JPH05117433A - Tetrafluoroethyene resin foam and its production - Google Patents

Tetrafluoroethyene resin foam and its production

Info

Publication number
JPH05117433A
JPH05117433A JP31373791A JP31373791A JPH05117433A JP H05117433 A JPH05117433 A JP H05117433A JP 31373791 A JP31373791 A JP 31373791A JP 31373791 A JP31373791 A JP 31373791A JP H05117433 A JPH05117433 A JP H05117433A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin
spheres
ptfe
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31373791A
Other languages
Japanese (ja)
Other versions
JP3195006B2 (en
Inventor
Yoshiaki Sato
喜昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Junkosha Co Ltd
Original Assignee
Junkosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Junkosha Co Ltd filed Critical Junkosha Co Ltd
Priority to JP31373791A priority Critical patent/JP3195006B2/en
Publication of JPH05117433A publication Critical patent/JPH05117433A/en
Application granted granted Critical
Publication of JP3195006B2 publication Critical patent/JP3195006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To produce the title foam having a closed cell structure and an improved moldability. CONSTITUTION:A mixture of unexpanded spherical particles comprising shells made of a first thermoplastic resin and a blowing agent enclosed therein, an unbaked tetrafluoroethylene resin powder, and a powder of a second thermoplastic resin having an m.p. lower than that of the first thermoplastic resin is molded into a desired shape. The resulting molded article is heated to expand the particles, thereby converting the tetrafluoroethylene resin powder into a three-dimensional fibrous structure with the aid of the expansion pressure, simultaneously forming a closed cell structure based on the particles, and thereby integrally bonding the particles to the tetrafluoroethylene resin with the molten second thermoplastic resin. The prepd. foamed molded article, while having a closed cell structure with a high porosity, hardly exhibits the orientation of microfibers of the tetrafluoroethylene resin in any direction, allowing little anisotropy in mechanical strengths to occur.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電気絶縁材料などに
好適な四フッ化エチレン樹脂発泡体と、その製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tetrafluoroethylene resin foam suitable for an electric insulating material and the like and a method for producing the same.

【0002】[0002]

【従来の技術】四フッ化エチレン樹脂(以下PTFEと
称することもある。)は、その優れた電気的特性、耐熱
性、耐薬品性等に基づき、種々の用途に広く用いられて
いるが、これを例えば電気絶縁材料として使用する場合
には、電気的特性をより向上させるため、多孔質化させ
て使用することが行われている。
2. Description of the Related Art Ethylene tetrafluoride resin (hereinafter sometimes referred to as PTFE) is widely used for various purposes because of its excellent electrical characteristics, heat resistance, chemical resistance, etc. When this is used as an electrically insulating material, for example, it is made porous to be used in order to further improve the electrical characteristics.

【0003】多孔質PTFEの製造方法については、溶
融時におけるPTFEの粘度が著しく高いために、不活
性ガスの吹き込みによる物理的発泡、あるいはアゾジカ
ルボンアミド等の熱分解性発泡剤による化学発泡のよう
な一般の熱可塑性樹脂もしくは他のフッ素系樹脂におい
て行われている方法を適用することができず、特殊な方
法が採られている。その代表的なものを挙げると、例え
ば未焼成PTFEに抽出や溶解によって除去される物質
を混和して加圧成形した後、これらの物質を除去する方
法(特公昭35−13043号)、PTFEの微粉末に
ソルベントナフサ等の液体潤滑剤を添加し、この混和物
を圧延や押出しなどの剪断力が加わる条件下で成形した
後、液体潤滑剤を除去し、次いで延伸して焼成する方法
(特公昭42−13560号、特公昭56−17216
号、特公昭57−30057号)、PTFEの未焼成成
形物を、ハロゲン化炭化水素、石油系炭化水素、アルコ
ール、ケトンなどのPTFEを濡らしうる液体中で延伸
させた後、焼成する方法などが知られている。
Regarding the method for producing porous PTFE, since the viscosity of PTFE during melting is extremely high, there is a physical foaming by blowing an inert gas or a chemical foaming by a thermally decomposable foaming agent such as azodicarbonamide. However, it is not possible to apply the method used in general thermoplastic resins or other fluorine-based resins, and a special method is adopted. Typical examples thereof include a method in which unsintered PTFE is mixed with substances to be removed by extraction or dissolution and pressure-molded, and then these substances are removed (JP-B-35-13043). A method in which a liquid lubricant such as solvent naphtha is added to the fine powder and the mixture is molded under conditions such as rolling or extrusion where a shearing force is applied, the liquid lubricant is removed, and then stretched and baked (special JP-B 42-13560, JP-B 56-17216
No. 57-570057), a method in which an unsintered molded article of PTFE is stretched in a liquid capable of wetting PTFE such as halogenated hydrocarbons, petroleum hydrocarbons, alcohols and ketones, and then sintered. Are known.

【0004】このように、多孔質PTFEの製造方法と
して幾つかの方法が提案されているが、いずれの方法に
おいても得られる多孔質体は、連続気孔性のものとな
る。このため、わずかな圧縮力によっても内部の空孔が
潰れ、圧縮を受けた部分が非多孔質構造に変化しやす
い。その傾向は、誘電率を低下させるために空孔率を高
めた場合にとくに顕著である。したがって、例えばこれ
をテープ状やシート状などに成形し、電線、プリント基
板等の絶縁体として用いると、特に誘電率等の電気的特
性が不安定になりやすく、きわめて取り扱いにくいとい
う欠点があった。
As described above, several methods have been proposed as a method for producing porous PTFE, but the porous body obtained by any of these methods has continuous porosity. Therefore, even if a slight compressive force is applied, the internal voids are crushed, and the compressed portion is likely to change to a non-porous structure. This tendency is particularly remarkable when the porosity is increased to lower the dielectric constant. Therefore, for example, when it is formed into a tape shape or a sheet shape and used as an insulator for electric wires, printed circuit boards, etc., there is a drawback that electrical characteristics such as a dielectric constant tend to become unstable and it is extremely difficult to handle. ..

【0005】そこで、このような従来技術の欠点を改良
するものとして、本発明者は、窒素ガス、炭酸ガスなど
の不活性気体が内部に封入されたガラスあるいはシリカ
からなる中空球体をPTFE微粉末に混和し、これを圧
延などの剪断力が加わる条件下で成形加工することによ
り、母材であるPTFEを繊維質化させて中空球体を包
み込み、実質的に中空球体に封入された気体部分が空隙
部分として残る独立気孔性の多孔質構造にすることを既
に提案している(特公平1−25769号参照)。
Therefore, as an improvement of the above-mentioned drawbacks of the prior art, the present inventor has made a PTFE fine powder into a hollow sphere made of glass or silica in which an inert gas such as nitrogen gas or carbon dioxide gas is enclosed. The base material PTFE is made into a fibrous material and wraps the hollow spheres, and the gas portion substantially enclosed by the hollow spheres It has already been proposed to form a porous structure with independent porosity that remains as voids (see Japanese Patent Publication No. 1-25769).

【0006】[0006]

【発明が解決しようとする課題】上記構成の独立気孔性
多孔質PTFEにおいては、従来の連続気孔性多孔質P
TFEが有する欠点の大半は改善され、実用上の問題点
はほぼ解消されたが、より一層の低誘電率化を目的とし
て中空球体の配合量を大幅に増やした場合には、微小中
空球体間に存在するPTFEが少ないことから、成形加
工を行う際の圧縮力等が中空球体にかかりやすくなり、
そのため中空球体の破壊が生じて配合量の割りには電気
的特性が向上しないという課題が残されていた。
In the independent porous PTFE having the above structure, the conventional continuous porous P is used.
Most of the drawbacks of TFE have been improved and practical problems have been almost solved, but if the compounding amount of the hollow spheres is increased significantly for the purpose of further lowering the dielectric constant, it becomes Since there is little PTFE present in the hollow sphere, it becomes easy for compressive force, etc. during molding to be applied to the hollow sphere,
Therefore, there is a problem that the hollow spheres are broken and the electrical characteristics are not improved relative to the blending amount.

【0007】また、上記多孔質PTFEでは、圧延ある
いはペースト押出し等の成形加工工程において発生する
剪断力によりPTFE粒子を繊維質化し、それら微小繊
維によって中空球体を抱持するようになっているから、
成形品中に存在する無数の微小繊維は押出し方向、圧延
方向に強く配向する傾向がある。このような多孔質PT
FEのテープを絶縁材料として用いると、導体に巻き付
ける際に配向方向に沿って裂けやすいばかりか、焼成後
においても配向が残っているので、そのままではクラッ
クが生じやすい。このため、使用に際しては配向方向と
直角の方向にも圧延したり、あるいは焼成を繰り返すこ
とにより配向を緩和する必要があるなど、作業性は必ず
しも良いとはいえなかった。
Further, in the above-mentioned porous PTFE, since the PTFE particles are made into fibers by the shearing force generated in the forming process such as rolling or paste extrusion, the hollow spheres are held by the fine fibers.
Innumerable fine fibers existing in the molded product tend to be strongly oriented in the extrusion direction and the rolling direction. Such a porous PT
When an FE tape is used as an insulating material, not only is it easy to tear along the orientation direction when it is wound around a conductor, but also the orientation remains after firing, so cracks are likely to occur as it is. Therefore, in use, workability is not necessarily good, such as rolling in a direction perpendicular to the orientation direction or repeating firing to relax the orientation.

【0008】この発明は、これら従来技術の問題点に鑑
みなされたもので、独立気孔でありながら従来のものよ
りも低誘電率化が可能であり、しかも特定の方向への配
向が少なく成形加工性が向上したPTFE発泡体及び製
造方法の提供をその目的とする。
The present invention has been made in view of these problems of the prior art. Although it has independent pores, it can have a lower dielectric constant than conventional ones, and has less orientation in a specific direction. It is an object of the present invention to provide a PTFE foam having improved properties and a manufacturing method.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、この発明によるPTFE発泡体では、発泡剤が封入
された第一の熱可塑性樹脂からなる多数の膨張性球体
と、これら膨張性球体の周囲にあってその膨張圧により
結節間を連結する微小繊維が延伸され三次元的に広がる
微細繊維質構造を形成してその空隙部分で該膨張性球体
を抱持する四フッ化エチレン樹脂と、この四フッ化エチ
レン樹脂の微細繊維質構造内の空隙部分にあって前記膨
張性球体と四フッ化エチレン樹脂とを接合する前記第一
の熱可塑性樹脂よりも融点が低い第二の熱可塑性樹脂を
備えた構成とする。
In order to achieve the above object, in a PTFE foam according to the present invention, a large number of expandable spheres made of a first thermoplastic resin in which a foaming agent is encapsulated, and these expandable spheres. A tetrafluoroethylene resin that surrounds the expandable spheres by forming a three-dimensionally spread fine fiber structure in which fine fibers that connect the nodules are stretched due to the expansion pressure, A second thermoplastic resin having a melting point lower than that of the first thermoplastic resin for joining the expandable sphere and the tetrafluoroethylene resin in the void portion in the fine fibrous structure of the tetrafluoroethylene resin Is provided.

【0010】また、かかるPTFE発泡体は、未発泡状
態の発泡剤が封入された第一の熱可塑性樹脂からなる球
体と未焼成四フッ化エチレン樹脂粉末と前記第一の熱可
塑性樹脂よりも融点が低い第二の熱可塑性樹脂粉末との
混和物を発泡剤が発泡する温度以下で所定の形状に成形
した後、この成形物を発泡剤が発泡する温度以上に加熱
し、この加熱により前記球体を膨張させてその膨張圧で
未焼成四フッ化エチレン樹脂の繊維質化を促進すると共
に成形物中に膨張性球体による独立気孔を形成せしめ、
さらに溶融した前記第二の熱可塑性樹脂を介して膨張性
球体と四フッ化エチレン樹脂とを一体化することによっ
て得られる。なお、このPTFE発泡体は第二の熱可塑
性樹脂により補強されているから、未焼成の状態でも充
分な機械強度を備えそのままでも使用は可能であるが、
膨張性球体の殻壁を形成する第一の熱可塑性樹脂がPT
FEの融点以上の耐熱性を有するものであれば、焼成し
てもよい。
Further, such a PTFE foam has a sphere made of a first thermoplastic resin in which a foaming agent in an unfoamed state is enclosed, an unsintered tetrafluoroethylene resin powder, and a melting point higher than that of the first thermoplastic resin. Is molded into a predetermined shape at a temperature below the temperature at which the foaming agent foams, and then the molded product is heated above the temperature at which the foaming agent foams. Is expanded to promote the fibrosis of the unsintered tetrafluoroethylene resin by the expansion pressure and form independent pores by the expandable spheres in the molded product,
Further, it can be obtained by integrating the expandable sphere and the tetrafluoroethylene resin through the molten second thermoplastic resin. Since this PTFE foam is reinforced by the second thermoplastic resin, it can be used as it is in an unfired state as it has sufficient mechanical strength.
The first thermoplastic resin forming the shell wall of the expandable sphere is PT
If it has heat resistance equal to or higher than the melting point of FE, it may be fired.

【0011】本発明において膨張性球体とは、内部に低
沸点の液体あるいは熱分解により気体を発生する化学発
泡剤が封入された球体で、殻壁部分が第一の熱可塑性樹
脂からなり、加熱により内部の発泡剤が気化して膨張し
たものをいう。この膨張性球体の配合量は、発泡体の使
用目的、他の添加剤の有無等によって適宜選択されるた
め特に限定はされないが、通常は、発泡前の混和物にお
いてPTFE粉末10重量部に対して0.1から70重
量部の範囲で用いられる。また、その球径についても同
様に限定されるものではなく、使用目的等に応じて膨張
後の球径で数ミクロンメートルから数百ミクロンメート
ル程度になるものが好適に用いられる。
In the present invention, the expansive sphere is a sphere in which a low boiling point liquid or a chemical foaming agent which generates a gas by thermal decomposition is enclosed, and the shell wall portion is made of the first thermoplastic resin and is heated. Due to this, the foaming agent inside is vaporized and expanded. The amount of the expandable spheres is not particularly limited as it is appropriately selected depending on the purpose of use of the foam, the presence or absence of other additives, etc., but is usually 10 parts by weight of PTFE powder in the mixture before foaming. Used in the range of 0.1 to 70 parts by weight. Also, the sphere diameter is not limited in the same manner, and a sphere diameter after expansion which is about several microns to several hundreds of microns is suitably used depending on the purpose of use and the like.

【0012】上記膨張性球体の内部に封入される低沸点
液体の具体例としては、石油エーテル、イソブタン、ヘ
プタン、ヘキサンなどの炭化水素、モノクロロトリフロ
ロメタン、ジクロロジフロロメタン、トリクロロトリフ
ロロエタン、ジクロロテトラフロロエタンなどの低沸点
ハロゲン化炭化水素、あるいはメチルシラン等が挙げら
れる。また、化学発泡剤としては、アゾ系発泡剤として
アゾビスイソブチロニトリル、アゾジカルボンアミド、
ジエチルアゾジカルボキシレート、ジアゾアミノベンゼ
ン、アゾシクロヘキシルニトリル等、ヒドラジド系のも
のとしてベンゼンスルフォニルヒドラジド、p−トルエ
ンスルフォニルヒドラジド、p,p’−オキシビスベン
ゼンスルフォニルヒドラジド等、セミカルバジド系発泡
剤としてp,p’−オキシビスベンゼンスルフォニルセ
ミカルバジド、p−トルエンスルフォニルセミカルバジ
ド等、ニトロソ系発泡剤としてN,N’−ジニトロソペ
ンタメチレンテトラミン等の熱分解型の有機発泡剤、あ
るいは炭酸アンモニウム、重炭酸ナトリウム、亜硝酸ア
ンモニウムなどの無機発泡剤の使用が可能である。
Specific examples of the low boiling point liquid to be enclosed in the expandable spheres are hydrocarbons such as petroleum ether, isobutane, heptane, hexane, monochlorotrifluoromethane, dichlorodifluoromethane, trichlorotrifluoroethane, Examples thereof include low-boiling halogenated hydrocarbons such as dichlorotetrafluoroethane, and methylsilane. Further, as the chemical foaming agent, as an azo foaming agent, azobisisobutyronitrile, azodicarbonamide,
Diethyl azodicarboxylate, diazoaminobenzene, azocyclohexyl nitrile, etc. as hydrazide type benzene sulfonyl hydrazide, p-toluene sulfonyl hydrazide, p, p'-oxybisbenzene sulfonyl hydrazide etc., semicarbazide type blowing agent p, p '-Oxybisbenzenesulfonyl semicarbazide, p-toluenesulfonyl semicarbazide, etc. as a nitroso-based foaming agent, a pyrolytic organic foaming agent such as N, N'-dinitrosopentamethylenetetramine, or ammonium carbonate, sodium bicarbonate, ammonium nitrite It is possible to use an inorganic foaming agent such as.

【0013】そして、これら発泡剤を内包する第一の熱
可塑性樹脂の具体例を挙げると、例えばポリエチレン、
ポリプロピレン、ポリスチレン、ポリ塩化ビニリデン、
ポリ塩化ビニル、ポリアクリロニトリル、ポリアクリル
酸エステル、ポリメタアクリル酸エステル、熱溶融性フ
ッ素樹脂等の単独重合体もしくは共重合体などが使用可
能であり、加熱により軟化して上記発泡剤の気化を妨げ
ないものであれば、これに限定されることはなく、その
材質は、発泡体の使用目的、発泡剤の種類などに応じて
適宜選定される。
Specific examples of the first thermoplastic resin containing these foaming agents include polyethylene,
Polypropylene, polystyrene, polyvinylidene chloride,
Homopolymers or copolymers of polyvinyl chloride, polyacrylonitrile, polyacrylic acid ester, polymethacrylic acid ester, heat-meltable fluororesin, etc. can be used, and soften by heating to vaporize the foaming agent. The material is not limited to this as long as it does not interfere, and the material is appropriately selected according to the purpose of use of the foam, the type of the foaming agent, and the like.

【0014】本発明において、前記膨張性球体を抱持す
るPTFEは、結節間を連結する微小繊維が三次元的に
広がる微細繊維質構造を形成している。この三次元的に
広がる微細繊維質構造とは、ペースト押出しあるいは圧
延等の成形加工時に加えられる力により、膨張性球体を
膨張させる前の成形物中にあって特定の方向に強く配向
していた無数の微小繊維が、膨張性球体の膨張によって
あらゆる方向に延ばされ、その結果、特定方向の配向性
が大幅に減少したもので、発泡体の各方向の断面におい
て、網状構造が観測される多孔構造をいう。
In the present invention, the PTFE holding the expandable sphere has a fine fibrous structure in which fine fibers connecting the nodules spread three-dimensionally. This three-dimensionally extending fine fibrous structure was strongly oriented in a specific direction in the molded product before expanding the expansive spheres by the force applied during the molding process such as paste extrusion or rolling. Innumerable microfibers are expanded in all directions by the expansion of expandable spheres, resulting in a significant decrease in orientation in specific directions, and a network structure is observed in the cross section of each direction of the foam. Refers to a porous structure.

【0015】また、この四フッ化エチレン樹脂の微細繊
維質構造内の空隙部分にあって、前記膨張性球体と四フ
ッ化エチレン樹脂の微小繊維もしくは結節とを接合する
第二の熱可塑性樹脂としては、例えばポリエチレン、ポ
リプロピレンなどのオレフィン系ポリマーが挙げられ
る。本発明では、この第二の熱可塑性樹脂は製造上の制
約により、前記膨張性球体の殻壁を形成している第一の
熱可塑性樹脂よりも融点の低い樹脂が選択されるが、も
ちろん前記オレフィン系ポリマーに限定されるものでは
ない。そして、第二の熱可塑性樹脂の配合量は、前記膨
張性球体の場合と同様に発泡体の使用目的、他の添加剤
の有無等によって適宜選択されるため特に限定はされな
いが、通常は、発泡前の混和物においてPTFE粉末1
0重量部に対して0.05から10重量部の範囲で用い
られる。なお、この第二の熱可塑性樹脂は、発泡体の表
面を平滑にすると同時に機械強度を高め、また接着剤と
しての目的で、発泡後の成形体の表面部分にさらにコー
ティングしてもよい。この場合、内部に同じ樹脂が存在
していることから、発泡体の表面部分に対して良好に接
着し、コーティングは容易である。
Further, as a second thermoplastic resin for joining the expandable sphere and the fine fiber or nodule of the tetrafluoroethylene resin in the void portion in the fine fiber structure of the tetrafluoroethylene resin. Examples include olefin polymers such as polyethylene and polypropylene. In the present invention, the second thermoplastic resin has a lower melting point than that of the first thermoplastic resin forming the shell wall of the expandable sphere due to manufacturing restrictions. It is not limited to olefin polymers. Then, the blending amount of the second thermoplastic resin is not particularly limited because it is appropriately selected depending on the purpose of use of the foam, the presence or absence of other additives, etc. as in the case of the expandable spheres, but PTFE powder 1 in the mixture before foaming
It is used in the range of 0.05 to 10 parts by weight with respect to 0 parts by weight. The second thermoplastic resin may smooth the surface of the foam and at the same time enhance mechanical strength, and may be further coated on the surface of the molded body after foaming for the purpose of serving as an adhesive. In this case, since the same resin is present inside, it adheres well to the surface portion of the foam and coating is easy.

【0016】[0016]

【作用】未焼成のPTFE微粉末は、例えば押出工程で
ダイから押し出される時、あるいはロールで圧延される
時や攪拌を受けた時のように、剪断力を受けると微小繊
維によって相互に結節が結合された微細な繊維状組織と
なる性質を備えている。この繊維化は、他の高分子材料
には見られない特異な性質で、押出し、圧延の方向に微
小繊維が強く配向する傾向があり、これが従来の独立気
孔性多孔質PTFEでは重要であると同時に、作業性を
低下させる原因にもなっていた。
The unfired PTFE fine powder, when extruded from a die in an extrusion process, rolled by a roll, or agitated, causes mutual knotting by fine fibers when subjected to a shearing force. It has the property of forming a fine fibrous structure that is bonded. This fibrillation is a unique property not found in other polymer materials, and there is a tendency that the microfibers are strongly oriented in the directions of extrusion and rolling, which is important in the conventional closed-cell porous PTFE. At the same time, it was also a cause of lowering workability.

【0017】これに対して、本発明によるPTFE発泡
体では、殻壁が第一の熱可塑性樹脂により形成され発泡
剤が内部に封入された未発泡の球体、未焼成PTFE微
粉末、及び第一の熱可塑性樹脂よりも融点が低い第二の
熱可塑性樹脂の粉末からなる混和物を所望の形状に成形
した後、この成形物を加熱することにより発泡剤を気化
させて球体を膨張させ、この膨張圧によって球体周囲に
存在している未焼成PTFEを延伸し、繊維化をさらに
促進するものである。この場合、球体は各々が膨張する
ので、それぞれの球体の周囲にあつて押出あるいは圧延
の方向に配向していた無数の微小繊維が、その膨張圧に
よっ実質的にあらゆる方向に延ばされる。その結果、成
形加工時に生じていた微小繊維の押出あるいは圧延方向
への強い配向が緩和され、結節を介して微小繊維が三次
元的に結合した繊維質構造となる。これにより、発泡体
の機械強度は均質化されて裂けにくいものとなり、従来
のように配向を減少させるための工程が不要になる。
On the other hand, in the PTFE foam according to the present invention, the shell wall is made of the first thermoplastic resin, the unfoamed spheres in which the foaming agent is enclosed, the unfired PTFE fine powder, and the first foam. After molding a mixture consisting of a powder of a second thermoplastic resin having a lower melting point than the thermoplastic resin of the desired shape, the foaming agent is vaporized by heating the molded article to expand the sphere, The unsintered PTFE existing around the sphere is stretched by the expansion pressure to further promote fiber formation. In this case, since each sphere expands, the infinite number of microfibers oriented around the respective spheres in the direction of extrusion or rolling are expanded in substantially all directions by the expansion pressure. As a result, the strong orientation of the fine fibers in the extrusion or rolling direction, which has occurred during the molding process, is alleviated, and the fine fibers are three-dimensionally bonded via the knots to form a fibrous structure. As a result, the mechanical strength of the foam is homogenized and less likely to tear, and the conventional process for reducing the orientation is unnecessary.

【0018】特に、本発明においては、第二の熱可塑性
樹脂粉末がPTFEの微細繊維状組織内に分散し、これ
が発泡剤を発泡させる際の熱で溶融して膨張性球体とP
TFEの微小繊維等とを接合するため、発泡体の機械強
度が大幅に高まる。したがって、例えば電線の絶縁体と
してテープ状に形成した発泡体を導体外周にを巻き付け
る場合に、テープが伸びないから、所期の特性を得るこ
とができる。なお、第二の熱可塑性樹脂とPTFEとを
ディスパージョンの状態で混合した場合には、樹脂の分
散が良いために両者が接合しやすくなり、その結果、発
泡体の機械強度は一段と高まる。
In particular, in the present invention, the second thermoplastic resin powder is dispersed in the fine fibrous structure of PTFE, and this is melted by the heat when the foaming agent is foamed, and expandable spheres and P
Since the TFE microfibers and the like are bonded, the mechanical strength of the foam is significantly increased. Therefore, for example, when a tape-shaped foamed body is wound around the conductor as an insulator of an electric wire, the tape does not stretch, so that desired characteristics can be obtained. In addition, when the second thermoplastic resin and PTFE are mixed in a dispersion state, the two resins are easily dispersed due to good dispersion of the resin, and as a result, the mechanical strength of the foam is further enhanced.

【0019】さらに、未膨張の球体をPTFE粉末と混
合するから大量充填が可能であり、そして成形後にこれ
を加熱して膨張させるので、特に大量充填した場合にも
膨張した球体が外力によって破壊されることはなく、気
孔率の極めて高い発泡体を得ることができる。
Further, since the unexpanded spheres are mixed with the PTFE powder, a large amount of filling is possible, and since the spheres are heated and expanded after molding, the expanded spheres are destroyed by an external force even in the case of a large amount of filling. And a foam having an extremely high porosity can be obtained.

【0020】[0020]

【実施例】以下、本発明のPTFE発泡体について具体
例をもって説明するが、もちろん実施例に限定されるも
のではなく、この発明の技術思想内での変更実施は可能
である。
EXAMPLES Hereinafter, the PTFE foam of the present invention will be described with reference to specific examples, but the present invention is not limited to the examples, and modifications can be made within the technical idea of the present invention.

【0021】実施例1 液体イソブタンが内部に封入されたアクリロニトリル系
樹脂からなる未発泡の球体(日本フィライト社製:エク
スパンセルDU−051、平均粒径6ミクロンメート
ル、膨張後の平均粒径20ミクロンメートル)30重量
部、PTFEの固形分に換算して60重量部のPTFE
ディスパージョン(三井デュポンフロロケミカル社製:
テフロン41J)、及びポリエチレンの固形分に換算し
て10重量部のポリエチレンディスパージョン(三井石
油化学社製:A−100)を混合してゲル化させた後、
この混合物から水分を除去し、これに液体潤滑剤として
ソルベントナフサを添加した。次に、上記混和物をテー
プ状に押し出した後、テープ中に含まれるソルベントナ
フサを球体が膨張しない程度の温度に加熱して除去し
た。さらに、このテープを長手方向に延伸してから圧延
し、厚さ50ミクロンメートルのテープに成形した。そ
して、これを170℃の加熱炉で10秒間の加熱を行
い、テープ中に含まれる上記未発泡の球体を膨張させ
た。この加熱により、当初50ミクロンメートルであっ
たテープの厚さは、200ミクロンメートルから230
ミクロンメートルの範囲に増加し、本発明によるPTF
E発泡体を得た。
Example 1 Unexpanded spheres made of acrylonitrile resin in which liquid isobutane was sealed (Expandel DU-051, manufactured by Nippon Philite Co., average particle size 6 μm, average particle size after expansion 20) Micron meter) 30 parts by weight, 60 parts by weight of PTFE converted to the solid content of PTFE
Dispersion (Mitsui DuPont Fluorochemicals:
Teflon 41J) and 10 parts by weight of polyethylene dispersion (A-100, manufactured by Mitsui Petrochemical Co., Ltd.) in terms of solid content of polyethylene were mixed and gelled.
Water was removed from this mixture and solvent naphtha was added to it as a liquid lubricant. Next, the mixture was extruded into a tape shape, and then the solvent naphtha contained in the tape was heated to a temperature at which the spheres did not expand and removed. Further, this tape was stretched in the longitudinal direction and then rolled to form a tape having a thickness of 50 μm. Then, this was heated in a heating furnace at 170 ° C. for 10 seconds to expand the unfoamed spheres contained in the tape. Due to this heating, the thickness of the tape, which was originally 50 μm, is 200 μm to 230 μm.
PTF according to the invention increased to the micron range
E foam was obtained.

【0022】図1は本発明によるPTFE発泡体であっ
て、加熱により球体を膨張させた後の状態、図2は膨張
性球体を膨張させる前の状態をそれぞれ示す電子顕微鏡
写真である。この写真から明らかなように、膨張性球体
の膨張により、PTFEの結節間を結合している微小繊
維があらゆる方向に延伸されてその配向が緩和されると
共に、それら微小繊維間に保持されている膨張性球体の
周囲にはかなりの空隙部分が残り、膨張性球体内の空孔
と合わせて高い空孔率が維持され、さらに空隙部分にお
いて、ポリエチレンがPTFEの微小繊維と膨張性球体
の結着剤となっていることがわかる。なお、図3はガラ
ス製中空球体をPTFE微粉末に混入した組成物をロー
ルで圧延することにより、PTFE粒子を繊維化して該
中空球体をその空隙部分に担持させた従来の独立気孔性
多孔質PTFE(本出願人が特公平1−25769号と
して提案したもの)の内部構造を示す電子顕微鏡写真で
あり、PTFEの繊維が一方向に配向していることが明
らかである。
FIG. 1 is an electron micrograph showing a PTFE foam according to the present invention after being expanded by heating, and FIG. 2 is a state before expanding the expandable sphere. As is clear from this photograph, due to the expansion of the expandable sphere, the microfibers connecting the PTFE nodules are stretched in all directions to relax their orientation and are held between the microfibers. A considerable amount of voids remain around the expansive spheres, maintaining a high porosity in combination with the pores in the expansive spheres. Furthermore, in the voids, polyethylene binds the PTFE microfibers to the expansive spheres. You can see that it is a drug. Incidentally, FIG. 3 shows a conventional independent porous porous material in which PTFE hollow fibers are made into fibers by rolling a composition in which glass hollow spheres are mixed with PTFE fine powder by rolling with a roll. It is an electron micrograph showing the internal structure of PTFE (proposed by the applicant as Japanese Patent Publication No. 1-25769), and it is clear that the fibers of PTFE are oriented in one direction.

【0023】このような特異な内部構造を有するテープ
状PTFE発泡体では、ペースト押出し及び圧延の際の
剪断力によってテープの長手方向に強く配向していたP
TFEの微小繊維が、膨張性球体が膨張する際の等方的
な膨張圧により実質的にあらゆる方向に延伸され、その
結果、幅方向や厚さ方向などの強度が相対的に高まると
同時に、発泡体の各方向における機械強度の差が減少す
る。これに加え、テープ状PTFE発泡体は、微細繊維
質構造のPTFEの空隙部分に存在している第二の熱可
塑性樹脂であるポリエチレンにより、PTFEの微小繊
維と膨張性球体とが接合し、機械的に補強されている。
In the tape-shaped PTFE foam having such a peculiar internal structure, P was strongly oriented in the longitudinal direction of the tape due to the shearing force during the paste extrusion and rolling.
The TFE microfibers are stretched in virtually any direction by the isotropic expansion pressure when the expandable sphere expands, and as a result, the strength in the width direction and the thickness direction is relatively increased, and at the same time, The difference in mechanical strength in each direction of the foam is reduced. In addition to this, the tape-shaped PTFE foam is formed by joining the PTFE microfibers and the expandable spheres with polyethylene, which is the second thermoplastic resin present in the voids of the PTFE having a fine fibrous structure. Have been reinforced.

【0024】即ち、上記実施例1のテープ状PTFE発
泡体の引張強度は、長手方向に微小繊維が強く配向して
いる発泡前の状態では長手方向1.7kg/平方センチ
メートル、幅方向0.05kg/平方センチメートルで
あったものが、発泡後にはそれぞれ0.96kg/平方
センチメートル、0.54kg/平方センチメートルと
なり、テープの長手方向と幅方向の差が大幅に減少して
いる。このことから、発泡体の機械強度の均質化に対し
て、膨張性球体の膨張による効果が顕著であることがわ
かる。さらに、比較例として第二の熱可塑性樹脂を含ま
ない発泡体の引張強度が長手方向0.78kg/平方セ
ンチメートル、幅方向0.12kg/平方センチメート
ルであることから、発泡体全体の機械強度も同時に大き
く向上している。したがって、このようなテープは、微
小繊維の配向が大幅に緩和されて特定の方向への配向が
少なく、三次元延伸により全体的に機械的強度が向上
し、さらに第二の熱可塑性樹脂によっても補強されてい
るので、未焼成の状態でそのまま使用した場合にも、従
来のもののように裂けたり、あるいは焼成後にクラック
が発生することはない。このことは、PTFE発泡体を
使用する上での作業性や得られる成形物の特性に好影響
を与えるものである。
That is, the tensile strength of the tape-shaped PTFE foam of Example 1 was 1.7 kg / square centimeter in the longitudinal direction and 0.05 kg / in the width direction in a state before foaming in which fine fibers were strongly oriented in the longitudinal direction. The square centimeters were 0.96 kg / square centimeter and 0.54 kg / square centimeter, respectively, after foaming, and the difference between the lengthwise direction and the widthwise direction of the tape was significantly reduced. From this, it is understood that the expansion of the expandable sphere has a remarkable effect on the homogenization of the mechanical strength of the foam. Further, as a comparative example, the tensile strength of the foam containing no second thermoplastic resin is 0.78 kg / square centimeter in the longitudinal direction and 0.12 kg / square centimeter in the width direction, so that the mechanical strength of the entire foam is also greatly improved. is doing. Therefore, in such a tape, the orientation of the microfibers is largely relaxed, the orientation in a specific direction is small, the mechanical strength is improved as a whole by three-dimensional stretching, and the second thermoplastic resin is also used. Since it is reinforced, even if it is used as it is in an unsintered state, it does not tear or crack after firing unlike the conventional one. This has a favorable influence on the workability in using the PTFE foam and the properties of the obtained molded product.

【0025】次に、上記テープ状PTFE発泡体の絶縁
材料としての電気的特性を評価するため、テープ表面に
さらに熱溶融型接着剤としてポリエチレンを薄くコーテ
ィングしたものを用意した。そして、この接着剤付きテ
ープを導体外周に螺旋巻きした後、その外側に外部導体
を設けて特性インピーダンスが50オームの同軸ケーブ
ルを作製し、その伝搬遅延時間を測定したところ、3.
6ns/mであった。このことから、このテープ状PT
FE発泡体の比誘電率は1.16となり、極めて低誘電
率の絶縁材料であることが確認された。
Next, in order to evaluate the electrical characteristics of the tape-shaped PTFE foam as an insulating material, a tape surface was further coated with a thin layer of polyethylene as a hot-melt adhesive. Then, after the tape with the adhesive was spirally wound on the outer circumference of the conductor, an outer conductor was provided on the outer side thereof to prepare a coaxial cable having a characteristic impedance of 50 ohms, and its propagation delay time was measured.
It was 6 ns / m. From this, this tape-shaped PT
The relative dielectric constant of the FE foam was 1.16, which confirmed that the FE foam was an insulating material having an extremely low dielectric constant.

【0026】さらに、耐圧縮性については、このテープ
状PTFE発泡体に10kg/平方センチメートルの荷
重を10分間かける前と後におけるテープの誘電率を調
べたところ、負荷前に1.16であったものが負荷後で
は1.18であり、その変化は僅かであった。このよう
に、本発明による発泡体は圧縮力に対してその空孔が潰
れにくく、電気的特性の変化が少ないものになってい
る。
Further, regarding the compression resistance, the dielectric constant of the tape was examined before and after applying a load of 10 kg / square centimeter to this tape-shaped PTFE foam for 10 minutes, and it was 1.16 before the loading. Was 1.18 after loading, and the change was slight. As described above, the foam according to the present invention is less likely to be crushed by the pores due to the compressive force, and the change in the electrical characteristics is small.

【0027】実施例2 微粉末状のポリプロピレン(三洋化成社製:ビスコー
ル)を界面活性剤によりイオン交換水に分散させ、この
分散液を前記実施例のポリエチレンディスパージョンに
代えて用い、前記実施例と同様な方法でテープ状PTF
E発泡体を得た。そして、第二の熱可塑性樹脂としてポ
リプロピレンを使用するこのテープ状PTFE発泡体の
引張強度を測定したところ、発泡前の状態では長手方向
1.65kg/平方センチメートル、幅方向0.05k
g/平方センチメートルであったものが、発泡後にはそ
れぞれ0.89kg/平方センチメートル、0.55k
g/平方センチメートルとなつた。また、実施例1と同
様にして同軸ケーブルを作製し、その伝搬遅延時間を測
定したところ、3.65ns/mであった。このことか
ら、このテープ状PTFE発泡体の比誘電率は1.20
となり、極めて低誘電率の絶縁材料であった。
Example 2 Polypropylene in the form of fine powder (manufactured by Sanyo Kasei Co., Ltd .: Viscole) was dispersed in ion-exchanged water with a surfactant, and this dispersion was used in place of the polyethylene dispersion of the above Example. Tape-like PTF by the same method as
E foam was obtained. Then, the tensile strength of this tape-shaped PTFE foam using polypropylene as the second thermoplastic resin was measured, and it was 1.65 kg / cm 2 in the longitudinal direction and 0.05 k in the width direction in the state before foaming.
What was g / square centimeter was 0.89 kg / square centimeter and 0.55 k after foaming, respectively.
It was g / square centimeter. A coaxial cable was produced in the same manner as in Example 1 and its propagation delay time was measured and found to be 3.65 ns / m. From this, the relative permittivity of this tape-shaped PTFE foam is 1.20.
Therefore, the insulating material has an extremely low dielectric constant.

【0028】なお、上記実施例ではテープ状に成形した
PTFE発泡体について説明したが、例えばペースト押
出しにより導体の外周にチューブ状に被覆してもよく、
その形状は限定されない。さらに、本発明によるPTF
E発泡体は絶縁材料に限らず、例えば遮音材、軽量構造
材などの従来の発泡体が使用されていた用途に適用でき
ることは言うまでもない。
In the above embodiments, the PTFE foam molded into a tape shape has been described, but the outer circumference of the conductor may be covered in a tube shape by, for example, paste extrusion.
The shape is not limited. Furthermore, the PTF according to the present invention
It goes without saying that the E foam is not limited to the insulating material and can be applied to applications in which conventional foams such as sound insulating materials and lightweight structural materials have been used.

【0029】[0029]

【発明の効果】以上説明したように、この発明によるP
TFE発泡体では、発泡剤を内包する未膨張の球体とP
TFE粉末と熱可塑性樹脂粉末の混和物を所望の形状に
成形した後、この成形物を加熱して球体を膨張させ、そ
の際の膨張圧を利用してPTFEを三次元的に繊維化す
るので、極めて空孔率の高い独立気孔性多孔質体が能率
的かつ安定して得られるばかりか、特定の方向への繊維
の配向が少なくなるために機械強度の差が各方向におい
て小さくなり、しかもPTFEの繊維と膨張性球体とが
熱可塑性樹脂を介して接合されるから、機械強度も良好
であるという実用上優れた効果が得られる。
As described above, the P according to the present invention is
In TFE foam, unexpanded spheres containing a foaming agent and P
After molding a mixture of TFE powder and thermoplastic resin powder into a desired shape, the molded product is heated to expand the sphere, and the expansion pressure at that time is used to three-dimensionally fiberize PTFE. , Not only the highly independent porosity porous body can be obtained efficiently and stably, the difference in mechanical strength is small in each direction because the orientation of the fibers in a specific direction is small, and Since the PTFE fibers and the expandable spheres are bonded via the thermoplastic resin, the practically excellent effect of good mechanical strength can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるテープ状PTFE発泡体の繊維の
形状を示す顕微鏡写真である。
FIG. 1 is a micrograph showing the shape of fibers of a tape-shaped PTFE foam according to the present invention.

【図2】同じく発泡前の表面部分の繊維の形状を示す顕
微鏡写真である。
FIG. 2 is a micrograph showing the shape of fibers on the surface portion before foaming.

【図3】従来の独立気孔性多孔質PTFEの表面部分の
繊維の形状を示す顕微鏡写真である。
FIG. 3 is a micrograph showing a fiber shape of a surface portion of a conventional closed-pore porous PTFE.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】発泡剤が封入された第一の熱可塑性樹脂か
らなる多数の膨張性球体と、これら膨張性球体の周囲に
あってその膨張圧により結節間を連結する微小繊維が延
伸され三次元的に広がる微細繊維質構造を形成してその
空隙部分で該膨張性球体を抱持する四フッ化エチレン樹
脂と、この四フッ化エチレン樹脂の微細繊維質構造内の
空隙部分にあって前記膨張性球体と四フッ化エチレン樹
脂とを接合する前記第一の熱可塑性樹脂よりも融点が低
い第二の熱可塑性樹脂を備える四フッ化エチレン樹脂発
泡体。
1. A large number of expandable spheres made of a first thermoplastic resin in which a foaming agent is encapsulated, and microfibers around these expandable spheres which connect the nodules by the expansion pressure of the expandable spheres. A tetrafluoroethylene resin that originally forms a fine fibrous structure and holds the expansive spheres in the void portion, and a void portion in the fine fibrous structure of the tetrafluoroethylene resin, A tetrafluoroethylene resin foam comprising a second thermoplastic resin having a melting point lower than that of the first thermoplastic resin for joining the expandable sphere and the tetrafluoroethylene resin.
【請求項2】未発泡状態の発泡剤が封入された第一の熱
可塑性樹脂からなる球体と未焼成四フッ化エチレン樹脂
粉末と前記第一の熱可塑性樹脂よりも融点が低い第二の
熱可塑性樹脂粉末との混和物を発泡剤が発泡する温度以
下で所定の形状に成形した後、この成形物を発泡剤が発
泡する温度以上に加熱し、この加熱により前記球体を膨
張させてその膨張圧で未焼成四フッ化エチレン樹脂の繊
維質化を促進すると共に成形物中に膨張性球体による独
立気孔を形成せしめ、さらに溶融した前記第二の熱可塑
性樹脂を介して膨張性球体と四フッ化エチレン樹脂とを
一体化する四フッ化エチレン樹脂発泡体の製造方法。
2. A sphere made of a first thermoplastic resin in which an unfoamed foaming agent is enclosed, an unsintered tetrafluoroethylene resin powder, and a second heat having a melting point lower than that of the first thermoplastic resin. After molding the mixture with the plastic resin powder into a predetermined shape at a temperature below the temperature at which the foaming agent foams, the molded product is heated to a temperature above the temperature at which the foaming agent foams, and this heating causes the sphere to expand and expand. The unpressurized tetrafluoroethylene resin is promoted to be fibrous by pressure and independent pores are formed by the expansive spheres in the molded product. A method for producing a tetrafluoroethylene resin foam which is integrated with a fluorinated ethylene resin.
JP31373791A 1991-10-31 1991-10-31 Polytetrafluoroethylene resin foam and method for producing the same Expired - Fee Related JP3195006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31373791A JP3195006B2 (en) 1991-10-31 1991-10-31 Polytetrafluoroethylene resin foam and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31373791A JP3195006B2 (en) 1991-10-31 1991-10-31 Polytetrafluoroethylene resin foam and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05117433A true JPH05117433A (en) 1993-05-14
JP3195006B2 JP3195006B2 (en) 2001-08-06

Family

ID=18044921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31373791A Expired - Fee Related JP3195006B2 (en) 1991-10-31 1991-10-31 Polytetrafluoroethylene resin foam and method for producing the same

Country Status (1)

Country Link
JP (1) JP3195006B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005022020A (en) * 2003-07-01 2005-01-27 Sumitomo Heavy Ind Ltd Manufacturing method of micro structure
WO2017018105A1 (en) * 2015-07-29 2017-02-02 日東電工株式会社 Fluororesin porous body, metal layer-equipped porous body using same, and wiring substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10400080B2 (en) 2015-03-16 2019-09-03 Sabic Global Technologies B.V. Fibrillated polymer compositions and methods of their manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005022020A (en) * 2003-07-01 2005-01-27 Sumitomo Heavy Ind Ltd Manufacturing method of micro structure
JP4567302B2 (en) * 2003-07-01 2010-10-20 住友重機械工業株式会社 Manufacturing method of fine structure
WO2017018105A1 (en) * 2015-07-29 2017-02-02 日東電工株式会社 Fluororesin porous body, metal layer-equipped porous body using same, and wiring substrate

Also Published As

Publication number Publication date
JP3195006B2 (en) 2001-08-06

Similar Documents

Publication Publication Date Title
US4368350A (en) Corrugated coaxial cable
GB2070617A (en) Foamable perfluorocarbon resin compositions and foam jacketed cables produced therefrom
US8207447B2 (en) PTFE porous body, PTFE mixture, method for producing PTFE porous body, and electric wire/cable using PTFE porous body
JPH08507316A (en) Improved composites of expanded polytetrafluoroethylene and similar polymers and methods of making the same
EP0455407B1 (en) Insulating material and production thereof
JP2000509885A (en) Coaxial cable and its manufacturing method
US3573976A (en) Method of making coaxial cable
JP3198121B2 (en) Polytetrafluoroethylene resin foam and method for producing the same
JP2008500702A (en) Coaxial cable with foam insulation
US5087641A (en) Porous polytetrafluoroethylene resin material
GB2209167A (en) Composite material of low dielectric constant
JP6342044B1 (en) Flexible flat cable, method for producing the same, and unfoamed insulating tape used for the production
JPH05117433A (en) Tetrafluoroethyene resin foam and its production
JP5041843B2 (en) Low thermal conductive heat resistant foam and method for producing the same
US4547328A (en) Method for producing foamed plastic insulator
JP3227091B2 (en) Insulating material for coaxial cable, coaxial cable, and method of manufacturing coaxial cable
JP2016160416A (en) Pellet, foamed resin compact, foamed insulated wire and cable
JP2001067944A (en) Fluororesin-coated electric wire and manufacture of fluororesin-coated electric wire
JPH0520928A (en) Insulation cable and manufacture thereof
JP5189793B2 (en) Dielectric substrate
JPH05258615A (en) Insulated electric cable and its manufacture
JP3245209B2 (en) Fluororesin foam
JPS639131Y2 (en)
JP2015183137A (en) Polyvinylidene fluoride-based resin expanded particle, production method and molded product thereof
JPH0275636A (en) Electrically conductive foamed polyethylene particle and preparation thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees