JPH0275636A - Electrically conductive foamed polyethylene particle and preparation thereof - Google Patents

Electrically conductive foamed polyethylene particle and preparation thereof

Info

Publication number
JPH0275636A
JPH0275636A JP22925188A JP22925188A JPH0275636A JP H0275636 A JPH0275636 A JP H0275636A JP 22925188 A JP22925188 A JP 22925188A JP 22925188 A JP22925188 A JP 22925188A JP H0275636 A JPH0275636 A JP H0275636A
Authority
JP
Japan
Prior art keywords
particles
resin
resin particles
weight
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22925188A
Other languages
Japanese (ja)
Other versions
JP2646245B2 (en
Inventor
Hideki Kuwabara
英樹 桑原
Masato Naito
真人 内藤
Kazuo Tsurukai
和男 鶴飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP63229251A priority Critical patent/JP2646245B2/en
Publication of JPH0275636A publication Critical patent/JPH0275636A/en
Application granted granted Critical
Publication of JP2646245B2 publication Critical patent/JP2646245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a foamed particle having excellent fusion and secondary foaming characteristics when it is molded in a mold and high conductivity by using a base resin contg. an uncrosslinked linear low-density polyethylene and carbon black at a specified ratio. CONSTITUTION:This electrically conductive foamed polyethylene particle is formed by using a resin consisting of 95-70wt.% uncrosslinked linear low-density polyethylene (hereinbelow described as LLDPE) and 5-30wt.% carbon black as a base material. It is pref. that LLDPE has an MFR of 0.5-2g/10min. It is pref. That said polyethylene particle has a foam diameter of 0.07mm or larger and an inner pressure decreasing rate coefficient (K) of smaller than 0.35. Said polyethylene particle is obtd. by the following method. Namely, the base resin particles at said compounding ratio are dispersed in a pressure container in the presence of water and a foaming agent and heated to impregnate the resin particles with the foaming agent. Then, the particles are kept in a temp. of the m.p. to m.p. minus 15 deg.C of the resin particles to take out the resin particles and water from the container in an atmosphere of a reduced pressure to foam the resin particles.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導電性ポリエチレン発泡粒子及びその製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to conductive polyethylene foam particles and a method for producing the same.

〔従来の技術及び 発明が解決しようとする課題〕[Conventional technology and Problems that the invention attempts to solve]

従来よりポリオレフィン系樹脂導電性発泡体の研究は多
くなされている。しかしながら架橋発泡体の場合、カー
ボンブラック多量に添加すると樹脂の架橋が阻害される
ことから良好な発泡体は得られていない。そのため従来
得られている高発泡体はやや連続気泡ぎみのもので体積
固有抵抗値が105Ω・cfflOものが限度である。
A lot of research has been done on polyolefin resin conductive foams. However, in the case of crosslinked foams, good foams have not been obtained because adding a large amount of carbon black inhibits crosslinking of the resin. Therefore, conventionally available highly foamed materials are somewhat open-celled and have a volume resistivity of 105 Ω·cfflO.

また無架橋発泡体の場合、流動性が悪くなることから、
樹脂の粘性が高くなり、しかも樹脂の伸び率が低下して
発泡条件を定め難いという問題がある。このような問題
を解決するためにポリオレフィン系樹脂95〜70重量
%に対し、比表面積が90Or+?/g以上の導電性フ
ァーネスブランク5〜30重量%含有する組成物を5倍
以上の倍率に発泡させて独立気泡構造で導電性を有する
ポリオレフィン低密度発泡体の製造方法が提案されてい
る(特公昭51−25815号公報)。
In addition, in the case of non-crosslinked foam, fluidity deteriorates, so
There are problems in that the viscosity of the resin increases and the elongation rate of the resin decreases, making it difficult to determine foaming conditions. To solve this problem, we developed a polyolefin resin with a specific surface area of 90 Or+?95 to 70% by weight. A method for producing a low-density polyolefin foam having a closed cell structure and conductivity has been proposed by foaming a composition containing 5 to 30% by weight of a conductive furnace blank of 5 to 30% by weight or more to a ratio of 5 times or more. Publication No. 51-25815).

しかしながら上記のような方法によって得られる発泡体
では体積固有抵抗値lObΩ・can程度を得るのが限
度であり、カーボンブラックの添加量を30重量%以上
に増加しても体積固有抵抗値の飛躍的な低下は望めない
という問題がある。また上記の方法の如く押出発泡体の
場合ではそれほど問題はないものの、金型内に充填して
成型する発泡粒子の場合カー・ボンブラックの添加量が
多くなると、発泡粒子の金型内での融着性と二次発泡性
が問題となり、今までビーズ法による良好な導電性発泡
体は得られていない。
However, with the foam obtained by the above method, the volume resistivity value is limited to about 1ObΩ・can, and even if the amount of carbon black added is increased to 30% by weight or more, the volume resistivity value does not increase dramatically. The problem is that a significant decline cannot be expected. In addition, although there is not much of a problem in the case of extruded foam as in the above method, when the amount of carbon black added is large in the case of foamed particles that are filled into a mold and molded, the foamed particles become difficult to mold in the mold. Problems arise with fusion properties and secondary foamability, and to date no good conductive foam has been obtained by the bead method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記従来技術の欠点を解決するために鋭意研究
した結果なされたもので、基材樹脂に直鎖状低密度ポリ
エチレンを使用し、無架橋発泡にて得られた発泡粒子が
従来にない優れた融着性と二次発泡性を有し、しかも体
積固有抵抗値102Ω・cmもの高い導電性を得ること
ができことを見出し本発明を完成するに到った。
The present invention was made as a result of intensive research to solve the above-mentioned drawbacks of the conventional technology, and it uses linear low-density polyethylene as the base resin, and foamed particles obtained by non-crosslinking foaming have never been produced before. We have completed the present invention by discovering that it has excellent fusion properties and secondary foaming properties, and can also provide high electrical conductivity with a volume resistivity value of 102 Ω·cm.

即ち本発明は、 (1)  無架橋直鎖状低密度ポリエチレン95〜70
重量%と、カーボンブラック5〜30重量%とからなる
樹脂を基材とすることを特徴とする導電性ポリエチレン
発泡粒子。
That is, the present invention provides: (1) Non-crosslinked linear low density polyethylene 95-70
Conductive polyethylene foam particles characterized in that the base material is a resin consisting of 5% by weight and 5 to 30% by weight of carbon black.

(2)無架橋直鎖状低密度ポリエチレンのMFRが0.
5〜2g/10分であることを特徴とする請求項l記載
の導電性ポリエチレン発泡粒子。
(2) MFR of non-crosslinked linear low density polyethylene is 0.
The conductive polyethylene foam particles according to claim 1, characterized in that the amount is 5 to 2 g/10 minutes.

(3)発泡粒子内の内圧減少速度係数(K)が0.35
未満であることを特徴とする請求項1記載の導電性ポリ
エチレン発泡粒子。
(3) Internal pressure reduction rate coefficient (K) within expanded particles is 0.35
The conductive polyethylene foam particles according to claim 1, characterized in that the conductive polyethylene foam particles are less than 10%.

(4)気泡径が0.07 am以上であることを特徴と
する請求項1記載の導電性ポリエチレン発泡粒子。
(4) The conductive polyethylene foam particles according to claim 1, characterized in that the cell diameter is 0.07 am or more.

(5)無架橋直鎖状低密度ポリエチレン95〜70重量
%とカーボンブラック5〜30重量%とからなる樹脂粒
子を、水と発泡剤の存在下に耐圧容器内で分散させて加
熱して樹脂粒子に発泡剤を含浸させ、次いで樹脂粒子の
融点〜融点−15°Cの温度範囲に保持して樹脂粒子と
水とを容器内より低圧の雰囲気下に放出して樹脂粒子を
発泡させることを特徴とする導電性ポリエチレン発泡粒
子の製造方法。
(5) Resin particles consisting of 95-70% by weight of non-crosslinked linear low-density polyethylene and 5-30% by weight of carbon black are dispersed in a pressure container in the presence of water and a blowing agent and heated to create a resin. The particles are impregnated with a foaming agent, and then the resin particles are foamed by maintaining the temperature in the range of from the melting point of the resin particles to -15°C, and releasing the resin particles and water into a low-pressure atmosphere from inside the container. A method for producing characteristically conductive polyethylene foam particles.

(6)請求項5記載の製造方法において、一旦嵩倍率で
10倍以下の発泡粒子を得、次いで上−記発泡粒子を窒
素ガスを主成分とする無機ガスにて1〜10 kg/c
tA−Gの粒子内圧を付与し、その後加熱して嵩倍率で
10倍以上に発泡させることを特徴とする導電性ポリエ
チレン発泡粒子の製造方法。
(6) In the manufacturing method according to claim 5, foamed particles having a bulk ratio of 10 times or less are obtained, and then the foamed particles are heated to 1 to 10 kg/c with an inorganic gas containing nitrogen gas as a main component.
A method for producing conductive polyethylene foam particles, which comprises applying an internal particle pressure of tA-G and then heating the particles to expand the particles to a bulk ratio of 10 times or more.

を要旨とするものである。The main points are as follows.

本発明において用いる直鎖状低密度ポリエチレン(以下
LLDPEと略す。)は低圧重合ポリエチレンに炭素数
4〜10のα−オレフィンを共重合させたものであり、
上記α−オレフィンとしては、1−ブテン、1−ペンテ
ン、■−ヘキセン、3.3−ジメチル−1−ブテン、4
−メチル−1−ペンテン、4.4−ジメチル−1−ペン
テン、1−オクテン等が挙げられる。これらα−オレフ
ィンのLLDPE中の含有量は通常0.5〜20重1%
であるが、特に1〜15重量%が好ましい。
The linear low-density polyethylene (hereinafter abbreviated as LLDPE) used in the present invention is a low-pressure polymerized polyethylene copolymerized with an α-olefin having 4 to 10 carbon atoms,
The above α-olefins include 1-butene, 1-pentene, ■-hexene, 3,3-dimethyl-1-butene, 4
-Methyl-1-pentene, 4,4-dimethyl-1-pentene, 1-octene and the like. The content of these α-olefins in LLDPE is usually 0.5 to 20% by weight.
However, 1 to 15% by weight is particularly preferred.

上記LLDPEはVFRが0.5〜2g/10分のもの
が好ましい。
The above LLDPE preferably has a VFR of 0.5 to 2 g/10 minutes.

LLDPE中の添加剤として酸化防止剤、耐光剤、滑剤
、中和剤等が挙げられ、これらは気泡径と導電性に影響
しない範囲で目的によって適宜使用される。この中で特
に中和剤として使用されるステアリン酸塩は気泡径に影
響するので250ppm以下にすることが好ましい。ま
た樹脂中に存在するn−へキサン抽出分は0.4重量%
以上、1.5重量%以下が好ましく、特に好ましくは0
.5重量%以上、1.2重量%以下である。
Additives in LLDPE include antioxidants, light stabilizers, lubricants, neutralizing agents, and the like, and these are used as appropriate depending on the purpose as long as they do not affect the cell diameter and conductivity. Among these, stearate, which is used as a neutralizing agent, affects the bubble diameter, so it is preferably kept at 250 ppm or less. In addition, the n-hexane extract present in the resin is 0.4% by weight.
Above, it is preferably 1.5% by weight or less, particularly preferably 0
.. It is 5% by weight or more and 1.2% by weight or less.

このような低密度のLLDPEを用いると、カーボンの
添加量を多くしても独立気泡でしかも高い導電性をもつ
発泡粒子を容易に得ることができる。また金型に充填し
て良好に二次発泡及び融着する発泡粒子を得ることがで
きる。
When such low-density LLDPE is used, it is possible to easily obtain foamed particles that are closed cells and have high conductivity even if the amount of carbon added is increased. In addition, it is possible to obtain foamed particles that can be filled into a mold and undergo secondary foaming and fusing well.

尚、本発明の所期の目的を阻害しない範囲内において5
0重量%未満の範囲で低密度ポリエチレン(以下LDP
Eと略す。)又は/及び直鎖状超低密度ポリエチレン(
以下VLDPEと略す。)を混合することもできる。
Incidentally, within the range that does not impede the intended purpose of the present invention, 5
Low density polyethylene (hereinafter referred to as LDP) in the range of less than 0% by weight
It is abbreviated as E. ) or/and linear ultra-low density polyethylene (
Hereinafter abbreviated as VLDPE. ) can also be mixed.

本発明において用いるカーボンブラックとしてはファー
ネスブラック、アセチレンブラックと称されるものが挙
げられる。このようなカーボンブラックとしては例えば
パルカンXC−72、ブラ・7クバール(以上キャボッ
ト社製)、コンダクテソク975 (コロンビャン社製
)、トーカブラック5500、トーカブラック7550
 (以上束)毎カーボンa菊製)、デンカブラック(電
気化学工業側製)、ケッチエンブラックEC、ケッチェ
ンブラ、りEC−60’0(以上アクゾ社製)、#32
50、#3750、#3600、#3950 (以上三
菱化成01製)等が挙げられる。本発明において使用す
るカーボンブラックはBET比表面積で50m/g以上
のものが好ましい。上記カーボンブラックのうちで特に
好ましいのはケッチエンブラックEC,ケッチエンブラ
ックEC−600、ブラックパール2000、#375
0、#3600、#3950等のBET比表面積が50
0m/g以上のものである。カーボンブラックは異なる
種類のものを2種以上混合して用いても、単独で用いて
もよい。
Examples of the carbon black used in the present invention include those called furnace black and acetylene black. Such carbon blacks include, for example, Palkan XC-72, Bra 7 Kbal (manufactured by Cabot), Conductor Tesoku 975 (manufactured by Colombian), Toka Black 5500, and Toka Black 7550.
(more than bundles) made by Carbon A Kiku), Denka Black (manufactured by Denki Kagaku Kogyo), Ketchen Black EC, Ketchen Bra, Ri EC-60'0 (manufactured by Akzo), #32
50, #3750, #3600, #3950 (manufactured by Mitsubishi Kasei 01), and the like. The carbon black used in the present invention preferably has a BET specific surface area of 50 m/g or more. Among the above carbon blacks, particularly preferred are Ketchen Black EC, Ketchen Black EC-600, Black Pearl 2000, and #375.
0, #3600, #3950 etc. BET specific surface area is 50
It is 0 m/g or more. Carbon black may be used in combination of two or more different types, or may be used alone.

本発明導電性発泡粒子中におけるカーボンブラックの含
有量が5重量%未満であると充分な導電性が付与できず
、また30重量%を超えると発泡粒子の原料となる樹脂
粒子との混練性が悪くなったり、得られた発泡粒子が連
続気泡になり易く、また成型時に発泡粒子同士の融着も
悪くなる。
If the content of carbon black in the conductive expanded particles of the present invention is less than 5% by weight, sufficient conductivity cannot be imparted, and if it exceeds 30% by weight, the kneadability with the resin particles that are the raw material of the expanded particles will deteriorate. The resulting foamed particles tend to become open cells, and the fusion between the foamed particles during molding also deteriorates.

本発明の導電性ポリエチレン発泡粒子は気泡径0、07
 am以上であることが好ましく、0.07m−未満と
なると二次発泡性が低下し易い。また発泡粒子の独立気
泡性及びガス透過性の指標として、粒子内の内圧減少速
度係数(K)が用いられ、型内成形によって型通りの成
形体を容易に得るために、K<0.35のものが好まし
い。
The conductive polyethylene foam particles of the present invention have cell diameters of 0 and 07.
It is preferable that it is more than am, and if it is less than 0.07 m, the secondary foamability tends to decrease. In addition, the internal pressure reduction rate coefficient (K) within the particles is used as an index of the closed cell property and gas permeability of the expanded particles. Preferably.

尚、内圧減少速度係数:には下記式 〔但し上記式中、Plは発泡粒子の初期内圧(kg/c
t−G) 、Pzは1時間経過後の発泡粒子の内圧(k
g/cffl−G) 、tは時間(hr)を示す。〕に
より、求めることができ、25℃における初期の内圧(
PI)と1時間経過時(t=1)の内圧(P2)を測定
して求めることができる。
In addition, the internal pressure reduction rate coefficient: is expressed by the following formula [in the above formula, Pl is the initial internal pressure of the expanded particles (kg/c
t-G), Pz is the internal pressure of the expanded particles after 1 hour (k
g/cffl-G), t indicates time (hr). ], the initial internal pressure at 25°C (
PI) and the internal pressure (P2) after one hour has passed (t=1).

更に本発明の導電性ポリエチレン発泡粒子は示差走査熱
量測定において得られるDSC曲線に2つの吸熱ピーク
が現れる結晶構造のものであっても、1つの吸熱ピーク
しか現れない結晶構造のものであってもかまわないが、
カーボンブラックの含有量が少ないもの、特に5〜10
重量%のものでは高温側にも吸熱ピークを有する結晶構
造のものが好ましい。この場合、高温側の吸熱ピークの
エネルギーは15J/g以下であることが好ましい。上
記DSC曲線とは、発泡粒子1〜5■を示差走査熱量計
によって10℃/分の昇温速度で220℃まで昇温しで
測定した時に得られるDSC曲線である。DSC曲線に
おける2つの吸熱ピークのうち低温側の吸熱ピークは発
泡粒子の基材樹脂であるLLDPEの所謂融解の際の吸
熱によるものと考えられる。一方、高温側の吸熱ピーク
は低温側の吸熱ピークとして現れる構造とは異なる結晶
構造の存在に起因するものと考えられる。
Furthermore, the conductive polyethylene foam particles of the present invention may have a crystal structure in which two endothermic peaks appear in the DSC curve obtained in differential scanning calorimetry, or may have a crystal structure in which only one endothermic peak appears. I don't mind, but
Those with a low carbon black content, especially 5 to 10
Among the weight% ones, those with a crystalline structure that also has an endothermic peak on the high temperature side are preferable. In this case, the energy of the endothermic peak on the high temperature side is preferably 15 J/g or less. The above-mentioned DSC curve is a DSC curve obtained when expanded particles 1 to 5 cm were heated to 220° C. at a heating rate of 10° C./minute using a differential scanning calorimeter. Of the two endothermic peaks in the DSC curve, the endothermic peak on the low-temperature side is considered to be due to endothermic heat generated during so-called melting of LLDPE, which is the base resin of the expanded particles. On the other hand, the endothermic peak on the high temperature side is considered to be due to the existence of a crystal structure different from the structure that appears as the endothermic peak on the low temperature side.

高温側の吸熱ピークのエネルギーは第1図において高温
側ピークと低温側ピークの谷の部分aで高温側ピークb
と低温側ピークCを分割し、谷の部分aより高温側のピ
ークの面積を高温側ピークの面積とし、この面積より求
めた値である。
In Figure 1, the energy of the endothermic peak on the high temperature side is the valley part a between the high temperature side peak and the low temperature side peak, and the high temperature side peak b
The area of the peak on the higher temperature side than the valley part a is taken as the area of the high temperature side peak, and the value is calculated from this area.

即ち、高温側の吸熱ピークの面積より以下の式により高
温側の吸熱ピークのエネルギーを求めることができる。
That is, the energy of the endothermic peak on the high temperature side can be determined from the area of the endothermic peak on the high temperature side using the following equation.

高温側吸熱ピークのエネルギー(J / g )−〔高
温側吸熱ピークのチャー1−上の面積(cnり×[チャ
ー 1−1 ctA当たりの熱i(J/cut))シー
〔測定サンプルの重量(g)〕 本発明発泡粒子は上記の如< LLDPE95〜70重
量%とカーボンブラック5〜30重量%との混合組成か
らなるが、必要に応じて更に無機フィラーを添加しても
よい。
Energy of the endothermic peak on the high temperature side (J/g) - [Area of the endothermic peak on the high temperature side on Char 1 (cn x [Heat i per ctA (J/cut))] C [Weight of measurement sample (g)] The foamed particles of the present invention have a mixed composition of 95 to 70% by weight of LLDPE and 5 to 30% by weight of carbon black as described above, but an inorganic filler may be further added as required.

無機フィラーとしては、酸化亜鉛、酸化チタン、酸化マ
グネシウム、酸化ケイ素等の金属酸化物、炭酸カルシウ
ム、炭酸マグ皐シウム等の炭酸塩等が挙げられる。
Examples of the inorganic filler include metal oxides such as zinc oxide, titanium oxide, magnesium oxide, and silicon oxide, and carbonates such as calcium carbonate and magsium carbonate.

本発明の発泡粒子はL L D P Eに、カーボンブ
ラック5〜20重量%とを混合した樹脂組成物の粒子を
揮発性発泡剤とともに密閉容器内で水に分散させて加熱
して樹脂粒子内に発泡剤を含浸させ、次いで樹脂粒子と
水とを容器内より低圧の雰囲気下に放出して樹脂粒子を
発泡させるに際し、発泡温度(放出温度)を樹脂粒子の
融点〜融点−10℃の温度範囲とすることにより得られ
る。上記樹脂の融点とは、発泡に使用する樹脂粒子1〜
5mgを示差走査熱量計において10℃/分の速度で昇
温して得たDSC曲線における吸熱ピークの頂点の温度
である。
The foamed particles of the present invention are produced by dispersing particles of a resin composition containing LLDP E and 5 to 20% by weight of carbon black together with a volatile foaming agent in water in a closed container, and heating the mixture to form inside the resin particles. When foaming the resin particles by impregnating them with a foaming agent and then releasing the resin particles and water into a low-pressure atmosphere from inside the container, the foaming temperature (release temperature) is set at a temperature between the melting point of the resin particles and the melting point -10°C. Obtained by setting the range. The melting point of the above resin refers to the resin particles used for foaming.
This is the temperature at the top of the endothermic peak in the DSC curve obtained by heating 5 mg at a rate of 10° C./min in a differential scanning calorimeter.

本発明発泡粒子の製造に用いられる発泡剤としては、二
酸化炭素、空気、窒素等の無機ガス或いは沸点が一50
〜120℃の炭化水素又はハロゲン化炭化水素等の有機
発泡剤が挙げられ、有機発泡剤として具体的にはプロパ
ン、ブタン、ペンタン、ヘキサン、ヘプタン、シクロベ
ンクン、シクロヘキサン、モノクロロメタン、ジクロロ
メタン、モノクロロジフロロメタン、モノクロロエタン
、トリクロロモノフロロメタン、ジクロロジフロロメタ
ン、ジクロロモノフロロメタン、トリクロロトリフロロ
エタン、ジクロロテトラフロロエタン等が挙げられる。
The foaming agent used in the production of the foamed particles of the present invention may be an inorganic gas such as carbon dioxide, air, or nitrogen, or a gas with a boiling point of 150
Examples include organic blowing agents such as hydrocarbons or halogenated hydrocarbons having a temperature of ~120°C, and specific examples of organic blowing agents include propane, butane, pentane, hexane, heptane, cyclobencune, cyclohexane, monochloromethane, dichloromethane, and monochlorodifluoro. Examples include methane, monochloroethane, trichloromonofluoromethane, dichlorodifluoromethane, dichloromonofluoromethane, trichlorotrifluoroethane, dichlorotetrafluoroethane, and the like.

これらは単独で用いてもよく、2種以上混合して用いて
もよい。これらの発泡剤の量は発泡剤の種類、所望する
発泡倍率や気泡径等によっても異なるが、例えば発泡倍
率5〜50倍(嵩倍率、以下発泡粒子の発泡倍率は嵩倍
率を示す。)とするためには、通常樹脂粒子100重量
部当たりに対し、5〜40重量部であるが、発泡剤とし
て無機発泡剤を用いた場合には通常得られる発泡粒子の
発泡倍率は10倍以下である。このような発泡粒子を更
に高発泡とするには、−旦10倍以下に発泡させた後、
窒素ガスを主成分とする無機ガスにて1〜10 kg/
c+a−Gの粒子内圧を付与し、その後加熱して発泡さ
せる操作を必要により何回か繰り返すごとにより所望す
る高発泡倍率の導電性ポリエチェレン発泡粒子を得るこ
とができる。このようにフロン系発泡剤を用いずに高発
泡倍率とする方法は、現在のフロンのオゾン層破壊問題
を解決するものとして特に好ましい。
These may be used alone or in combination of two or more. The amount of these blowing agents varies depending on the type of blowing agent, desired expansion ratio, cell diameter, etc., but for example, the expansion ratio is 5 to 50 times (bulk ratio, hereinafter the expansion ratio of foamed particles refers to bulk ratio). In order to do this, the amount is usually 5 to 40 parts by weight per 100 parts by weight of the resin particles, but when an inorganic foaming agent is used as the foaming agent, the expansion ratio of the foamed particles usually obtained is 10 times or less. . In order to make such foamed particles even more highly foamed, - after foaming them to 10 times or less,
1 to 10 kg/inorganic gas mainly composed of nitrogen gas
Conductive polyethylene foam particles having a desired high expansion ratio can be obtained by repeating the operation of applying a particle internal pressure of c+a-G and then heating and foaming the particles several times as necessary. This method of achieving a high expansion ratio without using a fluorocarbon foaming agent is particularly preferable as a solution to the current ozone layer depletion problem caused by fluorocarbons.

またこの方法はフロンガスを用いて製造された発泡粒子
にも採用され得る。この場合、フロンの使用量は極めて
少量ですむ。
This method can also be applied to foamed particles produced using fluorocarbon gas. In this case, the amount of Freon used can be extremely small.

本発明発泡粒子を製造する際の水に分散せしめる樹脂粒
子の量は、水100重量部当たり10〜100重量部が
生産性および分散安定性をよくし、ユーティリティーコ
スト低減等の点から好ましい。
The amount of resin particles to be dispersed in water when producing the expanded particles of the present invention is preferably 10 to 100 parts by weight per 100 parts by weight of water to improve productivity and dispersion stability and to reduce utility costs.

また上記樹脂粒子“とともに水に分散せしめる発泡剤の
量は、発泡剤の種類、所望する発泡倍率、容器内の樹脂
粒子の量と容器内空間との比率等を考慮して樹脂粒子に
対する発泡剤の割合が前記範囲となるように決定する。
In addition, the amount of blowing agent to be dispersed in water together with the above-mentioned resin particles is determined by taking into account the type of blowing agent, the desired expansion ratio, the ratio of the amount of resin particles in the container to the space inside the container, etc. The ratio is determined so that it falls within the above range.

樹脂粒子を水に分散せしめるに際して必要に応じて分散
剤を用いることもできる。分散剤は加熱時の樹脂粒子同
士の凝集融着を防止するために使用するものであり、例
えばリン酸カルシウム、ビロリン酸マグネシウム、炭酸
亜鉛、酸化チタン、酸化アルミニウム等の難水溶性の無
機物質の微粉末が用いられる。上記無機物質を用いる場
合には、分散補助剤として少量のアルキルヘンゼンスル
フォン酸ナトリウム、α−オレフィンスルフオン酸ナト
リウム、アルキルスルフオン酸ナトリウム等の界面活性
剤を併用して無機物質の使用量を少なくすることが、成
型時の発泡粒子相互の融着性を良好とするために好まし
い。この場合、樹脂粒子100重量部に対して無機物質
の微粉末0.1〜3重量部、界面活性剤0.001〜0
.5重量部程度使用することが好ましい。また水溶性高
分子を分散剤として使用する場合には樹脂粒子100重
量部当たり水溶性高分子0.1〜5重量部程度使用する
ことが好ましい。
A dispersant can also be used if necessary when dispersing the resin particles in water. Dispersants are used to prevent resin particles from coagulating and fusing together when heated, and include fine powders of poorly water-soluble inorganic substances such as calcium phosphate, magnesium birophosphate, zinc carbonate, titanium oxide, and aluminum oxide. is used. When using the above inorganic substances, use a small amount of a surfactant such as sodium alkyl hanzene sulfonate, sodium α-olefin sulfonate, or sodium alkyl sulfonate as a dispersion aid to reduce the amount of inorganic substance used. It is preferable to reduce the amount in order to improve the mutual adhesion of the foamed particles during molding. In this case, for 100 parts by weight of resin particles, 0.1 to 3 parts by weight of fine powder of inorganic substance and 0.001 to 0 parts by weight of surfactant.
.. It is preferable to use about 5 parts by weight. Further, when a water-soluble polymer is used as a dispersant, it is preferable to use about 0.1 to 5 parts by weight of the water-soluble polymer per 100 parts by weight of the resin particles.

本発明方法では上記樹脂粒子と発泡剤とを水に分散せし
めて加熱して樹脂粒子に発泡剤を含浸させた後、樹脂粒
子と水とを容器内より低圧の雰囲気下64放出するに際
し、放出時の温度を樹脂粒子の融点〜融点−15°Cと
することが必要である。
In the method of the present invention, the resin particles and the blowing agent are dispersed in water and heated to impregnate the resin particles with the blowing agent. It is necessary to set the temperature at between the melting point of the resin particles and the melting point -15°C.

放出時の温度がこの範囲からはずれると、良好な発泡粒
子は得られない。特にDSC曲線に2つの吸熱ピークが
現れる発泡粒子はカーボンブラックの添加量が多くなる
と得難(なる。しかしながらこの問題はカーボンブラッ
クを含有する樹脂粒子を発泡温度付近の温度において十
分保持することにより解決できる。またDSC曲線に吸
熱ピークが1つしか現れない結晶構造を有する発泡粒子
であってもカーボンブラックの添加量が10重量%以上
であると擬似架橋的な効果によって良好な発泡粒子を得
ることができる。
If the temperature at the time of discharge is outside this range, good expanded particles cannot be obtained. In particular, foamed particles with two endothermic peaks appearing in the DSC curve are difficult to obtain when the amount of carbon black added is large.However, this problem can be solved by sufficiently maintaining the resin particles containing carbon black at a temperature close to the foaming temperature. In addition, even if the expanded particles have a crystal structure in which only one endothermic peak appears in the DSC curve, if the amount of carbon black added is 10% by weight or more, good expanded particles can be obtained due to the pseudo-crosslinking effect. Can be done.

以上の如くして得られた発泡粒子は、型内において種々
の形状に成型される。型内成型方法としては、次の様な
方法が例示される。
The foamed particles obtained as described above are molded into various shapes in a mold. Examples of the in-mold molding method include the following methods.

■ 発泡粒子をそのまま型内に充填し、スチームにより
成型する。
■ Fill the expanded particles directly into a mold and mold them using steam.

■ 発泡体粒子を密閉室内に入れ、次いで空気、窒素ガ
ス等の無機ガスを室内に圧入することにより発泡体粒子
のセル内の圧力を高めて2次発泡性を付与し、この2次
発泡性を付与した発泡体粒子を型に充填し、スチーム成
型する。
■ The foam particles are placed in a closed chamber, and then an inorganic gas such as air or nitrogen gas is forced into the chamber to increase the pressure inside the cells of the foam particles and give them secondary foamability. Fill a mold with the foam particles and steam mold them.

■ 発泡体粒子に揮発性膨張剤を予じめ含浸させて発泡
体粒子に2次発泡性を付与し、これを型に充填し、スチ
ーム成型する。
(2) The foam particles are pre-impregnated with a volatile expansion agent to impart secondary foamability to the foam particles, which are then filled into a mold and steam-molded.

■ 発泡体粒子を型内に充填した後、発泡体粒子の体積
を15〜50%減するよう圧縮し、次いで1〜5kg/
c+flGのスチームを導いて発泡体粒子同志を融着さ
せ、その後、型を冷却し、製品を得る。
■ After filling the foam particles into the mold, the foam particles are compressed to reduce their volume by 15 to 50%, and then compressed to 1 to 5 kg/kg.
Steam of c+flG is introduced to fuse the foam particles together, and then the mold is cooled to obtain a product.

■ 上記■〜■の2つ以上の組み合せ。■ A combination of two or more of the above ■ to ■.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1〜7、比較例1〜4 LLDPEとカーボンブラックとを第1表に示す量含む
樹脂粒子を用い、この樹脂粒子100重量部と、第1表
に示す量の発泡剤とを密閉容器内にて水に分散させて加
熱して樹脂粒子に発泡剤を含浸させた後、同表に示す発
泡温度にて樹脂粒子と水とを大気圧下に放出して樹脂粒
子を発泡せしめた。得られた樹脂粒子の発泡倍率(嵩倍
率)、気泡径、内圧減少速度係数及びこの発泡粒子の示
差走査熱量測定結果を第2表に示す。
Examples 1 to 7, Comparative Examples 1 to 4 Using resin particles containing LLDPE and carbon black in the amounts shown in Table 1, 100 parts by weight of the resin particles and a blowing agent in the amounts shown in Table 1 were placed in a closed container. The resin particles were dispersed in water and heated to impregnate the resin particles with the foaming agent, and then the resin particles and water were discharged under atmospheric pressure at the foaming temperature shown in the same table to foam the resin particles. Table 2 shows the expansion ratio (bulk ratio), cell diameter, internal pressure reduction rate coefficient, and results of differential scanning calorimetry of the expanded resin particles.

実施例8.9 LL’DPEとカーボンブラックとを第1表に示す量含
む樹脂を用い、この樹脂粒子100重量部と第1表に示
す量の二酸化炭素とを密閉容器内にて水に分散させて加
熱し、樹脂粒子に発泡剤を含浸させた後、同表に示す発
泡温度にて樹脂粒子と水とを大気圧下に放出して樹脂粒
子を発泡せしめた。得られた発泡粒子の発泡倍率(嵩倍
率)、気泡径、内圧減少速度係数及び示差走査熱量測定
結果を第2表にあわせて示す。次にこれらの発泡粒子を
空気にて加圧処理して第2表に示す内圧を付与した後、
1.2 kg/ Cl1l−Gのスチームニテ加熱して
更に発泡させた。得られた発泡粒子(二段発泡後の発泡
粒子)の発泡倍率(嵩倍率)、気泡径、内圧減少速度係
数及び示差走査熱量測定結果を第2表にあわせて示す。
Example 8.9 Using a resin containing LL'DPE and carbon black in the amounts shown in Table 1, 100 parts by weight of the resin particles and carbon dioxide in the amounts shown in Table 1 were dispersed in water in a closed container. After heating to impregnate the resin particles with a foaming agent, the resin particles and water were discharged under atmospheric pressure at the foaming temperature shown in the same table to foam the resin particles. The expansion ratio (bulk ratio), cell diameter, internal pressure reduction rate coefficient, and differential scanning calorimetry results of the obtained expanded particles are also shown in Table 2. Next, these foamed particles were pressurized with air to give the internal pressure shown in Table 2,
It was further foamed by heating in a steam unit containing 1.2 kg/Cl11-G. The expansion ratio (bulk ratio), cell diameter, internal pressure reduction rate coefficient, and differential scanning calorimetry results of the obtained expanded particles (expanded particles after two-stage foaming) are also shown in Table 2.

上記実施例1〜9、比較例1〜4で得られた発泡粒子の
うち示差走査熱量測定におけるDSC曲線に2つの吸熱
ピークが現れた実施例3の発泡粒子は2 kg/ctA
−Gの空気で1日間加圧処理した後成型に供した。その
他の発泡粒子はそのまま成型に供した。成型は300m
■X3QQmmX5Qmmの成型用金型に充填して蒸気
にて加熱発泡せしめた。
Among the expanded particles obtained in Examples 1 to 9 and Comparative Examples 1 to 4, the expanded particles of Example 3, in which two endothermic peaks appeared in the DSC curve in differential scanning calorimetry, had a weight of 2 kg/ctA.
After being pressurized with -G air for one day, it was subjected to molding. The other expanded particles were used for molding as they were. Molding is 300m
(2) It was filled into a molding die of size X3QQmmX5Qmm and heated and foamed with steam.

得られた成型体を24時間80℃にて養成後、この成型
体の物性を測定した。結果を第3表に示す。また実施例
3で用いた発泡用樹脂粒子のDSC曲線(点線)及びそ
れを用いて得た発泡粒子のDSC曲線(実線)を第1図
に示す。
After the obtained molded body was cured at 80° C. for 24 hours, the physical properties of this molded body were measured. The results are shown in Table 3. Further, the DSC curve (dotted line) of the foamable resin particles used in Example 3 and the DSC curve (solid line) of the foamed particles obtained using the same are shown in FIG.

第3表 ※I Fllはトリクロロフロロメタン、F12はジク
ロロフロロメタンを示し、両者の混合比は重量比である
Table 3 *I Fll indicates trichlorofluoromethane, F12 indicates dichlorofluoromethane, and the mixing ratio of both is a weight ratio.

※2 測定装置として三菱油化■製Loresta A
PMCP−T400を使用した。
*2 The measuring device is Loresta A manufactured by Mitsubishi Yuka.
PMCP-T400 was used.

※3 独立気泡率 東芝へツクマン社製空気比較式比重計にて測定し、W、
’ J、 Remington and R,Pari
serの方式で計算した独立気泡率にて判定した。
*3 Closed cell ratio: Measured with Toshiba Tsukuman air comparison type hydrometer, W,
'J, Remington and R, Pari
Judgment was made based on the closed cell ratio calculated using the method of ser.

85%以上・・・・・・・・・○ 85%未満〜65976以上・・・6 65%未満 ・・・・・・・・× ※4  JIS−に6767A法の引張強さ試験を行い
以下にて判定した。
85% or more...○ Less than 85% to 65976 or more...6 Less than 65%...×4 Tensile strength test according to JIS-6767A method and below. Judgment was made.

成型体の材質破壊のみがおこる・・・・○〃 の材質破
壊と 粒子間破壊がおこる・・・△ I の粒子間破壊のみがおこる・・・×※5 二次発泡
性 JIS−に6767B法により成型体の吸水率を測定以
下にて判定した。
Only material destruction of the molded body occurs...○ Material destruction and interparticle destruction occur...△ Only interparticle destruction of I occurs...×*5 Secondary foamability JIS-6767B method The water absorption rate of the molded body was determined below the measurement.

吸水率が0.003 g /c++を未満・・・・・○
〃0.003〜0.03 g / cnt未満・・△o
  O,03g/ad以上・・・・・・×〔発明の効果
〕 以上説明したように本発明の導電性ポリエチレン発泡粒
子は従来の導電性発泡体に比較して導電性カーボンの添
加量が少なくとも優れた導電性を有する。また本発明の
発泡粒子は独立気泡構造を有し、これによって発泡粒子
相互の融着性が良好な優れた成型体を提供し得る。また
L L D P EのなかでもM F R= 0.5〜
2g/10分のものを用いると特に独立気泡性に優れた
ものとでき、且つ容易に高い導電性を付与できる。また
発泡粒子の内圧減少速度係数が0.35未満であると型
内で蒸気で加熱した場合にすぐれた膨張作用を有し、型
に忠実な成型体となり得る。更に発泡粒子の気泡径が0
.07 am以上であると上記膨張作用がいっそう優れ
、よりいっそう型に忠実な成型体となり得る。
Water absorption rate is less than 0.003 g/c++・・・○
〃Less than 0.003-0.03 g/cnt...△o
O, 03 g/ad or more...× [Effects of the Invention] As explained above, the conductive polyethylene foam particles of the present invention have a conductive carbon content of at least Has excellent conductivity. Further, the foamed particles of the present invention have a closed cell structure, which makes it possible to provide an excellent molded article with good fusion properties between the foamed particles. Also, among LLDPE, MFR=0.5~
When using 2 g/10 min, it is possible to obtain particularly excellent closed cell properties and easily impart high conductivity. Further, if the internal pressure reduction rate coefficient of the foamed particles is less than 0.35, the foamed particles will have an excellent expansion effect when heated with steam in a mold, and a molded product that is faithful to the mold can be obtained. Furthermore, the bubble diameter of the expanded particles is 0.
.. When the temperature is 0.07 am or more, the above-mentioned expansion effect is even better, and a molded product that is even more faithful to the mold can be obtained.

また本発明の方法によれば上記価れた独立気泡構造を有
し、成型した際の粒子相互の融着性が良好で導電性に優
れた成型体を提供し得る導電性ポリエチレン発泡粒子を
確実に製造することができる。また発泡倍率が10倍以
上の高発泡粒子を得る場合、−旦10倍以下に発泡させ
た後、窒素ガスを主成分とする無機ガスにて内圧を付与
し、その後再び発泡させて所望する10倍以上の発泡粒
子とする方法を採用すれば、第1段目の発泡にオゾン層
破壊の虞れのない無機発泡剤を使用することができ、フ
ロン系発泡剤を全く使用しないか、たとえ使用しても僅
かな使用量ですむため、オゾン層破壊という環境問題の
発生を極力防止できる。
Furthermore, the method of the present invention ensures the production of conductive polyethylene foam particles that have the above-mentioned excellent closed cell structure, have good interparticle fusion properties when molded, and can provide a molded product with excellent conductivity. can be manufactured. In addition, when obtaining highly expanded particles with an expansion ratio of 10 times or more, after first foaming the particles to a ratio of 10 times or less, applying internal pressure with an inorganic gas containing nitrogen gas as a main component, and then foaming again to obtain the desired 10 times or less. By adopting the method of making foamed particles more than double the size, it is possible to use an inorganic blowing agent that does not pose a risk of ozone layer depletion in the first stage of foaming, and fluorocarbon-based blowing agents are not used at all, or even if they are used. However, since only a small amount is required, environmental problems such as ozone layer depletion can be prevented as much as possible.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明実施例3の発泡粒子とその発泡に用いた樹
脂粒子のDSC曲線を示すグラフである。 手続補正書帽釦 1、事件の表示 昭和63年特許願第229251号 2、発明の名称 導電性ポリエチレン発泡粒子及びその製造方法3、補正
をする者 事件との関係 特許出願人 住所 東京都千代田区内幸町2丁目1番1号名称  日
本スチレンペーパー株式会社代表者内山昌世 4、代理人 〒101 住所 東京都千代田区岩本町2−10−25、補正命令
の日付 自発補正 (1)明細書第20頁の第1表中、実施例1、実施例8
、比較例3及び比較例4のケッチエンブラックECの表
面積の項のr950Jを「800」と補正する。 (2)同表中、実施例4のケッチエンブラックEC=6
00の表面積の項のr950Jを[1270Jと補正す
る。 以     上
The drawing is a graph showing DSC curves of the foamed particles of Example 3 of the present invention and the resin particles used for foaming them. Procedural amendment cap button 1, Indication of the case Patent Application No. 229251 of 1988 2, Name of the invention Conductive polyethylene foam particles and method for manufacturing the same 3, Person making the amendment Relationship to the case Patent applicant address Chiyoda-ku, Tokyo 2-1-1 Uchisaiwai-cho Name: Japan Styrene Paper Co., Ltd. Representative: Masayo Uchiyama 4, Agent: 101 Address: 2-10-25 Iwamoto-cho, Chiyoda-ku, Tokyo Date of amendment order Voluntary amendment (1) Page 20 of the specification In Table 1, Example 1 and Example 8
, r950J in the surface area term of Ketchen Black EC in Comparative Examples 3 and 4 is corrected to "800". (2) In the same table, Ketchen Black EC of Example 4 = 6
Correct r950J of the surface area term of 00 to [1270J. that's all

Claims (6)

【特許請求の範囲】[Claims] (1)無架橋直鎖状低密度ポリエチレン95〜70重量
%と、カーボンブラック5〜30重量%とからなる樹脂
を基材とすることを特徴とする導電性ポリエチレン発泡
粒子。
(1) Conductive foamed polyethylene particles characterized by having a base material of a resin consisting of 95 to 70% by weight of non-crosslinked linear low-density polyethylene and 5 to 30% by weight of carbon black.
(2)無架橋直鎖状低密度ポリエチレンのMFRが0.
5〜2g/10分であることを特徴とする請求項1記載
の導電性ポリエチレン発泡粒子。
(2) MFR of non-crosslinked linear low density polyethylene is 0.
The conductive polyethylene foam particles according to claim 1, characterized in that the rate is 5 to 2 g/10 minutes.
(3)発泡粒子内の内圧減少速度係数(K)が0.35
未満であることを特徴とする請求項1記載の導電性ポリ
エチレン発泡粒子。
(3) Internal pressure reduction rate coefficient (K) within expanded particles is 0.35
The conductive polyethylene foam particles according to claim 1, characterized in that the conductive polyethylene foam particles are less than 10%.
(4)気泡径が0.07mm以上であることを特徴とす
る請求項1記載の導電性ポリエチレン発泡粒子。
(4) The conductive polyethylene foam particles according to claim 1, characterized in that the cell diameter is 0.07 mm or more.
(5)無架橋直鎖状低密度ポリエチレン95〜70重量
%とカーボンブラック5〜30重量%とからなる樹脂粒
子を、水と発泡剤の存在下に耐圧容器内で分散させて加
熱して樹脂粒子に発泡剤を含浸させ、次いで樹脂粒子の
融点〜融点−15℃の温度範囲に保持して樹脂粒子と水
とを容器内より低圧の雰囲気下に放出して樹脂粒子を発
泡させることを特徴とする導電性ポリエチレン発泡粒子
の製造方法。
(5) Resin particles consisting of 95-70% by weight of non-crosslinked linear low-density polyethylene and 5-30% by weight of carbon black are dispersed in a pressure container in the presence of water and a blowing agent and heated to create a resin. The resin particles are foamed by impregnating the particles with a foaming agent, then maintaining the temperature within the temperature range from the melting point of the resin particles to -15°C below the melting point, and releasing the resin particles and water into a low-pressure atmosphere from inside the container. A method for producing conductive polyethylene foam particles.
(6)請求項5記載の製造方法において、一旦嵩倍率で
10倍以下の発泡粒子を得、次いで上記粒子に窒素ガス
を主成分とする無機ガスにて1〜10kg/cm^2・
Gの粒子内圧を付与し、その後加熱して嵩倍率で10倍
以上に発泡させることを特徴とする導電性ポリエチレン
発泡粒子の製造方法。
(6) In the manufacturing method according to claim 5, expanded particles having a bulk ratio of 10 times or less are obtained, and then the particles are heated with an inorganic gas containing nitrogen gas as a main component at 1 to 10 kg/cm^2.
A method for producing conductive polyethylene foam particles, which comprises applying an internal pressure of G to the particles, and then heating the particles to expand the particles to a bulk ratio of 10 times or more.
JP63229251A 1988-09-13 1988-09-13 Conductive polyethylene foam particles Expired - Fee Related JP2646245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63229251A JP2646245B2 (en) 1988-09-13 1988-09-13 Conductive polyethylene foam particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63229251A JP2646245B2 (en) 1988-09-13 1988-09-13 Conductive polyethylene foam particles

Publications (2)

Publication Number Publication Date
JPH0275636A true JPH0275636A (en) 1990-03-15
JP2646245B2 JP2646245B2 (en) 1997-08-27

Family

ID=16889184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63229251A Expired - Fee Related JP2646245B2 (en) 1988-09-13 1988-09-13 Conductive polyethylene foam particles

Country Status (1)

Country Link
JP (1) JP2646245B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032230A (en) * 1989-05-30 1991-01-08 Jsp Corp Electroconductive polyethylene foam particle
JPH06157919A (en) * 1991-05-04 1994-06-07 Cabot Plast Ltd Conductive polymer composition
WO2011086937A1 (en) 2010-01-15 2011-07-21 株式会社カネカ Expanded particle of polyethylene-based resin and in-mold expansion molded article of polyethylene-based resin
JPWO2013103074A1 (en) * 2012-01-04 2015-05-11 株式会社クラレ Package of polyvinyl alcohol film roll
WO2016027892A1 (en) * 2014-08-21 2016-02-25 株式会社カネカ Conductive polypropylene-based foamed resin particles exhibiting excellent moldability and contamination resistance, method for producing polypropylene-based foamed resin particles, and polypropylene-based foamed resin molded body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010047A (en) * 1983-06-25 1985-01-19 株式会社蓼科製作所 Building composite angle pillar and production thereof
JPS63168442A (en) * 1986-12-29 1988-07-12 Toray Ind Inc Composition for conductive foam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010047A (en) * 1983-06-25 1985-01-19 株式会社蓼科製作所 Building composite angle pillar and production thereof
JPS63168442A (en) * 1986-12-29 1988-07-12 Toray Ind Inc Composition for conductive foam

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032230A (en) * 1989-05-30 1991-01-08 Jsp Corp Electroconductive polyethylene foam particle
JPH06157919A (en) * 1991-05-04 1994-06-07 Cabot Plast Ltd Conductive polymer composition
WO2011086937A1 (en) 2010-01-15 2011-07-21 株式会社カネカ Expanded particle of polyethylene-based resin and in-mold expansion molded article of polyethylene-based resin
US9034933B2 (en) 2010-01-15 2015-05-19 Kaneka Corporation Expanded particle of polyethylene-based resin and in-mold expansion molded article of polyethylene-based resin
JPWO2013103074A1 (en) * 2012-01-04 2015-05-11 株式会社クラレ Package of polyvinyl alcohol film roll
JP2016210509A (en) * 2012-01-04 2016-12-15 株式会社クラレ Package of polyvinyl alcohol film roll
WO2016027892A1 (en) * 2014-08-21 2016-02-25 株式会社カネカ Conductive polypropylene-based foamed resin particles exhibiting excellent moldability and contamination resistance, method for producing polypropylene-based foamed resin particles, and polypropylene-based foamed resin molded body
JPWO2016027892A1 (en) * 2014-08-21 2017-06-01 株式会社カネカ Conductive polypropylene resin expanded particles having excellent antifouling property and moldability, method for producing polypropylene resin expanded particles, and polypropylene resin expanded foam
US10403416B2 (en) 2014-08-21 2019-09-03 Kaneka Corporation Conductive polypropylene-based foamed resin particles, method for production thereof, and polypropylene-based foamed molding article

Also Published As

Publication number Publication date
JP2646245B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
US4399087A (en) Process for producing foamed polyolefin articles from aged pre-foamed particles of polyolefin resins
JP3782454B2 (en) Polypropylene homopolymer expanded particles and expanded molded articles
JP3279382B2 (en) Non-crosslinked polyethylene resin foam particles and method for producing the same
US4948817A (en) Pre-foamed particles of uncrosslinked, linear low-density polyethylene and production method thereof
JPS62128709A (en) Polypropylene resin pre-expanded bead
KR960013071B1 (en) Process for production of expansion - molded article in a mold of linear low density polyethylene resins
US4617323A (en) Prefoamed particles of crosslinked propylene-type resin and molded article prepared therefrom
US4369257A (en) Foaming synthetic resin compositions stabilized with certain naphthyl amine compounds
JPH10147661A (en) Preliminarily foamed granule of flame-retardant polyolefin and production of inmold foamed molded product using the same
JP3418081B2 (en) Expanded resin particles
JP3692760B2 (en) Method for producing foamed molded product in polypropylene resin mold
JPH0275636A (en) Electrically conductive foamed polyethylene particle and preparation thereof
EP0575958B1 (en) Pre-expanded particles of LLDPE
JP2794450B2 (en) Conductive polyethylene foam particles
JPH09202837A (en) Foamed particle of electrically conductive polypropylene resin and its production
JP3950557B2 (en) Polypropylene-based resin pre-expanded particles and method for producing in-mold expanded molded articles therefrom
JP2000169619A (en) Conductive polypropylene-based resin foamed molded article and its production
JPH03152136A (en) Polypropylene resin preliminarily foamed bead and preparation thereof
JPS6244778B2 (en)
JP2709395B2 (en) Non-crosslinked linear low-density polyethylene resin particles for foaming and method for producing non-crosslinked linear low-density polyethylene expanded particles
KR102142823B1 (en) Thermal insulation material having water-durability and Manufacturing method thereof
JPH11156879A (en) Polypropylene resin in-mold foamed molded product and its production
JP3195675B2 (en) Method for producing expanded polyolefin resin particles
JPH0218225B2 (en)
JPH01190736A (en) Production of expanded polyolefin resin particle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees