JPH05117819A - High strength alloy steel for injection molding and powder metallurgy - Google Patents

High strength alloy steel for injection molding and powder metallurgy

Info

Publication number
JPH05117819A
JPH05117819A JP30544091A JP30544091A JPH05117819A JP H05117819 A JPH05117819 A JP H05117819A JP 30544091 A JP30544091 A JP 30544091A JP 30544091 A JP30544091 A JP 30544091A JP H05117819 A JPH05117819 A JP H05117819A
Authority
JP
Japan
Prior art keywords
weight
injection molding
alloy steel
powder metallurgy
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30544091A
Other languages
Japanese (ja)
Inventor
Yoshio Kijima
良雄 木嶋
Tatsuya Kuramoto
竜也 蔵本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP30544091A priority Critical patent/JPH05117819A/en
Publication of JPH05117819A publication Critical patent/JPH05117819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide alloy steel for injection molding and powder metallurgy having much higher strength and slightly lower elongation than a conventional Fe-Ni-C alloy. CONSTITUTION:A blend having a compsn. consisting of 1-10wt.% Cu, 1-10wt.% Ni, 0.3-1wt.% C and the balance Fe is kneaded with an org. binder and injection molded. The resulting compact is freed of the binder and sintered to obtain a sintered compact having 93.2kg/mm<2> tensile fracture strength and 10.6% elongation. The elongation is slightly lower than that (15.7%) of an Fe-Ni-C alloy but the tensile fracture strength is much higher than that (51.3kg/mm<2>) of the Fe-Ni-C alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、OA機器、精密機器、
自動車部品など複雑な形状の製品を製造するのに使用さ
れる射出成形粉末冶金用高強度合金鋼に関するものであ
る。
The present invention relates to OA equipment, precision equipment,
The present invention relates to a high-strength alloy steel for injection-molding powder metallurgy used for manufacturing products having complicated shapes such as automobile parts.

【0002】[0002]

【従来の技術】OA機器、精密機器、自動車部品などに
利用される鋼部材は、3次元的に複雑な形状を有するも
のが多く、これらの製品を製造するための方法として、
カーボニルFe粉、カーボニルNi粉、超高圧水アトマ
イズ微粉などの金属粉末とバインダーを混練して得た混
練物を射出成形して、その後、脱バインダー処理し、焼
結処理する射出成形粉末冶金法が知られている。
2. Description of the Related Art Many steel members used in office automation equipment, precision equipment, automobile parts, etc. have a three-dimensionally complicated shape, and as a method for manufacturing these products,
Injection molding powder metallurgy is a method of injection-molding a kneaded product obtained by kneading a metal powder such as carbonyl Fe powder, carbonyl Ni powder, ultra-high pressure water atomized fine powder and a binder, and then debinding and sintering. Are known.

【0003】しかして、この方法によって得られる製品
の原料合金の種類は、市販されている射出成形粉末冶金
に適した原料金属粉末の種類が限られているために、そ
の数が少ないが、これらの中でもっとも強度の高い製品
が得られる材質として、Fe−Ni−C合金が知られ従
来から使用されている。
However, the types of raw material alloys for products obtained by this method are small in number because the types of raw material metal powders suitable for injection molding powder metallurgy on the market are limited. Among them, Fe-Ni-C alloy is known and has been conventionally used as a material capable of obtaining the strongest product.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このF
e−Ni−C合金は、焼結処理が終了した時点での引張
強度が50kg/mm前後しかないために、小型化、
薄肉化が強く要求される高強度合金鋼としては、今一歩
引張強度が優れず物足りないものである。
However, this F
Since the e-Ni-C alloy has a tensile strength of only about 50 kg / mm 2 at the time of completion of the sintering treatment, it is miniaturized,
As a high-strength alloy steel that is strongly required to be thinned, it has an unsatisfactory tensile strength and is one step closer.

【0005】本発明は、製品の伸び率を、従来のFe−
Ni−C合金と比較して、さほど低減することなく、優
れた高強度の射出成形粉末冶金用合金鋼を提供すること
を目的とするものである。
The present invention compares the elongation of a product with that of conventional Fe-
It is an object of the present invention to provide an excellent high strength alloy steel for injection molding powder metallurgy, which is not so much reduced as compared with a Ni-C alloy.

【0006】[0006]

【課題を解決するための手段】本発明者等は、前記問題
を解決し、前記目的を達成するために鋭意研究を重ね、
特定組成範囲のFe−Cu−Ni−C合金とすることに
よって目的を達し得ることを見出して本発明を完成する
に至った。すなわち、本発明は、1〜10重量%Cu、
1〜10重量%Ni、0.3〜1重量%C、残部Fe及
び不可避的不純分からなる射出成形粉末冶金用高強度合
金鋼である。
[Means for Solving the Problems] The inventors of the present invention have made extensive studies to solve the above problems and achieve the above objects,
The present invention has been completed by finding that the object can be achieved by using an Fe-Cu-Ni-C alloy having a specific composition range. That is, the present invention is 1-10 wt% Cu,
It is a high-strength alloy steel for injection molding powder metallurgy consisting of 1 to 10 wt% Ni, 0.3 to 1 wt% C, the balance Fe and inevitable impurities.

【0007】本発明高強度合金鋼を得るための原料とし
ては、Cuは超高圧水アトマイズ法で作られた平均粒径
12μm以下の純Cu粉末、Niは平均粒径8μm以下
のカーボニルNi、CはカーボニルFe以外には天然黒
鉛が好ましく、天然黒鉛が鱗片状であることと、本質的
に高温でガス化して後に製品に浸炭拡散し、その後、そ
の組成となるためであって、不純分の少ないことが必要
であるが、粒径に関しては限定する必要はなく、Feは
平均粒径8μm以下のカーボニルFeをそれぞれ使用す
ることが好ましい。
As raw materials for obtaining the high-strength alloy steel of the present invention, Cu is pure Cu powder having an average particle size of 12 μm or less produced by an ultra-high pressure water atomizing method, and Ni is carbonyl Ni, C having an average particle size of 8 μm or less. In addition to carbonyl Fe, natural graphite is preferable, because natural graphite is scaly, and because it is essentially gasified at a high temperature and then carburized and diffused into the product, and then its composition is obtained. Although it is necessary to reduce the amount, it is not necessary to limit the particle size, and it is preferable to use carbonyl Fe having an average particle size of 8 μm or less.

【0008】又、バインダーとしては、たとえば、ポリ
エチレン、パラフィンワックス、ステアリン酸などを適
宜混合した有機バインダーが使用される。
As the binder, for example, an organic binder prepared by appropriately mixing polyethylene, paraffin wax, stearic acid and the like is used.

【0009】射出成形は、前記各原料を使用して、1〜
10重量%Cu、1〜10重量%Ni、0.3〜1重量
%C、残部Fe及び不可避的不純分となるように配合し
て、この金属原料の91.5〜92.5重量%に対し
て、前記のようなバインダーを7.5〜8.5重量%加
えて混練機によって混練し、この混練物を所定の金型
に、通常の射出条件で射出成形を行なえばよい。得られ
た成形体を不活性雰囲気下に300℃までの温度で加熱
して成形体からバインターを除去した後、真空焼結炉中
で真空度0.005〜0.1Torr、焼結温度120
0〜1250℃で焼結することによって健全な製品を得
ることができる。
Injection molding is carried out by
10 wt% Cu, 1 to 10 wt% Ni, 0.3 to 1 wt% C, the balance Fe and inevitable impurities are mixed to make 91.5 to 92.5 wt% of this metal raw material. On the other hand, 7.5 to 8.5% by weight of the binder as described above is added and kneaded by a kneader, and the kneaded product may be injection-molded into a predetermined mold under normal injection conditions. The obtained compact was heated at a temperature of up to 300 ° C. in an inert atmosphere to remove the binder from the compact, and then the vacuum degree was 0.005 to 0.1 Torr and the sintering temperature was 120 in a vacuum sintering furnace.
A sound product can be obtained by sintering at 0 to 1250 ° C.

【0010】[0010]

【作用】本発明において、Cuは、焼結体組織でFeマ
トリックスを強化するために添加した元素であり、、N
iは、焼結性を高め、靭性を向上させるために添加する
元素であり、さらに、Cは、焼結性を促進するために必
須の元素である。
In the present invention, Cu is an element added to strengthen the Fe matrix in the sintered body structure, and N
i is an element added to enhance sinterability and toughness, and C is an essential element to promote sinterability.

【0011】しかして、本発明高強度合金鋼の組成を前
記のように規定したのは、Cuの含有量が1重量%未
満、及び/又は、Niの含有量が1重量%未満、及び/
又は、Cの含有量が0.3重量%未満では、合金鋼の強
度強化が十分でない。一方、Cuの含有量が10重量%
を超え、及び/又は、Niの含有量が10重量%を越
え、及び/又は、Cの含有量が1重量%を超えると、合
金鋼の伸びがいちじるしく低下するからである。
Therefore, the composition of the high-strength alloy steel of the present invention is defined as described above because the Cu content is less than 1% by weight and / or the Ni content is less than 1% by weight, and / or
Alternatively, if the content of C is less than 0.3% by weight, the strength of the alloy steel is not sufficiently strengthened. On the other hand, the Cu content is 10% by weight
When the content of Ni exceeds 10% by weight and / or the content of Ni exceeds 10% by weight, and / or the content of C exceeds 1% by weight, the elongation of the alloy steel decreases remarkably.

【0012】このような範囲に調合された原料金属粉末
を射出成形するに当って、バインダーを前述のような範
囲内に配合することが好ましいとしたのは、バインダー
の配合量が8重量%未満では原料を射出成形する場合、
原料の流動性が不足して製品の成形性を低下させること
が多くなり、逆に、配合量が8.5重量%を超えると、
脱バインダー処理した後の製品表面に発泡部や亀裂など
の欠陥が発生し易くなるためである。
In the injection molding of the raw metal powder blended in such a range, it is preferable that the binder is blended within the above range because the blending amount of the binder is less than 8% by weight. Then, when injection molding raw materials,
If the fluidity of the raw material is insufficient and the moldability of the product is often decreased, conversely, if the blending amount exceeds 8.5% by weight,
This is because defects such as foamed portions and cracks are likely to occur on the product surface after the binder removal treatment.

【0013】さらに、脱バインダー処理温度を300℃
までとすることが好ましいとしたのは、300℃を超え
て脱バインダー処理を行なうと、バインダーがぬけ過ぎ
て取扱い強度が低下し、脱バインダー処理後の次工程へ
の移送に際して取扱い不良率が高くなるからである。
Further, the debinding process temperature is 300 ° C.
However, if the binder removal process is performed at a temperature higher than 300 ° C., the binder will pass through too much and the handling strength will decrease, and the handling failure rate will be high during transfer to the next step after the binder removal process. Because it will be.

【0014】[0014]

【実施例】次に、本発明の実施例を述べる。 実施例 1 超高圧水アトマイズ法で作られた純Cu微粉末(平均粒
径8μm)と、カーボニルNi粉末(平均粒径5μm)
と、カーボンを0.05重量%含有するカーボニルFe
粉末(平均粒径5μm)と、天然黒鉛(平均粒径22μ
m)を使用して、2.0重量%Cu、2.0重量%N
i、0.5重量%C、残りFeとなるように配合し、有
機バインダー(ポリエチレン30重量%、パラフィンワ
ックス60重量%、ステアリン酸10重量%配合)を、
前記金属原料配合物92重量%に対して8重量%の割合
で加えて、その5kgを直径300mmのプラネタリー
ミキサーによって、回転数20r.p.m.100℃で
1時間混練処理を行ない、この混練物を直径5mmのペ
レットに造粒して成形原料とした。
EXAMPLES Next, examples of the present invention will be described. Example 1 Pure Cu fine powder (average particle size 8 μm) and carbonyl Ni powder (average particle size 5 μm) made by ultra-high pressure water atomization method
And carbonyl Fe containing 0.05% by weight of carbon
Powder (average particle size 5μm) and natural graphite (average particle size 22μ
m), 2.0 wt% Cu, 2.0 wt% N
i, 0.5% by weight C, the remaining Fe was blended, and an organic binder (30% by weight of polyethylene, 60% by weight of paraffin wax, 10% by weight of stearic acid) was added.
The metal raw material mixture was added at a ratio of 8% by weight to 92% by weight, and 5 kg thereof was rotated by a planetary mixer having a diameter of 300 mm at a rotation speed of 20 r. p. m. A kneading treatment was performed at 100 ° C. for 1 hour, and the kneaded product was granulated into pellets having a diameter of 5 mm to obtain a forming raw material.

【0015】この成形原料を、射出圧力600kg/c
、射出速度30mm/秒、射出温度90℃の条件で
JSPM標準2−64に基づく粉末焼結体引張試験片を
得るための金型に射出成形した。その後、射出成形体を
窒素雰囲気中で300℃に加熱して脱バインダーし、つ
いで、真空度を5×10−2Torrに設定した半連続
式真空焼結炉にて、焼結温度1250℃で焼結処理を施
し健全な焼結体を得た。このようにして、10本の焼結
体試験片を得た。
The injection pressure of this molding raw material was 600 kg / c.
It was injection molded into a mold for obtaining a powder sintered compact tensile test piece based on JSPM standard 2-64 under the conditions of m 2 , injection speed of 30 mm / sec, and injection temperature of 90 ° C. Then, the injection molded body was heated to 300 ° C. in a nitrogen atmosphere to remove the binder, and then in a semi-continuous vacuum sintering furnace with a vacuum degree set to 5 × 10 −2 Torr, at a sintering temperature of 1250 ° C. Sintering was performed to obtain a healthy sintered body. In this way, 10 sintered body test pieces were obtained.

【0016】得られた10本の試験片のそれぞれについ
て、島津オートグラフAE−5000を使用して、ロー
ドセル5000kg、引張速度5mm/分の条件で破断
強度、及び、伸びを測定した。これらの結果を10本の
測定値の平均値として表1に示す。 実施例 2 組成を重量%で、2.0%Cu、10.0%Ni、0.
5%C、残りFeとした以外は、実施例1と同様にして
10本の焼結体を得、実施例1と同様にして各試験を行
なった。結果を同様に表1に示す。 実施例 3 組成を重量%で、5.0%Cu、2.0%Ni、0.5
%C、残りFeとした以外は、実施例1と同様にして1
0本の焼結体を得、実施例1と同様にして諸試験を行な
った。結果を同様に表1に示す。 実施例 4 組成を重量%で、10.0%Cu、2.0%Ni、0.
5%C、残りFeとした以外は、実施例1と同様にして
10本の焼結体を得、実施例1と同様にして諸試験を行
なった。結果を同様に表1に示す。 比較例 1 組成を重量%で、0.5%Cu、2.0%Ni、0.5
%C、残りFeとした以外は、実施例1と同様にして1
0本の焼結体を得、実施例1と同様にして諸試験を行な
った。結果を同様に表1に示す。 比較例 2 組成を重量%で、2.0%Cu、0.5%Ni、0.5
%C、残りFeとした以外は、実施例1と同様にして1
0本の焼結体を得、実施例1と同様にして諸試験を行な
った。結果を同様に表1に示す。 比較例 3 組成を重量%で、2.0%Cu、12.0%Ni、0.
5%C、残りFeとした以外は、実施例1と同様にして
10本の焼結体を得、実施例1と同様にして諸試験を行
なった。結果を同様に表1に示す。
The breaking strength and the elongation of each of the 10 test pieces obtained were measured by using Shimadzu Autograph AE-5000 under the conditions of a load cell of 5000 kg and a pulling speed of 5 mm / min. These results are shown in Table 1 as an average value of 10 measured values. Example 2 The composition was 2.0% Cu, 10.0% Ni, 0.1% by weight.
Ten sintered bodies were obtained in the same manner as in Example 1 except that 5% C and the remaining Fe were used, and each test was performed in the same manner as in Example 1. The results are also shown in Table 1. Example 3 Composition by weight% 5.0% Cu, 2.0% Ni, 0.5
% C and 1 except that the balance is Fe.
0 sintered bodies were obtained and various tests were conducted in the same manner as in Example 1. The results are also shown in Table 1. Example 4 The composition was expressed in weight%, 10.0% Cu, 2.0% Ni, 0.1%.
Ten sintered bodies were obtained in the same manner as in Example 1 except that 5% C and the remaining Fe were used, and various tests were performed in the same manner as in Example 1. The results are also shown in Table 1. Comparative Example 1 The composition is 0.5% by weight, 0.5% Cu, 2.0% Ni, 0.5
% C and 1 except that the balance is Fe.
0 sintered bodies were obtained and various tests were conducted in the same manner as in Example 1. The results are also shown in Table 1. Comparative Example 2 The composition was 2.0% Cu, 0.5% Ni, 0.5% by weight.
% C and 1 except that the balance is Fe.
0 sintered bodies were obtained and various tests were conducted in the same manner as in Example 1. The results are also shown in Table 1. Comparative Example 3 The composition was 2.0% Cu, 12.0% Ni, 0.1% by weight.
Ten sintered bodies were obtained in the same manner as in Example 1 except that 5% C and the remaining Fe were used, and various tests were performed in the same manner as in Example 1. The results are also shown in Table 1.

【0017】[0017]

【表1】 比較例 4 カーボンを0.9重量%含有するカーボニルFe粉末
(平均粒径5μm)とカーボニルNi粉末(平均粒径5
μm)とを使用し、組成が重量%で2.0%Ni、0.
9%C、残りFeとし、Cuを添加しなかった以外は、
実施例1と同様にして10本の焼結体を得、実施例1と
同様にして諸試験を行なった。結果を同様に表1に示
す。なお、実施例および比較例で得た全部の焼結体の相
対密度比を求めたが、92〜95%の範囲内にあった。
[Table 1] Comparative Example 4 Carbonyl Fe powder (average particle size 5 μm) containing carbon in an amount of 0.9% by weight and carbonyl Ni powder (average particle size 5
.mu.m) and the composition is 2.0% Ni by weight%,
9% C, the rest Fe, except that Cu was not added,
Ten sintered bodies were obtained in the same manner as in Example 1, and various tests were performed in the same manner as in Example 1. The results are also shown in Table 1. The relative density ratios of all the sintered bodies obtained in the examples and the comparative examples were determined and found to be in the range of 92 to 95%.

【0018】[0018]

【発明の効果】本発明は、特定組成範囲のFe−Cu−
Ni−C合金としたので、伸び率を低下することなく、
引張破断強度を向上させ得たものであり、射出成形粉末
冶金用として優れた高強度合金鋼が得られたものであっ
て顕著な効果が認められる。
INDUSTRIAL APPLICABILITY According to the present invention, Fe-Cu-with a specific composition range
Since it is a Ni-C alloy, it does not reduce the elongation,
The tensile rupture strength was improved, and a high-strength alloy steel excellent for injection molding powder metallurgy was obtained, and a remarkable effect is recognized.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 1〜10重量%Cu、1〜10重量%N
i、0.3〜1重量%C、残部Fe及び不可避的不純分
からなることを特徴とする射出成形粉末冶金用高強度合
金鋼。
1. 1 to 10 wt% Cu, 1 to 10 wt% N
A high-strength alloy steel for injection molding powder metallurgy, which comprises i, 0.3 to 1 wt% C, the balance Fe, and unavoidable impurities.
JP30544091A 1991-10-24 1991-10-24 High strength alloy steel for injection molding and powder metallurgy Pending JPH05117819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30544091A JPH05117819A (en) 1991-10-24 1991-10-24 High strength alloy steel for injection molding and powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30544091A JPH05117819A (en) 1991-10-24 1991-10-24 High strength alloy steel for injection molding and powder metallurgy

Publications (1)

Publication Number Publication Date
JPH05117819A true JPH05117819A (en) 1993-05-14

Family

ID=17945167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30544091A Pending JPH05117819A (en) 1991-10-24 1991-10-24 High strength alloy steel for injection molding and powder metallurgy

Country Status (1)

Country Link
JP (1) JPH05117819A (en)

Similar Documents

Publication Publication Date Title
EP0296552A1 (en) Metal binder and molding composition
JP2008524447A (en) Diffusion bonded nickel-copper powder metallurgy powder
JP2793958B2 (en) Method for producing titanium-based sintered body by metal powder injection molding method
CN110560692A (en) Porous Ti-Al-based alloy material, preparation method and application thereof
JP2000017301A (en) Production of high density titanium sintered compact
JPH05117819A (en) High strength alloy steel for injection molding and powder metallurgy
JP2004332016A (en) Granulated metal powder, manufacturing method therefor, and metal powder
JP2001158925A (en) Method for producing metallic sintered body and metallic sintered body
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH02107703A (en) Composition for injection molding
JP2002206124A (en) METHOD FOR PRODUCING Ti ALLOY SINTERED BODY
JP3001541B1 (en) Prealloy powder and method for producing sintered Ti alloy using the same
JPH0225501A (en) Stainless steel powder for injection forming and production of compound for injection forming and stainless steel sintered body
JPH07300648A (en) High strength sintered w-base alloy and its production
JP2001089824A (en) Manufacture of sintered compact of chromium- molybdenum steel
JP2758569B2 (en) Method for producing iron-based sintered body by metal powder injection molding method
JPH07188801A (en) Production of titanium sintered compact
JPH06172810A (en) Production of tungsten alloy sintered compact
JPH0257613A (en) Production of sintered metallic material and its raw powder
JPH06346168A (en) Ti or ti-fe injection-molded and sintered alloy and its production
JPH11181541A (en) Production of stainless steel sintered body
JPH0827536A (en) Production of sintered compact of stainless steel
JPH11181501A (en) Production of metal powder and sintered body
JPH01212702A (en) Manufacture of magnetic material
JP2005068483A (en) Production method for sintered compact of mn-based high-damping alloy