JPH05118899A - Continuous determination system - Google Patents
Continuous determination systemInfo
- Publication number
- JPH05118899A JPH05118899A JP27601491A JP27601491A JPH05118899A JP H05118899 A JPH05118899 A JP H05118899A JP 27601491 A JP27601491 A JP 27601491A JP 27601491 A JP27601491 A JP 27601491A JP H05118899 A JPH05118899 A JP H05118899A
- Authority
- JP
- Japan
- Prior art keywords
- controller
- fuzzy
- range
- particle
- membership function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Weight Measurement For Supplying Or Discharging Of Specified Amounts Of Material (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、工業用原料である粉体
を高精度に連続定量し、排出するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is to accurately and continuously quantify a powder, which is an industrial raw material, and discharge it.
【0002】[0002]
【従来の技術】従来、工業用原料等の粉体の定量は、計
量器を使用した重量比による定量が行われていた。定量
の方法は、バッチ式が主で一部低精度で大容量のものに
ついてはベルトコンベアスケール等を用いた定量および
排出が行われていた。また、連続定量システムとして
は、スクリューフィーダを用い、設定された排出速度に
応じてスクリューの回転速度をPI制御(比例・積分制
御)するものであった。しかし、本手法は、スクリュー
の回転速度の変動が激しく、システム始動時の過渡特性
が悪いため高精度な連続定量および排出を行うことは困
難であった。2. Description of the Related Art Conventionally, quantitative determination of powders such as industrial raw materials has been performed by weight ratio using a measuring instrument. As for the quantitative method, a batch method was mainly used, and for some low-precision, large-volume methods, quantitative measurement and discharge were performed using a belt conveyor scale or the like. Further, as the continuous quantitative system, a screw feeder is used, and PI control (proportional / integral control) of the rotation speed of the screw is performed according to the set discharge speed. However, with this method, it was difficult to perform highly accurate continuous quantification and discharge because the fluctuation of the screw rotation speed was large and the transient characteristics at the system start-up were poor.
【0003】[0003]
【発明が解決しようとする課題】解決しようとする問題
点は、連続定量および排出を行う粉体の微細化、均質化
に伴い、計量フィーダに取り付けられたスクリューの回
転速度の変動が激しく、排出重量が目標値近傍に達する
までの整定時間が長く、システム始動時のオーバーシュ
ート量が大きい点である。また、設定可能な排出速度の
範囲が狭い点である。The problem to be solved is that the rotation speed of the screw attached to the measuring feeder fluctuates sharply due to the fineness and homogenization of the powder for continuous quantification and discharging. The point is that the settling time until the weight reaches the vicinity of the target value is long, and the amount of overshoot at the time of system startup is large. In addition, the settable discharge speed range is narrow.
【0004】[0004]
【課題を解決するための手段】本発明は、コントローラ
部にサンプリング時点での排出重量の目標値と実測値の
偏差およびその偏差の変化を前件部入力とし、設定され
る排出速度に応じて、前件部メンバーシップ関数のNB
(Negative Big)からPB(Positive Big)までの範囲
を自動的に調整できる機構を有し、前件部適合度をMax-
Min演算し、後件部メンバーシップ関数にその適合度を
投影し、αカットしたメンバーシップ関数の面積モーメ
ントから操作量を算出できるファジィ演算器を組込み実
現した。According to the present invention, a deviation between a target value and an actually measured value of discharged weight at the time of sampling and a change in the deviation are input to the controller unit in the antecedent section, and the controller determines the discharge speed according to the set discharge speed. , NB of the antecedent part membership function
(Negative Big) to PB (Positive Big) with a mechanism that can automatically adjust the range, the antecedent conformance Max-
Min operation was performed, and its fitness was projected on the membership function of the consequent part, and a fuzzy arithmetic unit that can calculate the manipulated variable from the area moment of the α-cut membership function was implemented.
【0005】[0005]
【実施例】図1は、本発明装置の1実施例であり、1は
コントローラ、2はインバータ、3はモータ、4は計量
フィーダ、5はスクリュー、6はロードセル、7は電流
増幅器、8はD/Aコンバータである。図2は、本発明
装置の制御ブロック線図で、1〜8は図1と同様であ
り、9は設定される排出速度に応じて前件部メンバーシ
ップ関数の範囲を自動的に調整できる機構を有するファ
ジィ演算器である。図2で、排出速度の設定をすると、
ファジィ演算器9は、図3に示すように排出速度に応じ
て前件部メンバーシップ関数のNB(Negative Big)か
らPB(PositiveBig)までの範囲を自動的に拡大、縮
小して、目標排出重量Rと実測排出重量Yから偏差Eと
偏差の変化Dを計算し、それら2つの値を前件部入力値
として、後件部メンバーシップ関数に投影し、操作量U
を算出する。操作量UがD/Aコンバータ8から電流値
(4〜20mA)で出力され、インバータ2を介して、
モータ3が回転し、それに接続されている計量フィーダ
用スクリュー5が回転し、粉体を排出する。また、排出
された粉体の重量は、計量フィーダ4の下部に取り付け
られたロードセル6の電流値の変化を電流増幅器7で検
出し、コントローラに入力することによって積算する。1 is an embodiment of the device of the present invention, in which 1 is a controller, 2 is an inverter, 3 is a motor, 4 is a metering feeder, 5 is a screw, 6 is a load cell, 7 is a current amplifier, and 8 is a current amplifier. It is a D / A converter. FIG. 2 is a control block diagram of the device of the present invention, in which 1 to 8 are the same as those in FIG. 1, and 9 is a mechanism capable of automatically adjusting the range of the antecedent part membership function according to the set discharge speed. Is a fuzzy arithmetic unit having. In Figure 2, if you set the discharge speed,
As shown in FIG. 3, the fuzzy computing unit 9 automatically expands and contracts the range from NB (Negative Big) to PB (Positive Big) of the antecedent part membership function according to the discharge speed to obtain the target discharge weight. The deviation E and the change D of the deviation are calculated from R and the measured discharge weight Y, and these two values are projected as an antecedent part input value on the consequent part membership function to obtain an operation amount U.
To calculate. The manipulated variable U is output from the D / A converter 8 at a current value (4 to 20 mA), and via the inverter 2,
The motor 3 rotates, and the weighing feeder screw 5 connected thereto rotates to discharge the powder. The weight of the discharged powder is integrated by detecting a change in the current value of the load cell 6 attached to the lower portion of the weighing feeder 4 with the current amplifier 7 and inputting it to the controller.
【0006】[0006]
【発明の効果】以上説明したように本発明の連続定量シ
ステムは、コントローラ部に設定される排出重量に応じ
て前件部メンバーシップ関数の範囲を自動的に調整する
ファジィ演算器を組込むことによって、システム始動時
の過渡特性が著しく向上し、排出重量が目標値に達する
までの時間が従来方式(PI制御)に比べ、1/2程度
に短縮されるとともに、立上り時のオーバーシュート量
も1/4程度に小さくなった。また、定常状態での精度
が向上し、排出重量の偏差が従来方式(PI制御)に比
べ、1/2程度に小さくなった。さらに、設定可能な排
出速度の範囲が、従来方式では40〜150Kg/hで
あるのに本発明による方式では20〜300Kg/hと
大幅に拡大した。As described above, the continuous quantitative system of the present invention incorporates a fuzzy calculator that automatically adjusts the range of the membership function of the antecedent part according to the discharge weight set in the controller part. In addition, the transient characteristic at the time of system startup is remarkably improved, the time until the discharged weight reaches the target value is reduced to about 1/2 compared with the conventional method (PI control), and the overshoot amount at the time of startup is also 1 It became as small as / 4. Further, the accuracy in the steady state is improved, and the deviation of the discharged weight is reduced to about 1/2 of that of the conventional method (PI control). Further, the range of discharge speeds that can be set is 40 to 150 Kg / h in the conventional method, but is greatly expanded to 20 to 300 Kg / h in the method according to the present invention.
【図1】連続定量システムの構成を示した説明図であ
る。FIG. 1 is an explanatory diagram showing a configuration of a continuous quantification system.
【図2】本発明で使用した制御ブロック線図である。こ
こで、各種記号の意味は、次のとおりです。 R 排出重量の目標値 E 排出重量の偏差 D サンプリング時間における偏差の変化 U 操作量 Y 制御量FIG. 2 is a control block diagram used in the present invention. Here, the meaning of each symbol is as follows. R Target value of discharge weight E Deviation of discharge weight D Change of deviation in sampling time U Manipulated amount Y Control amount
【図3】ファジィ演算器の前件部メンバーシップ関数の
排出速度に応じた変化を示した説明図である。ここで使
用している用語の意味は、次のとおりです。 NB Negative Big NS Negative Small ZO Zero PS Positive Small PB Positive Big G(E) 前件部入力値に対する適合度FIG. 3 is an explanatory diagram showing a change of a membership function of an antecedent part of a fuzzy computing unit according to a discharge speed. The terms used here have the following meanings. NB Negative Big NS Negative Small ZO Zero PS Positive Small PB Positive Big G (E) Conformity to the antecedent input value
【図4】本発明で使用したファジィ演算器用メンバーシ
ップ関数の説明図である。ここで使用している用語の意
味は、図3と同様です。FIG. 4 is an explanatory diagram of a membership function for fuzzy arithmetic unit used in the present invention. The meanings of the terms used here are the same as in Figure 3.
1 コントローラ 2 インバータ 3 モータ 4 計量フィーダ 5 スクリュー 6 ロードセル 7 電流増幅器 8 D/Aコンバータ 9 排出速度に応じて前件部メンバーシップ関数の範囲
を調整できる機構を有するファジィ演算器1 Controller 2 Inverter 3 Motor 4 Metering Feeder 5 Screw 6 Load Cell 7 Current Amplifier 8 D / A Converter 9 Fuzzy Calculator with Mechanism for Adjusting Range of Antecedent Membership Function According to Discharge Speed
Claims (1)
に定量し、排出する装置であり、コントローラ、インバ
ータ、モータ、計量フィーダー、ロードセル、電流増幅
器から構成されている。コントローラ部に設定された排
出速度に応じてファジィ用メンバーシップ関数の範囲を
自動的に調整するファジィ演算器を有し、広範囲の排出
速度並びに高精度な連続定量を可能とすることを特徴と
する連続定量システムである。1. An apparatus for continuously quantifying and discharging industrial raw material powder in real time, which is composed of a controller, an inverter, a motor, a weighing feeder, a load cell, and a current amplifier. It is characterized by having a fuzzy calculator that automatically adjusts the range of the fuzzy membership function according to the discharge rate set in the controller, enabling a wide range of discharge rates and highly accurate continuous quantification. It is a continuous quantitative system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3276014A JPH07119645B2 (en) | 1991-10-24 | 1991-10-24 | Continuous quantitative system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3276014A JPH07119645B2 (en) | 1991-10-24 | 1991-10-24 | Continuous quantitative system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05118899A true JPH05118899A (en) | 1993-05-14 |
JPH07119645B2 JPH07119645B2 (en) | 1995-12-20 |
Family
ID=17563587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3276014A Expired - Lifetime JPH07119645B2 (en) | 1991-10-24 | 1991-10-24 | Continuous quantitative system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07119645B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005308680A (en) * | 2004-04-26 | 2005-11-04 | Matsui Mfg Co | Load cell built-in weighing apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63279119A (en) * | 1987-05-12 | 1988-11-16 | Fuji Photo Film Co Ltd | Powder weighing method |
JPH03162205A (en) * | 1989-11-06 | 1991-07-12 | Yamato Scale Co Ltd | Apparatus for compensating charge amount of constant amount charging system |
JPH04220534A (en) * | 1990-12-21 | 1992-08-11 | Kamachiyou Seiko Kk | Continuously constant amount supplying device |
JPH04359123A (en) * | 1991-06-05 | 1992-12-11 | Yamato Scale Co Ltd | Batch quantity measurement control device |
-
1991
- 1991-10-24 JP JP3276014A patent/JPH07119645B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63279119A (en) * | 1987-05-12 | 1988-11-16 | Fuji Photo Film Co Ltd | Powder weighing method |
JPH03162205A (en) * | 1989-11-06 | 1991-07-12 | Yamato Scale Co Ltd | Apparatus for compensating charge amount of constant amount charging system |
JPH04220534A (en) * | 1990-12-21 | 1992-08-11 | Kamachiyou Seiko Kk | Continuously constant amount supplying device |
JPH04359123A (en) * | 1991-06-05 | 1992-12-11 | Yamato Scale Co Ltd | Batch quantity measurement control device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005308680A (en) * | 2004-04-26 | 2005-11-04 | Matsui Mfg Co | Load cell built-in weighing apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH07119645B2 (en) | 1995-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108319214A (en) | A kind of control method of Weightlessness balance, apparatus and system | |
CN111958833A (en) | Formula setting amount complementary adjusting system and adjusting method | |
JPH05118899A (en) | Continuous determination system | |
JP2587236B2 (en) | Powder weighing method | |
JP2661838B2 (en) | Screw feeder-type fixed quantity cutting device | |
JP2769371B2 (en) | Filling amount correction device for quantitative filling system | |
KR100370573B1 (en) | Feeding amount control device of constant amount feeder | |
JP2587235B2 (en) | Liquid weighing method | |
KR200301645Y1 (en) | Raw material discharge detection device | |
JP2000055722A (en) | Loss-in-weight-type granule dispensing equipment | |
JP3068885B2 (en) | Weighing controller for batch weighing system | |
SU1762826A1 (en) | Batching mechanism control method and device therefor | |
JP3088492B2 (en) | Batch weighing control device | |
JP2000055721A (en) | Loss-in-weight type granule dispensing equipment | |
JPS60140127A (en) | Calibration of metering and supply controlling apparatus | |
SU932265A1 (en) | Method of weighing-batching of loose material and loose material weigher-batcher | |
JPS5813853B2 (en) | Method for measuring instantaneous weight flow rate of powder in powder feeder and instantaneous weight flow meter | |
SU892225A1 (en) | Device for continuoud loose material batching | |
JPS63154085A (en) | Detector for unknown variable parameter in physical system | |
JPS6394121A (en) | Powder weighing device | |
JPH0388614A (en) | Granular powder discharge apparatus using vibration feeder | |
SU739340A1 (en) | Device for automatic weight batching | |
SU1270577A1 (en) | Control device for continuous-weight scale | |
KR100293289B1 (en) | Motor control system | |
KR820002105B1 (en) | Control system of level in being a gab |