配線長が
短いネットも長いネットもファンアウト数が同一ならば
予測配線長も同一となり、精度の高い予測配線長計算を
行うことができないという欠点がある。
In the above-mentioned conventional method of calculating the predicted wiring length, the predicted wiring length of the net is calculated uniformly by the fanout number. In this case, if the net having a short wiring length and the net having a long wiring length have the same fan-out number, the predicted wiring length will be the same, and it is not possible to perform highly accurate predicted wiring length calculation.

【0007】[0007]

【課題を解決するための手段】本発明の集積回路の予測
配線長計算法は、集積回路の配線パターンを計算機処理
により形成する前にネットの予測配線長を計算する集積
回路の予測配線長計算法において、定数項と、ネットに
接続されているブロックが属するグループの領域の半周
長に定数を乗じた項と、その半周長の0.5乗に「ネッ
トのファンアウト数−1」と定数を乗じた項を足し合わ
せた値を予測配線長とする。
According to the method of calculating a predicted wiring length of an integrated circuit of the present invention, a predicted wiring length of an integrated circuit is calculated before a wiring pattern of the integrated circuit is formed by computer processing. In the method, a constant term, a term obtained by multiplying the half circumference of the area of the group to which the block connected to the net belongs by a constant, and the half circumference of the term to the power of 0.5 "the fan-out number of the net-1" and a constant The value obtained by adding the terms multiplied by is the predicted wiring length.

【0008】[0008]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0009】図1は本発明の予測配線長計算法を用いた
システムの概略を示すフロー図である。図1に示すよう
に、かかる予測配線長計算法を用いたシステムのフロー
は、ブロックのグループ情報4に基づきブロックのグル
ーピングを行う処理工程1と、ブロックのサイズの情報
5に基づき処理工程1で作成したグループの領域の半周
長を計算する処理工程2と、処理工程2で算出したグル
ープ領域半周長を用いてネットの予測配線長を計算する
処理工程3により構成される。
FIG. 1 is a flow chart showing the outline of a system using the predicted wiring length calculation method of the present invention. As shown in FIG. 1, the flow of the system using such a predicted wiring length calculation method includes a processing step 1 for grouping blocks based on block group information 4 and a processing step 1 based on block size information 5. It is composed of a processing step 2 for calculating the half circumference of the created group area and a processing step 3 for calculating the predicted wiring length of the net using the group area half circumference calculated in the processing step 2.

【0010】第2式は本発明の予測配線長計算法で用い
る予測配線長計算式である。
The second formula is a predicted wiring length calculation formula used in the predicted wiring length calculation method of the present invention.

【0011】 L=A+B×H+C×H0.5 ×(f−1) ……第2式 ここで、Lはネットの予測配線長、A,BおよびCはチ
ップにより定まる定数、Hはネットに接続されているブ
ロックが属するグループの領域の半周長、fはネットの
ファンアウト数である。
L = A + B × H + C × H 0.5 × (f−1) (2) Here, L is the predicted wiring length of the net, A, B and C are constants determined by the chip, and H is connected to the net. Is the half circumference of the area of the group to which this block belongs, and f is the number of fan-outs of the net.

【0012】第2式を用いることにより、ネットに接続
されているブロックが属するグループの領域サイズ(半
周長)を考慮した予測配線長を計算することができる。
By using the second equation, it is possible to calculate the predicted wiring length in consideration of the area size (half circumference) of the group to which the block connected to the net belongs.

【0013】図4は、第2式を用いて算出したネットの
予測配線長のファンアウト数による変化の一例である。
グループ領域の半周長の変化に伴いグラフの直線が変化
する。図3のグループ9内のネットの予測配線長13は
短く、グループ10内のネットの予測配線長14は長く
なっており、グループ領域の半周長に対応した予測配線
長が得られる。
FIG. 4 shows an example of a change in the predicted wiring length of the net calculated by using the second equation according to the fanout number.
The straight line of the graph changes as the half circumference of the group area changes. The predicted wiring length 13 of the net in the group 9 in FIG. 3 is short, and the predicted wiring length 14 of the net in the group 10 is long, so that the predicted wiring length corresponding to the half circumference of the group area can be obtained.

【0014】図5は本発明の予測配線長計算法を用いた
遅延時間シミュレーションシステムのフロー図である。
ネットの予測配線長計算を行う処理工程15と、処理工
程15で算出した予測配線長を用いて遅延時間シミュレ
ーションを行う処理工程16により構成される。本発明
の予測配線長計算法を遅延時間シミュレーションシステ
ムで用いることにより精度の高い遅延時間シミュレーシ
ョンを行うことができる。
FIG. 5 is a flow chart of a delay time simulation system using the predictive wiring length calculation method of the present invention.
It is composed of a processing step 15 for calculating a predicted wiring length of a net, and a processing step 16 for performing a delay time simulation using the predicted wiring length calculated in the processing step 15. By using the predicted wiring length calculation method of the present invention in a delay time simulation system, a highly accurate delay time simulation can be performed.

【0015】図6は本発明の予測配線長計算法を用いた
論理合成システムのフロー図である。論理合成を行う処
理工程17と、それと並行してネットの予測配線長計算
を行う処理工程18により構成される。本発明の予測配
線長計算法を論理合成システムで用いることにより、よ
り最適な論理合成を行うことができる。
FIG. 6 is a flow chart of a logic synthesis system using the predicted wiring length calculation method of the present invention. It is composed of a processing step 17 for performing logic synthesis, and a processing step 18 for calculating a predicted wiring length of a net in parallel therewith. By using the predicted wiring length calculation method of the present invention in a logic synthesis system, more optimal logic synthesis can be performed.

【0016】[0016]

【発明の効果】以上説明したように、本発明の集積回路
の予測配線長計算法は、配線パターンを計算機処理によ
り形成する前にネットの予測配線長を計算するために、
定数項と、ネットに接続されているブロックが属するグ
ループの領域の半周長に定数を乗じた項と、その半周長
の0.5乗に「ネットのファンアウト数−1」と定数を
乗じた項を足し合わせた値を予測配線長とすることによ
り、精度の高い予測配線長計算を行うことができるとい
う効果がある。
As described above, the method for calculating the predicted wiring length of an integrated circuit according to the present invention calculates the predicted wiring length of a net before forming a wiring pattern by computer processing.
A constant term, a term obtained by multiplying the half perimeter of the area of the group to which the block connected to the net belongs by a constant, and the half perimeter to the power of 0.5 were multiplied by the "net fanout number-1" and a constant. By setting the value obtained by adding the terms as the predicted wiring length, it is possible to perform highly accurate predicted wiring length calculation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本思想に基づくフローチャート。FIG. 1 is a flowchart based on the basic idea of the present invention.

【図2】従来の予測配線長計算法による予測配線長ファ
ンアウト数による変化を示す図。
FIG. 2 is a diagram showing a change according to a predicted wiring length fanout number by a conventional predicted wiring length calculation method.

【図3】チップ上のレイアウト図。FIG. 3 is a layout diagram on a chip.

【図4】本発明の予測配線長計算法による予測配線長の
ファンアウト数による変化を示す図。
FIG. 4 is a diagram showing changes in the predicted wiring length according to the fanout number according to the predicted wiring length calculation method of the present invention.

【図5】本発明の予測配線長計算法を用いた遅延時間シ
ミュレーションシステムのフロー図。
FIG. 5 is a flowchart of a delay time simulation system using the predicted wiring length calculation method of the present invention.

【図6】本発明の予測配線長計算法を用いた論理合成シ
ステムのフロー図。
FIG. 6 is a flow chart of a logic synthesis system using the predicted wiring length calculation method of the present invention.

【符号の説明】[Explanation of symbols]

1 ブロックのグルーピング処理 2 グループ領域半周長計算処理 3 ネットの予測配線長計算処理 4 ブロックのグループ情報ファイル 5 ブロックのサイズ情報ファイル 6 ネットの予測配線長 7 チップ 8 ブロック 9,10 グループ 11,12 ネット 13 グループ9内のネットの予測配線長 14 グループ10内のネットの予測配線長 15 ネットの予測配線長計算処理 16 遅延時間シミュレーション処理 17 論理合成処理 18 ネットの予測配線長計算処理 1 block grouping processing 2 group area half circumference calculation processing 3 net predicted wiring length calculation processing 4 block group information file 5 block size information file 6 net predicted wiring length 7 chips 8 blocks 9,10 groups 11, 12 nets 13 Predicted wiring length of nets in group 9 14 Predicted wiring length of nets in group 10 15 Predicted wiring length calculation processing for nets 16 Delay time simulation processing 17 Logic synthesis processing 18 Predicted wiring length calculation processing for nets

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 集積回路の配線パターンを計算機処理に
より形成する前にネットの予測配線長を計算する集積回
路の予測配線長計算法において、定数項と、ネットに接
続されているブロックが属するグループの領域の半周長
に定数を乗じた項と、その半周長の0.5乗に「ネット
のファンアウト数−1」と定数を乗じた項を足し合わせ
た値を予測配線長とすることを特徴とする集積回路の予
測配線長計算法。
1. A constant term and a group to which a block connected to a net belongs in a predictive wiring length calculation method of an integrated circuit for calculating a predicted wiring length of a net before forming a wiring pattern of the integrated circuit by computer processing. The value obtained by adding the term obtained by multiplying the half circumference of the area of (1) by a constant and the term obtained by multiplying the half circumference by the power of 0.5 to the "net fanout number -1" and a constant is used as the predicted wiring length. A method for calculating the expected wiring length of a featured integrated circuit.
JP3277627A 1991-10-24 1991-10-24 Calculation method of estimated wiring length of integrated circuit Expired - Fee Related JP2817476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3277627A JP2817476B2 (en) 1991-10-24 1991-10-24 Calculation method of estimated wiring length of integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3277627A JP2817476B2 (en) 1991-10-24 1991-10-24 Calculation method of estimated wiring length of integrated circuit

Publications (2)

Publication Number Publication Date
JPH05120378A true JPH05120378A (en) 1993-05-18
JP2817476B2 JP2817476B2 (en) 1998-10-30

Family

ID=17586066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3277627A Expired - Fee Related JP2817476B2 (en) 1991-10-24 1991-10-24 Calculation method of estimated wiring length of integrated circuit

Country Status (1)

Country Link
JP (1) JP2817476B2 (en)

Also Published As

Publication number Publication date
JP2817476B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
JP3182036B2 (en) Logic synthesis method and logic synthesis device
US5502649A (en) Method and apparatus for determining power supply wirings of a semiconductor device
US6820048B1 (en) 4 point derating scheme for propagation delay and setup/hold time computation
JPH05120378A (en) Method for predictive wiring length calculation of integrated circuit
JPH10256387A (en) Optimization for combinational circuit layout by repeated reconfiguration
JP2798048B2 (en) Automatic placement method of semiconductor integrated circuit
JPH07287051A (en) Input data creation device for logic simulation
JP2801970B2 (en) Generating exposure data
Donze et al. Masterimage approach to VLSI design
JPH05256916A (en) Method and apparatus for estimating power
JP2788763B2 (en) Semiconductor design apparatus and method
JPH03175720A (en) Semiconductor integrated circuit
JP2715931B2 (en) Semiconductor integrated circuit design support method
JP2821419B2 (en) Logic simulator
Singh et al. Optimal chip sizing for multi-chip modules
US7110930B2 (en) Integrated circuit and package modeling
JP2766922B2 (en) Memory design equipment
JP2786017B2 (en) Method for manufacturing semiconductor integrated circuit
JPS62219300A (en) Semiconductor integrated circuit
SU805322A1 (en) System for automatic design and control of technological processes in microelectronics
JP2938601B2 (en) Arrangement method
JPH05160263A (en) Method of determining signal placement for lsi external terminal
EP0352523A2 (en) Method of providing a layout for a data path block
JPH1070241A (en) Automatic arranging method
JPH1117157A (en) Floor-plane layout system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980721

LAPS Cancellation because of no payment of annual fees