JP2646245B2 - Conductive polyethylene foam particles - Google Patents

Conductive polyethylene foam particles

Info

Publication number
JP2646245B2
JP2646245B2 JP63229251A JP22925188A JP2646245B2 JP 2646245 B2 JP2646245 B2 JP 2646245B2 JP 63229251 A JP63229251 A JP 63229251A JP 22925188 A JP22925188 A JP 22925188A JP 2646245 B2 JP2646245 B2 JP 2646245B2
Authority
JP
Japan
Prior art keywords
particles
weight
resin
foam
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63229251A
Other languages
Japanese (ja)
Other versions
JPH0275636A (en
Inventor
英樹 桑原
真人 内藤
和男 鶴飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JEI ESU PII KK
Original Assignee
JEI ESU PII KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JEI ESU PII KK filed Critical JEI ESU PII KK
Priority to JP63229251A priority Critical patent/JP2646245B2/en
Publication of JPH0275636A publication Critical patent/JPH0275636A/en
Application granted granted Critical
Publication of JP2646245B2 publication Critical patent/JP2646245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導電性ポリエチレン発泡粒子及びその製造方
法に関する。
The present invention relates to conductive polyethylene foam particles and a method for producing the same.

〔従来の技術及び発明が解決しようとする課題〕 従来よりポリオレフィン系樹脂導電性発泡体の研究は
多くなされている。しかしながら架橋発泡体の場合、カ
ーボンブラックを多量に添加すると樹脂の架橋が阻害さ
れることから良好な発泡体は得られていない。そのため
従来得られている高発泡体はやや連続気泡ぎみのもので
体積固有抵抗値が105Ω・cmのものが限度である。また
無架橋発泡体の場合、流動性が悪くなることから、樹脂
の粘性が高くなり、しかも樹脂の伸び率が低下して発泡
条件を定め難いという問題がある。このような問題を解
決するためにはポリオレフィン系樹脂95〜70重量%に対
し、引表面積が900m2/g以上の導電性ファーネスブラッ
ク5〜30重量%含有する組成物を5倍以上の倍率に発泡
させて独立気泡構造で導電性を有するポリオレフィン低
密度発泡体の製造方法が提案されている(特公昭59−25
815号公報)。
[Problems to be Solved by Conventional Techniques and Inventions] There have been many studies on polyolefin resin conductive foams. However, in the case of a crosslinked foam, a favorable foam has not been obtained because addition of a large amount of carbon black inhibits crosslinking of the resin. Therefore, the conventionally obtained high-foamed product is somewhat open-celled and has a specific volume resistivity of 10 5 Ω · cm. Further, in the case of a non-crosslinked foam, there is a problem that since the fluidity deteriorates, the viscosity of the resin increases, and the elongation rate of the resin decreases, so that it is difficult to determine the foaming conditions. In order to solve such a problem, a composition containing 5 to 30% by weight of a conductive furnace black having a drawing surface area of 900 m 2 / g or more with respect to a polyolefin resin of 95 to 70% by weight has a magnification of 5 times or more. A method for producing a polyolefin low-density foam having a closed-cell structure and conductivity by foaming has been proposed (Japanese Patent Publication No. 59-25 / 1984).
No. 815).

しかしながら上記のような方法によって得られる発泡
体では体積固有抵抗値106Ω・cm程度を得るのが限度で
あり、カーボンブラックの添加量を30重量%以上に増加
しても体積固有抵抗値の飛躍的な低下は望めないという
問題がある。また上記の方法の如く押出発泡体の場合で
はそれほど問題はないものの、金型内に充填して成型す
る発泡粒子の場合カーボンブラックの添加量が多くなる
と、発泡粒子の金型内での融着性と二次発泡性が問題と
なり、今までビーズ法による良好な導電性発泡体は得ら
れていない。
However, the foam obtained by the above-described method has a limit of obtaining a volume resistivity of about 10 6 Ω · cm, and even if the amount of carbon black added is increased to 30% by weight or more, the volume resistivity of the foam cannot be reduced. There is a problem that a dramatic decrease cannot be expected. In the case of extruded foam as in the above method, although there is not much problem, in the case of expanded particles to be filled in a mold and molded, when the added amount of carbon black increases, the fusion of the expanded particles in the mold The properties and the secondary foaming properties become problems, and a good conductive foam by the bead method has not been obtained until now.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は上記従来技術の欠点を解決するために鋭意研
究した結果なされたもので、基材樹脂に直鎖状低密度ポ
リエチレンを使用し、無架橋発泡にて得られた発泡粒子
が従来にない優れた融着性と二次発泡性を有し、しかも
体積固有抵抗値102Ω・cmもの高い導電性を得ることが
できことを見出し本発明を完成するに到った。
The present invention has been made as a result of intensive studies to solve the above-mentioned drawbacks of the prior art, using a linear low-density polyethylene as a base resin, and there is no foamed particle obtained by non-crosslinking foaming. The present inventors have found that they have excellent fusing property and secondary foaming property, and can obtain conductivity as high as 10 2 Ω · cm in volume specific resistance, and have completed the present invention.

即ち本発明は、 (1) 無架橋直鎖状低密度ポリエチレン95〜70重量%
と、カーボンブラック5〜30重量%とからなる樹脂を基
材とし、内圧減少速度計数(K)が0.35未満であること
を特徴とする導電性ポリエチレン発泡粒子。
That is, the present invention provides: (1) 95 to 70% by weight of a non-crosslinked linear low density polyethylene
And a resin comprising 5 to 30% by weight of carbon black, and an internal pressure reduction rate coefficient (K) of less than 0.35.

(2) 無架橋直鎖状低密度ポリエチレンのMFRが0.5〜
2g/10分であることを特徴とする請求項1記載の導電性
ポリエチレン発泡粒子。
(2) Non-crosslinked linear low-density polyethylene having an MFR of 0.5 to
2. The foamed conductive polyethylene particles according to claim 1, wherein the weight is 2 g / 10 minutes.

(3) 気泡径が0.07mm以上であることを特徴とする請
求項1記載の導電性ポリエチレン発泡粒子。
(3) The conductive polyethylene foam particles according to claim 1, wherein the cell diameter is 0.07 mm or more.

を要旨とするものである。It is the gist.

本発明において用いる直鎖状低密度ポリエチレン(以
下LLDPEと略す。)は低圧重合ポリエチレンに炭素数4
〜10のα−オレフィンを共重合させたものであり、上記
α−オレフィンとしては、1−ブテン、1−ペンテン、
1−ヘキセン、3,3−ジメチル−1−ブテン、4−メチ
ル−1−ペンテン、4,4−ジメチル−1−ペンテン、1
−オクテン等が挙げられる。これらα−オレフィンのLL
DPE中の含有量は通常0.5〜20重量%であるが、特に1〜
15重量%が好ましい。上記LLDPEはMFRが0.5〜2g/10分の
ものが好ましい。
The linear low-density polyethylene (hereinafter abbreviated as LLDPE) used in the present invention is a low-pressure polymerized polyethylene having 4 carbon atoms.
Α-olefins of 1 to 10-butene, 1-pentene,
1-hexene, 3,3-dimethyl-1-butene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, 1
-Octene and the like. LL of these α-olefins
The content in DPE is usually 0.5 to 20% by weight,
15% by weight is preferred. The above LLDPE preferably has an MFR of 0.5 to 2 g / 10 minutes.

LLDPE中の添加剤として酸化防止剤、耐光剤、滑剤、
中和剤等が挙げられ、これらは気泡径と導電性に影響し
ない範囲で目的によって適宜使用される。この中で特に
中和剤として使用されるステアリン酸塩は気泡径に影響
するので250ppm以下にすることが好ましい。また樹脂中
に存在するn−ヘキサン抽出分は0.4重量%以上、1.5重
量%以下が好ましく、特に好ましくは0.5重量%以上、
1.2重量%以下である。
Antioxidants, light stabilizers, lubricants as additives in LLDPE,
Neutralizing agents and the like can be mentioned, and these are appropriately used depending on the purpose within a range that does not affect the bubble diameter and the conductivity. Of these, the stearic acid salt used as a neutralizing agent particularly affects the bubble diameter, and is therefore preferably 250 ppm or less. The extractable amount of n-hexane present in the resin is preferably 0.4% by weight or more and 1.5% by weight or less, particularly preferably 0.5% by weight or more.
1.2% by weight or less.

このような低密度のLLDPEを用いると、カーボンの添
加量を多くしても独立気泡でしかも高い導電性をもつ発
泡粒子を容易に得ることができる。また金型に充填して
良好に二次発泡及び融着する発泡粒子を得ることができ
る。
When such a low-density LLDPE is used, foamed particles having closed cells and high conductivity can be easily obtained even if the amount of added carbon is increased. In addition, foamed particles which can be satisfactorily secondary-foamed and fused by filling in a mold can be obtained.

尚、本発明の所期の目的を阻害しない範囲内において
50重量%未満の範囲で低密度ポリエチレン(以下LDPEと
略す。)又は/及び直鎖状超低密度ポリエチレン(以下
VLDPEと略す。)を混合することもできる。
In addition, within the range which does not hinder the intended purpose of the present invention.
Less than 50% by weight of low-density polyethylene (hereinafter abbreviated as LDPE) or / and linear ultra-low-density polyethylene (hereinafter referred to as LDPE)
Abbreviated as VLDPE. ) Can also be mixed.

本発明において用いるカーボンブラックとしてはファ
ーネスブラック、アセチレンブラックと称されるものが
挙げられる。このようなカーボンブラックとしては例え
ばバルカンXC−72、ブラックパール(以上キャボット社
製)、コンダクテック975(コロンビヤン社製)、トー
カブラック5500、トーカブラック7550(以上東海カーボ
ン(株)製)、デンカブラック(電気化学工業(株)
製)、ケッチェンブラックEC、ケッチェンブラックEC−
600(以上アクゾ社製)、#3250、#3750、#3600、#3
950(以上三菱化成(株)製)等が挙げられる。本発明
において使用するカーボンブラックはBET比表面積で50m
2/g以上のものが好ましい。上記カーボンブラックのう
ちで特に好ましいのはケッチェンブラックEC、ケッチェ
ンブラックEC−600、ブラックパール2000、#3750、#3
600、#3950等のBET比表面積が500m2/g以上のものであ
る。カーボンブラックは異なる種類のものを2種以上混
合して用いても、単独で用いてもよい。
Examples of the carbon black used in the present invention include furnace black and acetylene black. Examples of such carbon blacks include Vulcan XC-72, Black Pearl (manufactured by Cabot), Conductec 975 (manufactured by Colombian), Talka Black 5500, Talka Black 7550 (manufactured by Tokai Carbon Co., Ltd.), and Denka Black. (Electrical Chemical Industry Co., Ltd.
Ketchen Black EC, Ketjen Black EC-
600 (all manufactured by Akzo), # 3250, # 3750, # 3600, # 3
950 (all manufactured by Mitsubishi Kasei Corporation) and the like. The carbon black used in the present invention has a BET specific surface area of 50 m.
It is preferably 2 g / g or more. Among the above carbon blacks, particularly preferred are Ketjen Black EC, Ketjen Black EC-600, Black Pearl 2000, # 3750, # 3
BET specific surface areas such as 600 and # 3950 are 500 m 2 / g or more. Two or more different types of carbon black may be used as a mixture, or may be used alone.

本発明導電性発泡粒子中におけるカーボンブラックの
含有量が5重量%未満であると充分な導電性が付与でき
ず、また30重量%を超えると発泡粒子の原料となる樹脂
粒子との混練性が悪くなったり、得られた発泡粒子が連
続気泡になり易く、また成型時に発泡粒子同士の融着も
悪くなる。
If the content of carbon black in the conductive foamed particles of the present invention is less than 5% by weight, sufficient conductivity cannot be imparted, and if it exceeds 30% by weight, the kneadability with the resin particles used as the raw material of the foamed particles will be insufficient. In addition, the obtained foamed particles tend to be open cells, and the fusion of the foamed particles during molding is also poor.

本発明の導電性ポリエチレン発泡粒子は気泡径0.07mm
以上であることが好ましく、0.07mm未満となると二次発
泡性が低下し易い。また発泡粒子の独立気泡性及びガス
透過性の指標として、粒子内の内圧減少速度係数(K)
が用いられる。導電性ポリエチレン発泡粒子がK>0.35
のものであれば、型内成形によって型通りの成形体を容
易に得ることができる。
The conductive polyethylene foam particles of the present invention have a cell diameter of 0.07 mm.
It is preferable that the thickness be less than 0.07 mm. In addition, as an index of the closed cell property and gas permeability of the expanded particles, the internal pressure reduction rate coefficient (K) in the particles is used.
Is used. Conductive polyethylene foam particles have K> 0.35
In this case, a molded article according to the mold can be easily obtained by in-mold molding.

尚、内圧減少速度係数:Kは下記式 〔但し上記式中、P1は発泡粒子の初期内圧(kg/cm2
G)、P2は1時間経過後の発泡粒子の内圧(kg/cm2
G)、tは時間(hr)を示す。〕 により、求めることができ、25℃における初期の内圧
(P1)と1時間経過時(t=1)の内圧(P2)を測定し
て求めることができる。
The internal pressure reduction rate coefficient: K is [However, in the above formula, P 1 is the initial internal pressure of the expanded particles (kg / cm 2 ·
G), P 2 is the internal pressure (kg / cm 2 ·
G) and t indicate time (hr). ], And can be determined by measuring the initial internal pressure (P 1 ) at 25 ° C. and the internal pressure (P 2 ) at the lapse of one hour (t = 1).

更に本発明の導電性ポリエチレン発泡粒子は示差走査
熱量測定において得られるDSC曲線に2つの吸熱ピーク
が現れる結晶構造のものであっても、1つの吸熱ピーク
しか現れない結晶構造のものであってもかまわないが、
カーボンブラックの含有量が少ないもの、特に5〜10重
量%のものでは高温側にも吸熱ピークを有する結晶構造
のものが好ましい。この場合、高温側の吸熱ピークのエ
ネルギーは15J/g以下であることが好ましい。上記DSC曲
線とは、発泡粒子1〜5mgを示差走査熱量計によって10
℃/分の昇温速度で220℃まで昇温して測定した時に得
られるDSC曲線である。DSC曲線における2つの吸熱ピー
クのうち低温側の吸熱ピークは発泡粒子の基材樹脂であ
るLLDPEの所謂融解の際の吸熱によるものと考えられ
る。一方、高温側の吸熱ピークは低温側の吸熱ピークと
して現れる構造とは異なる結晶構造の存在に起因するも
のと考えられる。
Further, the conductive polyethylene foamed particles of the present invention may have a crystal structure in which two endothermic peaks appear in a DSC curve obtained by differential scanning calorimetry or a crystalline structure in which only one endothermic peak appears. It doesn't matter,
For those having a low carbon black content, particularly 5 to 10% by weight, those having a crystal structure having an endothermic peak on the high temperature side are preferred. In this case, the energy of the endothermic peak on the high temperature side is preferably 15 J / g or less. The above DSC curve means that 1 to 5 mg of expanded particles was measured by a differential scanning calorimeter.
4 is a DSC curve obtained when the temperature is increased to 220 ° C. at a temperature increasing rate of ° C./min and measured. The endothermic peak on the lower temperature side of the two endothermic peaks in the DSC curve is considered to be due to the endothermic so-called melting of LLDPE, which is the base resin of the expanded particles. On the other hand, it is considered that the endothermic peak on the high temperature side is caused by the existence of a crystal structure different from the structure appearing as the endothermic peak on the low temperature side.

高温側の吸熱ピークのエネルギーは第1図において高
温側ピークと低温側ピークの谷の部分aで高温側ピーク
bと低温側ピークcを分割し、谷の部分aより高温側の
ピークの面積を高温側ピークの面積とし、この面積より
求めた値である。
In FIG. 1, the energy of the endothermic peak on the high temperature side is divided into the high temperature side peak b and the low temperature side peak c at the valley part a of the high temperature side peak and the low temperature side peak, and the area of the peak on the high temperature side from the valley part a is calculated. It is the area of the peak on the high temperature side, and is a value obtained from this area.

即ち、高温側の吸熱ピークの面積より以下の式により
高温側の吸熱ピークのエネルギーを求めることができ
る。
That is, the energy of the endothermic peak on the high temperature side can be obtained from the area of the endothermic peak on the high temperature side by the following equation.

高温側吸熱ピークのエネルギー(J/g) =〔高温側吸熱ピークのチャート上の面積(cm2) ×〔チャート1cm2当たりの熱量(J/cm2)〕 ÷〔測定サンプルの重量(g)〕 本発明発泡粒子は上記の如くLLDPE95〜70重量%とカ
ーボンブラック5〜30重量%との混合組成からなるが、
必要に応じて更に無機フィラーを添加してもよい。
Energy of high-temperature endothermic peak (J / g) = [Area of high-temperature endothermic peak on chart (cm 2 ) × [caloric value per cm 2 of chart (J / cm 2 )]] ÷ [weight of measurement sample (g) The foamed particles of the present invention have a mixed composition of LLDPE 95 to 70% by weight and carbon black 5 to 30% by weight as described above,
If necessary, an inorganic filler may be further added.

無機フィラーとしては、酸化亜鉛、酸化チタン、酸化
マグネシウム、酸化ケイ素等の金属酸化物、炭酸カルシ
ウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
Examples of the inorganic filler include metal oxides such as zinc oxide, titanium oxide, magnesium oxide and silicon oxide, and carbonates such as calcium carbonate and magnesium carbonate.

本発明の発泡粒子はLLDPEに、カーボンブラック5〜2
0重量%とを混合した樹脂組成物の粒子を揮発性発泡剤
とともに密閉容器内で水に分散させて加熱して樹脂粒子
内に発泡剤を含浸させ、次いで樹脂粒子と水とを容器内
より低圧の雰囲気下に放出して樹脂粒子を発泡させるに
際し、発泡温度(放出温度)を樹脂粒子の融点〜融点−
10℃の温度範囲とすることにより得られる。上記樹脂の
融点とは、発砲に使用する樹脂粒子1〜5mgを示差走査
熱量計において10℃/分の速度で昇温して得たDSC曲線
における吸熱ピークの頂点の温度である。
The expanded particles of the present invention are prepared by adding LLDPE to carbon black 5-2.
0% by weight and the particles of the resin composition mixed with a volatile foaming agent are dispersed in water in a closed container and heated to impregnate the resin particles with the foaming agent. When the resin particles are foamed by being released under a low-pressure atmosphere, the foaming temperature (release temperature) is determined from the melting point of the resin particles to the melting point−
It is obtained by setting the temperature range to 10 ° C. The melting point of the resin is the temperature at the top of the endothermic peak in the DSC curve obtained by raising the temperature of 1 to 5 mg of the resin particles used for firing by a differential scanning calorimeter at a rate of 10 ° C./min.

本発明発泡粒子の製造に用いられる発泡剤としては、
二酸化炭素、空気、窒素等の無機ガス或いは沸点が−50
〜120℃の炭化水素又はハロゲン化炭化水素等の有機発
泡剤が挙げられ、有機発泡剤として具体的にはプロパ
ン、ブタン、ペンタン、ヘキサン、ヘプタン、シクロプ
ンタン、シクロヘキサン、モノクロロメタン、ジクロロ
メタン、モノクロロジフロロメタン、モノクロロエタ
ン、トリクロロモノフロロメタン、ジクロロジフロロメ
タン、ジクロロモノフロロメタン、トリクロロトリフロ
ロエタン、ジクロロテトラフロロエタン等が挙げられ
る。これらは単独で用いてもよく、2種以上混合して用
いてもよい。これらの発泡剤の量は発泡剤の種類、所望
する発泡倍率や気泡径等によっても異なるが、例えば発
泡倍率5〜50倍(嵩倍率、以下発泡粒子の発泡倍率は嵩
倍率を示す。)とするためには、通常樹脂粒子100重量
部当たりに対し、5〜40重量部であるが、発泡剤として
無機発泡剤を用いた場合には通常得られる発泡粒子の発
泡倍率は10倍以下である。このような発泡粒子を更に高
発泡とするには、一旦10倍以下に発泡させた後、窒素ガ
スを主成分とする無機ガスにて1〜10kg/cm2・Gの粒子
内圧を付与し、その後加熱して発泡させる操作を必要に
より何回か繰り返すことにより所望する高発泡倍率の導
電性ポリエチレン発泡粒子を得ることができる。このよ
うにフロン系発泡剤を用いずに高発泡倍率とする方法
は、現在のフロンのオゾン層破壊問題を解決するものと
して特に好ましい。またこの方法はフロンガスを用いて
製造された発泡粒子にも採用され得る。この場合、フロ
ンの使用量は極めて少量ですむ。
As the blowing agent used for producing the expanded particles of the present invention,
Inorganic gas such as carbon dioxide, air, nitrogen or boiling point is -50
Organic blowing agents such as hydrocarbons or halogenated hydrocarbons at temperatures of up to 120 ° C. may be mentioned. Specific examples of the organic blowing agents include propane, butane, pentane, hexane, heptane, cyclopuntane, cyclohexane, monochloromethane, dichloromethane, and monochlorofluorofluorocarbon. Methane, monochloroethane, trichloromonofluoromethane, dichlorodifluoromethane, dichloromonofluoromethane, trichlorotrifluorofluoroethane, dichlorotetrafluoroethane and the like can be mentioned. These may be used alone or as a mixture of two or more. The amount of the foaming agent varies depending on the type of the foaming agent, the desired expansion ratio, the cell diameter, and the like. For example, the expansion ratio is 5 to 50 times (bulk ratio; hereinafter, the expansion ratio of expanded particles indicates the bulk ratio). To do so, it is usually 5 to 40 parts by weight, based on 100 parts by weight of the resin particles, but when an inorganic blowing agent is used as the blowing agent, the expansion ratio of the normally obtained expanded particles is 10 times or less. . In order to further expand such expanded particles, once expanded to 10 times or less, then apply an internal pressure of 1 to 10 kg / cm 2 G with an inorganic gas containing nitrogen gas as a main component, Thereafter, the operation of heating and foaming is repeated several times as necessary, whereby conductive polyethylene foam particles having a desired high foaming ratio can be obtained. The method of increasing the expansion ratio without using a chlorofluorocarbon-based blowing agent is particularly preferable for solving the current problem of destruction of the ozone layer of chlorofluorocarbons. This method can also be adopted for foamed particles produced using Freon gas. In this case, the amount of CFC used is extremely small.

本発明発泡粒子を製造する際の水に分散せしめる樹脂
粒子の量は、水100重量部当たり10〜100重量部が生産性
および分散安定性をよくし、ユーティリティーコスト低
減等の点から好ましい。また上記樹脂粒子とともに水に
分散せしめる発泡剤の量は、発泡剤の種類、所望する発
泡倍率、容器内の樹脂粒子の量と容器内空間との比率等
を考慮して樹脂粒子に対する発泡剤の割合が前記範囲と
なるように決定する。
The amount of the resin particles to be dispersed in water at the time of producing the expanded particles of the present invention is preferably from 10 to 100 parts by weight per 100 parts by weight of water from the viewpoints of improving productivity and dispersion stability, reducing utility costs, and the like. The amount of the foaming agent to be dispersed in water together with the resin particles, the type of the foaming agent, the desired expansion ratio, the ratio of the amount of the resin particles in the container to the space in the container, etc. The ratio is determined so as to be within the above range.

樹脂粒子を水に分散せしめるに際して必要に応じて分
散剤を用いることもできる。分散剤は加熱時の樹脂粒子
同士の凝集融着を防止するために使用するものであり、
例えばリン酸カルシウム、ピロリン酸マグネシウム、炭
酸亜鉛、酸化チタン、酸化アルミニウム等の難水溶性の
無機物質の微粉末が用いられる。上記無機物質を用いる
場合には、分散補助剤として少量のアルキルベンゼンス
ルフォン酸ナトリウム、α−オレフィンスルフォン酸ナ
トリウム、アルキルスルフォン酸ナトリウム等の界面活
性剤を併用して無機物質の使用量を少なくすることが、
成型時の発泡粒子相互の融着性を良好とするために好ま
しい。この場合、樹脂粒子100重量部に対して無機物質
の微粉末0.1〜3重量部、界面活性剤0.001〜0.5重量部
程度使用することが好ましい。また水溶性高分子を分散
剤として使用する場合には樹脂粒子100重量部当たり水
溶性高分子0.1〜5重量部程度使用することが好まし
い。
In dispersing the resin particles in water, a dispersant may be used as necessary. The dispersant is used to prevent agglomeration and fusion of resin particles during heating,
For example, fine powder of a poorly water-soluble inorganic substance such as calcium phosphate, magnesium pyrophosphate, zinc carbonate, titanium oxide, and aluminum oxide is used. When the above-mentioned inorganic substance is used, a small amount of a surfactant such as sodium alkylbenzene sulfonate, sodium α-olefin sulfonate, and sodium alkyl sulfonate may be used in combination as a dispersing aid to reduce the amount of the inorganic substance used. ,
It is preferable to improve the fusion property between the foamed particles during molding. In this case, it is preferable to use about 0.1 to 3 parts by weight of a fine powder of an inorganic substance and about 0.001 to 0.5 parts by weight of a surfactant based on 100 parts by weight of the resin particles. When a water-soluble polymer is used as a dispersant, it is preferable to use about 0.1 to 5 parts by weight of a water-soluble polymer per 100 parts by weight of resin particles.

本発明方法では上記樹脂粒子と発泡剤とを水に分散せ
しめて加熱して樹脂粒子に発泡剤を含浸させた後、樹脂
粒子と水とを容器内より低圧の雰囲気下に放出するに際
し、放出時の温度を樹脂粒子の融点〜融点−15℃とする
ことが必要である。放出時の温度がこの範囲からはずれ
ると、良好な発泡粒子は得られない。特にDSC曲線に2
つの吸熱ピークが現れる発泡粒子はカーボンブラックの
添加量が多くなると得難くなる。しかしながらこの問題
はカーボンブラックを含有する樹脂粒子を発泡温度付近
の温度において十分保持することにより解決できる。ま
たDSC曲線に吸熱ピークが1つしか現れない結晶構造を
有する発泡粒子であってもカーボンブラックの添加量が
10重量%以上であると疑似架橋的な効果によって良好な
発泡粒子を得ることができる。
In the method of the present invention, after dispersing the resin particles and the foaming agent in water and heating to impregnate the resin particles with the foaming agent, the resin particles and water are released under a low-pressure atmosphere from the container. It is necessary that the temperature at this time be between the melting point of the resin particles and the melting point −15 ° C. If the temperature at the time of release is out of this range, good expanded particles cannot be obtained. Especially for DSC curve 2
Expanded particles having two endothermic peaks become difficult to obtain as the amount of carbon black added increases. However, this problem can be solved by sufficiently holding the resin particles containing carbon black at a temperature near the foaming temperature. Even in the case of expanded particles having a crystal structure in which only one endothermic peak appears in the DSC curve, the amount of added carbon black is
When the content is 10% by weight or more, favorable expanded particles can be obtained by a pseudo-crosslinking effect.

以上の如くして得られた発泡粒子は、型内において種
々の形状に成型される。型内成型方法としては、次の様
な方法が例示される。
The foamed particles obtained as described above are molded into various shapes in a mold. As an in-mold molding method, the following method is exemplified.

発泡粒子をそのまま型内に充填し、スチームにより
成型する。
The foamed particles are directly filled in a mold and molded by steam.

発泡体粒子を密閉室内に入れ、次いで空気、窒素ガ
ス等の無機ガスを室内に圧入することにより発泡体粒子
のセル内の圧力を高めて2次発泡性を付与し、この2次
発泡性を付与した発泡体粒子を型に充填し、スチーム成
型する。
The foam particles are placed in a closed chamber, and then an inorganic gas such as air or nitrogen gas is pressed into the chamber to increase the pressure in the cells of the foam particles to impart secondary foaming properties. The provided foam particles are filled in a mold and steam-molded.

発泡体粒子に揮発性膨張剤を予じめ含浸させて発泡
体粒子に2次発泡性を付与し、これを型に充填し、スチ
ーム成型する。
The foam particles are impregnated with a volatile expanding agent in advance to impart secondary expandability to the foam particles, and the foam particles are filled in a mold and steam-molded.

発泡体粒子を型内に充填した後、発泡体粒子の体積
を15〜50%減ずるように圧縮し、次いで1〜5kg/cm2Gの
スチームを導いて発泡体粒子同志を融着させ、その後、
型を冷却し、製品を得る。
After filling the foam particles into the mold, the foam particles are compressed to reduce the volume by 15 to 50%, and then steam of 1 to 5 kg / cm 2 G is guided to fuse the foam particles together. ,
Cool the mold and get the product.

上記〜の2つ以上の組み合せ。 Combinations of two or more of the above.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1〜7、比較例1〜4 LLDPEとカーボンブラックとを第1表に示す量含む樹
脂粒子を用い、この樹脂粒子100重量部と、第1表に示
す量の発泡剤とを密閉容器内にて水に分散させて加熱し
て樹脂粒子に発泡剤を含浸させた後、同表に示す発泡温
度にて樹脂粒子と水とを大気圧下に放出して樹脂粒子を
発泡せしめた。得られた樹脂粒子の発泡倍率(嵩倍
率)、気泡径、内圧減少速度係数及びこの発泡粒子の示
差走査熱量測定結果を第2表に示す。
Examples 1 to 7 and Comparative Examples 1 to 4 Using resin particles containing LLDPE and carbon black in the amounts shown in Table 1, 100 parts by weight of these resin particles and a foaming agent in the amount shown in Table 1 were used in a closed container. After the resin particles were dispersed in water and heated to impregnate the resin particles with the foaming agent, the resin particles and water were released under atmospheric pressure at the foaming temperature shown in the same table to foam the resin particles. Table 2 shows the expansion ratio (bulk ratio), cell diameter, internal pressure reduction rate coefficient of the obtained resin particles, and the results of differential scanning calorimetry of the expanded particles.

実施例8、9 LLDPEとカーボンブラックとを第1表に示す量含む樹
脂を用い、この樹脂粒子100重量部と第1表に示す量の
二酸化炭素とを密閉容器内にて水に分散させて加熱し、
樹脂粒子に発泡剤を含浸させた後、同表に示す発泡温度
にて樹脂粒子と水とを大気圧下に放出して樹脂粒子を発
泡せしめた。得られた発泡粒子を発泡倍率(嵩倍率)、
気泡径、内圧減少速度係数及び示差走査熱量測定結果を
第2表にあわせて示す。次にこれらの発泡粒子を空気に
て加圧処理して第2表に示す内圧を付与した後、1.2kg/
cm2・Gのスチームにて加熱して更に発泡させた。得ら
れた発泡粒子(二段発泡後の発報粒子)の発泡倍率(嵩
倍率)、気泡径、内圧減少速度係数及び示差走査熱量測
定結果を第2表にあわせて示す。
Examples 8 and 9 Using a resin containing LLDPE and carbon black in the amounts shown in Table 1, 100 parts by weight of the resin particles and carbon dioxide in the amounts shown in Table 1 were dispersed in water in a closed container. Heating,
After impregnating the resin particles with the foaming agent, the resin particles and water were released under atmospheric pressure at the foaming temperatures shown in the table to foam the resin particles. Expanding ratio of the obtained expanded particles (bulk ratio),
Table 2 shows the bubble diameter, the internal pressure reduction rate coefficient, and the results of differential scanning calorimetry. Next, these foamed particles were subjected to a pressure treatment with air to give an internal pressure shown in Table 2, and then 1.2 kg /
The foam was further foamed by heating with steam of cm 2 · G. Table 2 shows the expansion ratio (bulk ratio), cell diameter, internal pressure reduction rate coefficient, and differential scanning calorimetry results of the obtained expanded particles (reported particles after two-stage expansion).

上記実施例1〜9、比較例1〜4で得られた発泡粒子
のうち示差走査熱量測定におけるDSC曲線に2つの吸熱
ピークが現れた実施例3の発泡粒子は2kg/cm2・Gの空
気で1日間加圧処理した後成型に供した。その他の発泡
粒子はそのまま成型に供した。成型は300mm×300mm×60
mmの成型用金型に充填して蒸気にて加熱発泡せしめた。
Among the expanded particles obtained in Examples 1 to 9 and Comparative Examples 1 to 4, the expanded particles of Example 3 in which two endothermic peaks appeared on the DSC curve in the differential scanning calorimetry were 2 kg / cm 2 · G air. And subjected to molding for 1 day. The other expanded particles were directly used for molding. Molding is 300mm x 300mm x 60
The mixture was filled in a molding die of mm and heated and foamed with steam.

得られた成型体を24時間80℃にて養成後、この成型体
の物性を測定した。結果を第3表に示す。また実施例3
で用いた発泡用樹脂粒子のDSC曲線(点線)及びそれを
用いて得た発泡粒子のDSC曲線(実線)を第1図に示
す。
After the obtained molded body was trained at 80 ° C. for 24 hours, the physical properties of the molded body were measured. The results are shown in Table 3. Example 3
FIG. 1 shows the DSC curve (dotted line) of the foaming resin particles used in the above and the DSC curve (solid line) of the foaming particles obtained using the same.

※1 F11はトリクロロフロロメタン、F12はジクロロフ
ロロメタンを示し、両者の混合比は重量比である。
* 1 F11 indicates trichlorofluoromethane, F12 indicates dichlorofluoromethane, and the mixing ratio of both is a weight ratio.

※2 測定装置として三菱油化(株)製Loresta AP MCP
−T400を使用した。
* 2 Loresta AP MCP manufactured by Mitsubishi Yuka Co., Ltd.
-T400 was used.

※3 独立気泡率 東芝ベックマン社製空気比較式比重計にて測定し、W.
J.Remington and R.Pariserの方式で計算した独立気泡
率にて判定した。
* 3 Closed cell rate Measured with a Toshiba Beckman air-comparison hydrometer.
Judgment was made based on the closed cell rate calculated by the method of J. Remington and R. Pariser.

85%以上 ……○ 85%未満〜65%以上 ……△ 65%未満 ……× ※4 JIS−K6767A法の引張強さ試験を行い以下にて判
定した。
85% or more ○ 未 満 Less than 85% to 65% or more △ 未 満 Less than 65% × × * 4 Tensile strength test according to the JIS-K6767A method was performed and judged as follows.

成型体の材質破壊のみがおこる ……○ 成型体の材質破壊と粒子間破壊がおこる ……△ 成型体の粒子間破壊のみがおこる ……× ※5 二次発泡性 JIS−K6767B法により成型体の吸水率を測定以下にて
判定した。
Only material destruction of the molded body occurs .... ○ Material destruction of the molded body and interparticle destruction occur ........ △ Only interparticle destruction of the molded body occurs .... × * 5 Secondary foamability Molded product by JIS-K6767B method Was determined below the measurement.

吸水率が0.003g/cm3未満 ……○ 吸水率が0.003〜0.03g/cm3未満 ……△ 吸水率が0.03g/cm3以上 ……× 〔発明の効果〕 以上説明したように本発明の導電性ポリエチレン発泡
粒子は従来の導電性発泡体に比較して導電性カーボンの
添加量が少なくとも優れた導電性を有する。また本発明
の発泡粒子は独立気泡構造で、内圧減少速度係数(K)
が0.35未満であるため、型内成型時の粒子相互の融着性
に優れるとともに、発泡粒子が優れた膨張性を有し、型
に忠実な成型体を容易に得ることができる。またLLDPE
のなかでもMFR=0.5〜2g/10分のものを用いると特に独
立気泡性に優れたものとでき、且つ容易に高い導電性を
付与できる。更に発泡粒子の気泡粒径が0.07mm以上であ
ると上記膨張作用がいっそう優れ、よりいっそう型に忠
実な成型体となり得る。
The present invention as water absorption is 0.003 g / cm 3 less than ...... ○ Water absorption 0.003~0.03g / cm 3 less than ...... △ water absorption has been described [Effect of the Invention] ...... × 0.03g / cm 3 or more The conductive polyethylene foam particles of (1) have conductivity in which the amount of conductive carbon added is at least superior to that of conventional conductive foams. Further, the expanded particles of the present invention have a closed cell structure and have an internal pressure reduction rate coefficient (K).
Is less than 0.35, so that the particles are excellent in the fusion property between the particles during in-mold molding, and the expanded particles have excellent expandability, so that a molded article faithful to the mold can be easily obtained. Also LLDPE
Among them, when MFR = 0.5 to 2 g / 10 min is used, it is possible to obtain particularly excellent closed-cell properties and easily impart high conductivity. Furthermore, when the cell diameter of the foamed particles is 0.07 mm or more, the above-mentioned expansion action is more excellent, and a molded article more faithful to the mold can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

図面は本発明実施例3の発泡粒子とその発泡に用いた樹
脂粒子のDSC曲線を示すグラフである。
The drawing is a graph showing DSC curves of the foamed particles of Example 3 of the present invention and the resin particles used for the foaming.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】無架橋直鎖状低密度ポリエチレン95〜70重
量%と、カーボンブラック5〜30重量%とからなる樹脂
を基材とし、内圧減少速度計数(K)が0.35未満である
ことを特徴とする導電性ポリエチレン発泡粒子。
A resin comprising 95 to 70% by weight of a non-crosslinked linear low-density polyethylene and 5 to 30% by weight of carbon black as a base material, and having an internal pressure reduction rate coefficient (K) of less than 0.35. Characterized conductive polyethylene foam particles.
【請求項2】無架橋直鎖状低密度ポリエチレンのMFRが
0.5〜2g/10分であることを特徴とする請求項1記載の導
電性ポリエチレン発泡粒子。
2. The non-crosslinked linear low-density polyethylene has an MFR of
2. The conductive polyethylene foam particles according to claim 1, wherein the amount is 0.5 to 2 g / 10 minutes.
【請求項3】気泡径が0.07mm以上であることを特徴とす
る請求項1記載の導電性ポリエチレン発泡粒子。
3. The foamed conductive polyethylene particles according to claim 1, wherein the cell diameter is 0.07 mm or more.
JP63229251A 1988-09-13 1988-09-13 Conductive polyethylene foam particles Expired - Fee Related JP2646245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63229251A JP2646245B2 (en) 1988-09-13 1988-09-13 Conductive polyethylene foam particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63229251A JP2646245B2 (en) 1988-09-13 1988-09-13 Conductive polyethylene foam particles

Publications (2)

Publication Number Publication Date
JPH0275636A JPH0275636A (en) 1990-03-15
JP2646245B2 true JP2646245B2 (en) 1997-08-27

Family

ID=16889184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63229251A Expired - Fee Related JP2646245B2 (en) 1988-09-13 1988-09-13 Conductive polyethylene foam particles

Country Status (1)

Country Link
JP (1) JP2646245B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794450B2 (en) * 1989-05-30 1998-09-03 株式会社ジェイエスピー Conductive polyethylene foam particles
CA2067721C (en) * 1991-05-04 2000-10-24 Andrew A. Guilfoy Conductive polymer compositions
CN102712776B (en) 2010-01-15 2014-03-26 株式会社钟化 Expanded particle of polyethylene-based resin and in-mold expansion molded article of polyethylene-based resin
CN106927139B (en) * 2012-01-04 2020-03-31 株式会社可乐丽 Package of polyvinyl alcohol film roll
JP6609559B2 (en) 2014-08-21 2019-11-20 株式会社カネカ Conductive polypropylene resin expanded particles having excellent antifouling property and moldability, method for producing polypropylene resin expanded particles, and polypropylene resin expanded foam

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6010047A (en) * 1983-06-25 1985-01-19 株式会社蓼科製作所 Building composite angle pillar and production thereof
JPS63168442A (en) * 1986-12-29 1988-07-12 Toray Ind Inc Composition for conductive foam

Also Published As

Publication number Publication date
JPH0275636A (en) 1990-03-15

Similar Documents

Publication Publication Date Title
GB2080813A (en) Process for producing foamed olefin resin articles
JP3441165B2 (en) Flame retardant polyolefin resin foam particles
US4695593A (en) Prefoamed propylene polymer-base particles, expansion-molded article produced from said particles and production process of said article
EP0159476B1 (en) Prefoamed particles of crosslinked propylene-type resin and molded article prepared therefrom
EP0036560B1 (en) Foamable olefin polymer compositions stabilized with n-alkyl substituted amides, foaming process using them and foam article produced
EP0486920A2 (en) Process for the production of foamed polymer particles
JP3195674B2 (en) Method for producing non-crosslinked ethylene polymer expanded particles
JP2646245B2 (en) Conductive polyethylene foam particles
EP0036561A2 (en) Foamable olefin polymer compositions stabilized with certain naphthyl amine compounds, foaming process using them and foam article produced
JPH10147661A (en) Preliminarily foamed granule of flame-retardant polyolefin and production of inmold foamed molded product using the same
JPS60235849A (en) Prefoamed particle of polypropylene resin
JPH10251436A (en) Molded item produced from expanded inorganic-containing polypropylene resin particle
JP2794450B2 (en) Conductive polyethylene foam particles
JP3582335B2 (en) Non-crosslinked linear low density polyethylene resin pre-expanded particles and method for producing the same
CN107148654B (en) Process for foaming polyolefin compositions using fluororesin/citrate mixtures as nucleating agent
JP2878527B2 (en) Pre-expanded particles of polyethylene resin
JP4207544B2 (en) Conductive polypropylene resin pre-expanded particles and method for producing the same
JP2000169619A (en) Conductive polypropylene-based resin foamed molded article and its production
JP3525947B2 (en) Conductive polypropylene resin expanded particles, in-mold molded article formed from the expanded particles, and method for producing in-mold molded article
JPS6244778B2 (en)
EP4177303B1 (en) Polyolefin resin foam particles, method for producing same, and molded article of polyolefin resin foam particles
EP4177303A1 (en) Polyolefin resin foam particles, method for producing same, and molded article of polyolefin resin foam particles
JP2673310B2 (en) Method for producing polyethylene resin foam having open cells
JP2826769B2 (en) Method for producing expanded polymer particles
JP3195675B2 (en) Method for producing expanded polyolefin resin particles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees