JP2826769B2 - Method for producing expanded polymer particles - Google Patents

Method for producing expanded polymer particles

Info

Publication number
JP2826769B2
JP2826769B2 JP20223890A JP20223890A JP2826769B2 JP 2826769 B2 JP2826769 B2 JP 2826769B2 JP 20223890 A JP20223890 A JP 20223890A JP 20223890 A JP20223890 A JP 20223890A JP 2826769 B2 JP2826769 B2 JP 2826769B2
Authority
JP
Japan
Prior art keywords
temperature
polymer particles
particles
foaming
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20223890A
Other languages
Japanese (ja)
Other versions
JPH03223347A (en
Inventor
英樹 桑原
秀浩 佐々木
真人 内藤
和男 鶴飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JEI ESU PII KK
Original Assignee
JEI ESU PII KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JEI ESU PII KK filed Critical JEI ESU PII KK
Priority to JP20223890A priority Critical patent/JP2826769B2/en
Priority to CA002030754A priority patent/CA2030754C/en
Priority to DE69022814T priority patent/DE69022814T2/en
Priority to EP90122447A priority patent/EP0429091B1/en
Priority to KR1019900019120A priority patent/KR0157621B1/en
Priority to US07/617,578 priority patent/US5122545A/en
Publication of JPH03223347A publication Critical patent/JPH03223347A/en
Application granted granted Critical
Publication of JP2826769B2 publication Critical patent/JP2826769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は重合体発泡粒子の製造方法に関する。The present invention relates to a method for producing expanded polymer particles.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be solved by conventional technology and invention]

従来、揮発性発泡剤を含有せしめた重合体粒子を密閉
容器内で水等の分散媒に分散させ、容器内圧力を発泡剤
の蒸気圧以上に保持しつつ重合体粒子の軟化温度以上の
温度に加熱し、次いで容器の一端を開放して重合体粒子
と分散媒とを容器内よりも低圧の雰囲気下に放出するこ
とにより重合体粒子を発泡させる方法は知られている。
この方法において用いられる揮発性発泡剤としては、例
えばプロパン、ブタン、ペンタン等の炭化水素類や、ト
リクロロフロロメタン、ジクロロジフロロメタン等のハ
ロゲン化炭化水素類が用いられている。しかしながら、
これら揮発性発泡剤として使用されている化合物は、毒
性や可燃性等の危険性を有していたり、フロン類のよう
にオゾン層破壊という問題を有していたり、或いは危険
性や環境破壊という点ではそれほど問題を有さなくと
も、高価で実用的でない等の問題を有するもの多いのが
現状である。また揮発性発泡剤は重合体粒子を膨潤させ
るために発泡時の発泡適正温度範囲が狭くなり、このた
め発泡温度の発泡倍率に及ぼす影響が大となり、発泡倍
率のコントロールが困難となるという問題もあった。
Conventionally, polymer particles containing a volatile foaming agent are dispersed in a dispersion medium such as water in a closed vessel, and the temperature in the vessel is maintained at a pressure equal to or higher than the softening temperature of the polymer particles while maintaining the pressure in the vessel at or above the vapor pressure of the foaming agent. It is known that the polymer particles are foamed by releasing the polymer particles and a dispersion medium under an atmosphere at a lower pressure than the inside of the container by opening one end of the container and then opening one end of the container.
As the volatile foaming agent used in this method, for example, hydrocarbons such as propane, butane, and pentane, and halogenated hydrocarbons such as trichlorofluoromethane and dichlorodifluoromethane are used. However,
The compounds used as these volatile foaming agents have dangers such as toxicity and flammability, have the problem of depletion of the ozone layer like fluorocarbons, or have the danger or destruction of the environment. At present, many of them have problems such as being expensive and impractical even if they do not have much problems. In addition, volatile foaming agents narrow the appropriate temperature range for foaming during foaming in order to swell the polymer particles.Therefore, the influence of the foaming temperature on the foaming ratio becomes large, and it is difficult to control the foaming ratio. there were.

このような問題を解決するために多くの研究がなさ
れ、本出願人もかかる課題を解決するために鋭意研究し
た結果、従来発泡剤としては全く顧みられていなかった
無機ガス系発泡剤を用いて重合体発泡粒子を得ることの
できる方法を先に提案した(例えば特公昭62−61227号
公報、特開昭61−2741号公報、特開昭61−4738号公報
等)。しかしながら、無機ガス系発泡剤を用いた場合、
発泡剤の重合体粒子内への含浸性が悪く、しかも重合体
粒子の二次結晶化が促進され難いために高温で発泡する
ことが困難となり、このため発泡倍率の高いものが得難
いという問題があった。
Many studies have been made to solve such a problem, and as a result of intensive studies to solve such a problem, the present applicant has made use of an inorganic gas-based foaming agent which has never been considered as a conventional foaming agent. Methods for obtaining polymer foamed particles have been previously proposed (for example, Japanese Patent Publication No. 62-12727, Japanese Patent Application Laid-Open No. 61-2741, and Japanese Patent Application Laid-Open No. 61-4738). However, when using an inorganic gas-based blowing agent,
The impregnating property of the foaming agent into the polymer particles is poor, and the secondary crystallization of the polymer particles is difficult to promote, so that it is difficult to foam at a high temperature, and thus it is difficult to obtain a foam having a high expansion ratio. there were.

本発明者等は上記課題を解決するために鋭意研究した
結果、無機ガス系発泡剤を用いて工業的規模で重合体発
泡粒子を製造した場合にも、高発泡倍率の重合体発泡粒
子を得ることができ、更に従来の揮発性発泡剤を用いた
場合、発泡剤の使用量を少なくできるとともに、少ない
使用量で特開昭61−4738号公報に記載されている方法よ
りも更に安定して高発泡倍率の発泡粒子を得ることがで
きることを見出し本発明を完成するに至った。
The present inventors have conducted intensive studies in order to solve the above problems, and as a result, even when polymer foamed particles are produced on an industrial scale using an inorganic gas-based foaming agent, polymer foamed particles having a high expansion ratio are obtained. When a conventional volatile foaming agent is used, the amount of the foaming agent used can be reduced, and the amount of the foaming agent used is smaller and more stable than the method described in JP-A-61-4738. The present inventors have found that expanded particles having a high expansion ratio can be obtained, and have completed the present invention.

〔課題を解決するための手段〕[Means for solving the problem]

即ち本発明は、(1)無機ガス系発泡剤を含浸させた
プロピレンン系重合体、高密度ポリエチレン又は直鎖状
低密度ポリエチレンのいずれかからなる発泡性重合体粒
子を、密閉容器内で分散媒に分散せしめて該発泡性重合
体粒子の軟化温度以上の温度において、発泡性重合体粒
子と分散媒とを容器内よりも低圧の雰囲気下に放出し
て、発泡性重合体粒子を発泡させる重合体発泡粒子の製
造方法であって、上記発泡性重合体粒子が水溶性無機物
を含有することを特徴とする重合体発泡粒子の製造方
法、(2)水溶性無機物が硼砂であることを特徴とする
上記(1)記載の重合体発泡粒子の製造方法、を要旨と
するものである。
That is, the present invention relates to (1) dispersing foamable polymer particles made of either a propylene polymer, a high-density polyethylene or a linear low-density polyethylene impregnated with an inorganic gas blowing agent in a closed container. At a temperature equal to or higher than the softening temperature of the expandable polymer particles dispersed in a medium, the expandable polymer particles and the dispersion medium are released under a lower pressure atmosphere than in the container to expand the expandable polymer particles. A method for producing expanded polymer particles, wherein the expandable polymer particles contain a water-soluble inorganic substance, and (2) the water-soluble inorganic substance is borax. (1) The method for producing polymer foamed particles according to the above (1).

本発明において用いる重合体粒子としては、プロピレ
ン単独重合体、プロピレン−エチレンランダム共重合
体、プロピレン−エチレンブロック共重合体、プロピレ
ン−ブテンランダム共重合体、プロピレン−エチレン−
ブテンランダム共重合体等のプロピレン系重合体、或い
は高密度ポリエチレンや、エチレンと少量のα−オレフ
ィン(炭素数4、6、8等)との共重合体である直鎖状
低密度ポリエチレン等のエチレン系共重合体等が挙げら
れる。これらのうち、殊にプロピレン−エチレンランダ
ム共重合体、プロピレン−ブテンランダム共重合体、プ
ロピレン−エチレン−ブテンランダム共重合体等のプロ
ピレン系重合体、直鎖状低密度ポリエチレンが好まし
い。これらの重合体は架橋したものであっても良いが、
無架橋のものが特に好ましい。
As the polymer particles used in the present invention, propylene homopolymer, propylene-ethylene random copolymer, propylene-ethylene block copolymer, propylene-butene random copolymer, propylene-ethylene-
Propylene-based polymers such as butene random copolymers, or high-density polyethylenes, and linear low-density polyethylenes which are copolymers of ethylene and a small amount of α-olefins (eg, having 4, 6, 8 carbon atoms, etc.). Examples include an ethylene-based copolymer. Of these, propylene-based polymers such as propylene-ethylene random copolymer, propylene-butene random copolymer, propylene-ethylene-butene random copolymer, and linear low density polyethylene are particularly preferred. These polymers may be crosslinked,
Non-crosslinked ones are particularly preferred.

本発明においては重合体粒子として水溶性無機物を含
有するものを用いる。本発明において水溶性無機物と
は、40℃の水100gに対する溶解度が1g以上のものである
が、特に5g以上のものが好ましい。上記水溶性無機物と
しては、例えば硼砂、硫酸ニッケル、硫酸マンガン、塩
化ナトリウム、塩化マグネシウム、塩化カルシウム等が
挙げられるが、なかでも硼砂が好ましい。これらの無機
物は1種又は2種以上混合して用いることができ、通常
重合体粒子を造粒する際に添加される。無機物は通常、
粉粒体として添加されるが粒径は特に限定されない。し
かしながら、一般的に、粒径0.1〜150μm、特に1〜10
0μmのものを用いることが好ましい。これら無機物
は、重合体粒子中の含有量が0.01〜2重量%、得に0.02
〜1重量%となるように添加することが好ましい。無機
物を大過剰に含有せしめると、得られる発泡粒子が収縮
し易くなり発泡成型性の上で好ましくない。一方、無機
物の添加量が少なすぎると本発明の効果が得られなくな
る。上記無機物を含有する重合体粒子としては、一般に
粒径が0.3〜5mm、特に0.5〜3mmのものが好ましい。
In the present invention, a polymer particle containing a water-soluble inorganic substance is used. In the present invention, the water-soluble inorganic substance has a solubility of 1 g or more in 100 g of water at 40 ° C., and particularly preferably 5 g or more. Examples of the water-soluble inorganic substance include borax, nickel sulfate, manganese sulfate, sodium chloride, magnesium chloride, calcium chloride and the like, and among them, borax is preferred. These inorganic substances can be used alone or in combination of two or more, and are usually added when granulating polymer particles. Minerals are usually
It is added as a powder, but the particle size is not particularly limited. However, in general, the particle size is between 0.1 and 150 μm, in particular between 1 and 10 μm.
It is preferable to use one having a thickness of 0 μm. These inorganic substances have a content in the polymer particles of 0.01 to 2% by weight,
It is preferable to add so that it may be 11% by weight. If the inorganic material is contained in a large excess, the obtained expanded particles are likely to shrink, which is not preferable from the viewpoint of foam moldability. On the other hand, if the amount of the inorganic substance is too small, the effect of the present invention cannot be obtained. As the polymer particles containing the inorganic substance, those having a particle size of generally 0.3 to 5 mm, particularly preferably 0.5 to 3 mm are preferable.

本発明において重合体粒子に発泡剤を含浸させる工程
は、重合体粒子を密閉容器内で分散媒に分散させる工程
の前・後のいずれでも良いが、通常は重合体粒子を分散
させる工程において同時に行う。この場合には、発泡剤
は分散媒に一旦溶解又は分散した後に重合体粒子に含浸
され、発泡剤は密閉容器中に重合体粒子と発泡剤及び分
散媒を入れて撹拌しながら加熱、加圧する等の方法によ
り重合体粒子中に含浸させることができる。
In the present invention, the step of impregnating the polymer particles with a foaming agent may be before or after the step of dispersing the polymer particles in a dispersion medium in a closed container, but is usually performed simultaneously in the step of dispersing the polymer particles. Do. In this case, the foaming agent is once dissolved or dispersed in the dispersion medium and then impregnated into the polymer particles, and the foaming agent is heated and pressurized while stirring the polymer particles, the foaming agent and the dispersion medium in a closed container. The polymer particles can be impregnated by such a method.

本発明方法において発泡剤は、窒素、二酸化炭素、ア
ルゴン、空気等の無機ガス系発泡剤が用いられ、なかで
も窒素、空気が特に好ましい。これら無機ガス系発泡剤
を用いる場合、容器内圧力が50kg/cm2・G以下となるよ
うに供給することが好ましい。
In the method of the present invention, an inorganic gas-based blowing agent such as nitrogen, carbon dioxide, argon, or air is used as the blowing agent, and nitrogen and air are particularly preferable. When using these inorganic gas-based foaming agents, it is preferable to supply them so that the pressure in the container is 50 kg / cm 2 · G or less.

重合体粒子を分散させるための分散媒としては、重合
体粒子を溶解しないものであれば良く、このような分散
媒としては例えば水、エチレングリコール、グリセリ
ン、メタノール、エタノール等が挙げられるが、通常は
水が使用される。
The dispersion medium for dispersing the polymer particles may be any one that does not dissolve the polymer particles.Examples of such a dispersion medium include water, ethylene glycol, glycerin, methanol, ethanol, and the like. Water is used.

発泡性の重合体粒子を分散媒に分散せしめて発泡温度
に加熱するに際し、重合体粒子の融着を防止するために
融着防止剤を用いることができる。融着防止剤としては
水等の分散媒に溶解せず、加熱によって溶融しないもの
であれば無機系、有機系を問わず使用可能であるが、一
般には無機系のものが好ましい。無機系の融着防止剤と
しては、酸化アルミニウム、酸化チタン、水酸化アルミ
ニウム、塩基性炭酸マグネシウム、塩基性炭酸亜鉛、炭
酸カルシウム、リン酸三カルシウム、ピロリン酸マグネ
シウム等が挙げられ、これらと乳化剤とを併用して添加
することが好ましい。乳化剤としてはドデシルベンゼン
スルフォン酸ナトリウム、オレイン酸ナトリウム等のア
ニオン系界面活性剤が好適である。上記融着防止剤とし
ては粒径0.01〜100μm、特に0.001〜30μmのものが好
ましい。融着防止剤の添加量は重合体粒子100重量部に
対し、通常は0.01〜10重量部が好ましい。また乳化剤は
重合体粒子100重量部当たり、通常、0.001〜5重量部添
加することが好ましい。
When the expandable polymer particles are dispersed in a dispersion medium and heated to a foaming temperature, an anti-fusing agent can be used to prevent fusion of the polymer particles. As the anti-fusing agent, any inorganic or organic one can be used as long as it does not dissolve in a dispersion medium such as water and does not melt by heating. In general, an inorganic one is preferable. Examples of the inorganic anti-fusing agent include aluminum oxide, titanium oxide, aluminum hydroxide, basic magnesium carbonate, basic zinc carbonate, calcium carbonate, tricalcium phosphate, magnesium pyrophosphate, and the like. Is preferably added in combination. Anionic surfactants such as sodium dodecylbenzenesulfonate and sodium oleate are suitable as emulsifiers. The anti-fusing agent preferably has a particle size of 0.01 to 100 μm, particularly preferably 0.001 to 30 μm. Usually, the addition amount of the anti-fusing agent is preferably 0.01 to 10 parts by weight based on 100 parts by weight of the polymer particles. The emulsifier is usually preferably added in an amount of 0.001 to 5 parts by weight per 100 parts by weight of the polymer particles.

本発明方法において、発泡性の重合体粒子中には二次
結晶が存在することが好ましい。この二次結晶が存在す
る発泡性の重合体粒子より得られた発泡粒子は成型性が
優れたものとなる。特に重合体粒子が無架橋のポリプロ
ピレン系樹脂や無架橋の直鎖状低密度ポリエチレン系樹
脂の場合、発泡性重合性粒子中に二次結晶が存在してい
ることが有利である。二次結晶の存在は、得られる発泡
粒子の示差走査熱量測定によって得られるDSC曲線に、
重合体の所謂融解時の吸熱に起因する固有ピークよりも
高温側の高温ピークが現れるか否かによって判定するこ
とができる。固有ピークと高温ピークとは、同一のサン
プルの示差走査熱量測定を2回行うことによって判定で
きる。この方法では、まずサンプル(重合体)1〜3mg
を示差走査熱量計によって10℃/分で220℃まで昇温測
定して第1回目のDSC曲線を得、次いで220℃から40℃付
近まで10℃/分の速度で降温し、再度10℃/分で220℃
まで昇温測定して第2回目のDSC曲線を得る。このよう
にして得た2つのDSC曲線を比較して固有ピークと高温
ピークとを判別することができる。固有ピークとは、重
合体の所謂融解に伴う吸熱ピークであるから、第1回目
のDSC曲線にも第2回目のDSC曲線にも現れるピークであ
り、ピークの頂点の温度は第1回目と第2回目とで多少
異なる場合もあるが、その差は5℃未満、通常は2℃未
満である。一方、高温ピークとは、第1回目のDSC曲線
において上記固有ピークよりも高温側に現れる吸熱ピー
クである。二次結晶の存在はこの高温ピークが現れるこ
とによって確認され、実質的な高温ピークが現れない場
合には二次結晶が存在しないものと判定される。上記2
つのDSC曲線において第2回目のDSC曲線に現れる固有ピ
ークの頂点の温度と、第1回目のDSC曲線に現れる高温
ピークの頂点の温度との差は大きいことが望ましく、両
者の温度差は5℃以上、特に10℃以上が好ましい。
In the method of the present invention, secondary crystals are preferably present in the expandable polymer particles. The expanded particles obtained from the expandable polymer particles having the secondary crystals have excellent moldability. In particular, when the polymer particles are a non-crosslinked polypropylene resin or a non-crosslinked linear low-density polyethylene resin, it is advantageous that secondary crystals are present in the expandable polymerizable particles. The presence of the secondary crystals is indicated by a DSC curve obtained by differential scanning calorimetry of the obtained expanded particles,
The determination can be made based on whether or not a high-temperature peak appears on a higher temperature side than an intrinsic peak due to the so-called endotherm at the time of melting of the polymer. The characteristic peak and the high-temperature peak can be determined by performing differential scanning calorimetry twice for the same sample. In this method, first, 1-3mg of sample (polymer)
Was measured at a rate of 10 ° C./min to 220 ° C. by a differential scanning calorimeter to obtain a first DSC curve, and then the temperature was lowered from 220 ° C. to about 40 ° C. at a rate of 10 ° C./min. 220 ℃ in minutes
The temperature was measured until the second DSC curve was obtained. By comparing the two DSC curves thus obtained, the characteristic peak and the high-temperature peak can be determined. Since the intrinsic peak is an endothermic peak associated with the so-called melting of the polymer, it is a peak that appears in both the first DSC curve and the second DSC curve. The difference may be slightly different from the second time, but the difference is less than 5 ° C, usually less than 2 ° C. On the other hand, the high temperature peak is an endothermic peak that appears on the higher temperature side than the above-mentioned intrinsic peak in the first DSC curve. The presence of a secondary crystal is confirmed by the appearance of this high-temperature peak, and when no substantial high-temperature peak appears, it is determined that no secondary crystal exists. 2 above
It is desirable that the difference between the temperature of the peak of the unique peak appearing in the second DSC curve and the temperature of the peak of the high temperature peak appearing in the first DSC curve in one DSC curve is large, and the temperature difference between the two is 5 ° C. Above, particularly preferably 10 ° C. or higher.

第1図、第2図は発泡粒子の示差走査熱量測定によっ
て得られたDSC曲線を示し、第1図は二次結晶を含む発
泡粒子のもの、第2図は二次結晶を含まない発泡粒子の
ものである。第1図、第2図において、曲線1及び2は
第1回目の測定によって得られたDSC曲線であり、曲線
1′、2′は第2回目の測定によって得られたDSC曲線
を示す。第1図に示すように、二次結晶を含有する発泡
粒子では、第1回目の測定によって得られた曲線1にお
いては固有ピークBの他に、第2回目の測定によって得
られた曲線1′にはない高温ピークAが現れており(第
2回目の測定で得られた曲線1′には固有ピークB′の
みが現れる。)、この高温ピークAの存在によって二次
結晶の存在が確認される。一方、二次結晶を含有しない
発泡粒子では、第2図に示すように曲線2、曲線2′の
いずれにも固有ピークb、b′が現れるのみで高温ピー
クは現れず、このことから二次結晶が存在しないことが
確認される。、第2図に示す発泡粒子のように、二次結
晶の存在が認められない粒子が得られるのは、二次結晶
促進温度(融点〜融解終了温度)において充分な時間、
熱処理を受けず、融解終了温度以上の温度で発泡された
ような場合である。無機ガス系発泡剤を用いた場合に
は、曲線1で示されるような二次結晶を有する発泡粒子
は、例えば次のような方法で製造することができる。無
架橋のポリプロピレン系樹脂の場合では、一般に耐圧容
器内において重合体粒子をその融解終了温度以上に昇温
することなく、融点−20℃程度以上、融解終了温度未満
の温度において充分な時間、通常5〜90分間、好ましく
は15〜60分間保持することによりにより得ることができ
る。またこのような温度に保持して二次結晶を形成せし
めた粒子の場合、重合体粒子を容器内よりも低圧雰囲気
下に放出して発泡させる際の発泡温度(放出時の温度)
は融解終了温度以上であっても、前記高温ピーク以下の
温度であれば成型性の良好な発泡粒子を得ることができ
る。無架橋の直鎖状低密度ポリエチレンの場合、一般に
は耐圧容器内で樹脂粒子をその融解終了温度以上に加熱
することなく、融点−15℃程度以上、融解終了温度未満
の温度にて充分な時間、通常5〜90分間、好ましくは5
〜30分間保持すれば良い。尚、上記温度保持において
は、温度管理のし易すさからいって、複数回に分割して
行うことが望ましい。この場合、先の保持温度より後の
保持温度を高くする方法が採用される。そして最終保持
温度を発泡温度とすることが望ましい。
1 and 2 show DSC curves obtained by differential scanning calorimetry of the expanded particles. FIG. 1 shows the expanded particles containing secondary crystals, and FIG. 2 shows the expanded particles not containing secondary crystals. belongs to. In FIGS. 1 and 2, curves 1 and 2 are DSC curves obtained by the first measurement, and curves 1 'and 2' show DSC curves obtained by the second measurement. As shown in FIG. 1, in the expanded particles containing the secondary crystals, in the curve 1 obtained by the first measurement, in addition to the characteristic peak B, the curve 1 ′ obtained by the second measurement A high temperature peak A that does not exist is present (only the characteristic peak B 'appears in the curve 1' obtained in the second measurement), and the presence of the high temperature peak A confirms the presence of a secondary crystal. You. On the other hand, in the expanded particles containing no secondary crystal, only the characteristic peaks b and b 'appear in both of the curves 2 and 2' as shown in FIG. It is confirmed that no crystals exist. As shown in FIG. 2, particles in which the presence of secondary crystals is not recognized, such as the expanded particles shown in FIG. 2, are obtained only for a sufficient time at the secondary crystallization accelerating temperature (melting point to melting end temperature).
This is the case where foaming is performed at a temperature higher than the melting end temperature without heat treatment. When an inorganic gas-based foaming agent is used, foamed particles having secondary crystals as shown by curve 1 can be produced, for example, by the following method. In the case of a non-crosslinked polypropylene-based resin, generally, without raising the temperature of the polymer particles above the melting end temperature in a pressure vessel, the melting point is about -20 ° C or more, and a sufficient time at a temperature lower than the melting end temperature, usually. It can be obtained by holding for 5 to 90 minutes, preferably for 15 to 60 minutes. Further, in the case of particles formed to form secondary crystals while maintaining such a temperature, the foaming temperature (temperature at the time of release) at which the polymer particles are released under a lower pressure atmosphere than the inside of the container and foamed.
Even if the temperature is equal to or higher than the melting end temperature, expanded particles having good moldability can be obtained as long as the temperature is equal to or lower than the high temperature peak. In the case of non-crosslinked linear low-density polyethylene, generally, the resin particles are not heated above the melting end temperature in a pressure vessel, and a melting point of about -15 ° C. or more and a temperature lower than the melting end temperature for a sufficient time. , Usually 5 to 90 minutes, preferably 5 minutes
Hold for ~ 30 minutes. It should be noted that the above-mentioned temperature maintenance is desirably performed a plurality of times in order to facilitate temperature management. In this case, a method of raising the holding temperature after the holding temperature is adopted. It is desirable that the final holding temperature be the foaming temperature.

本発明方法において、発泡性の重合体粒子と分散媒と
を容器内より低圧の雰囲気下に放出して発泡せしめる発
泡温度は、重合体粒子の軟化温度以上の温度であるが、
特に融点付近の温度が好ましい。好適な発泡温度範囲は
樹脂の種類によっても異なり、例えば無架橋ポリプロピ
レン系樹脂の場合、融点−5℃以上、融点+15℃以下、
特に融点−3℃以上、融点+10℃以下が好ましく、ポリ
エチレン系樹脂の場合、融点−10℃以上、融点+5℃以
下が好ましい。更に発泡温度にまで加熱する際の昇温速
度は1〜10℃/分、特に2〜5℃/分が好ましい。発泡
性の重合体粒子と分散媒とを容器内より放出する際の雰
囲気圧力は、容器内より低圧であれば良いが、通常は大
気圧下である。
In the method of the present invention, the foaming temperature at which the foamable polymer particles and the dispersion medium are released under a low-pressure atmosphere from the container to cause foaming is a temperature equal to or higher than the softening temperature of the polymer particles,
Particularly, a temperature near the melting point is preferable. The preferred foaming temperature range varies depending on the type of the resin. For example, in the case of a non-crosslinked polypropylene resin, the melting point is −5 ° C. or higher, and the melting point is + 15 ° C. or lower.
In particular, the melting point is preferably -3 ° C or higher and the melting point + 10 ° C or lower. In the case of polyethylene resin, the melting point is preferably -10 ° C or higher and + 5 ° C or lower. Further, the heating rate at the time of heating to the foaming temperature is preferably 1 to 10 ° C / min, particularly preferably 2 to 5 ° C / min. The atmospheric pressure when the expandable polymer particles and the dispersion medium are released from the inside of the container may be lower than that in the container, but is usually at atmospheric pressure.

尚、本発明において上記重合体の融点とは示差走査熱
量計によってサンプル約6mgを10℃/分の昇温速度で220
℃まで加熱し、その後10℃/分の降温速度で約50℃まで
冷却し、再度10℃/分の速度で220℃まで昇温した時に
得られるDSC曲線における吸熱ピーク(固有ピーク)の
頂点の温度である。また融解終了温度とは上記の如き測
定によって得られる2回目のDSC曲線の吸熱ピーク(固
有ピーク)における融解終了温度を意味する。また重合
体粒子の軟化温度とは、ASTM−D−648法において、荷
重4.6kg/cm2の条件で求めた軟化温度を意味するもので
ある。
Incidentally, in the present invention, the melting point of the above-mentioned polymer was measured by means of a differential scanning calorimeter by measuring about 6 mg of a sample at a rate of 10 ° C./min.
℃, then cooled to about 50 ℃ at a rate of 10 ℃ / min, and then heated to 220 ℃ again at a rate of 10 ℃ / min peak of the endothermic peak (inherent peak) in the DSC curve obtained Temperature. The melting end temperature means the melting end temperature at the endothermic peak (intrinsic peak) of the second DSC curve obtained by the above measurement. Further, the softening temperature of the polymer particles means a softening temperature determined under a load of 4.6 kg / cm 2 by the ASTM-D-648 method.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1〜5 無架橋のエチレン−プロピレンランダム共重合体(エ
チレン成分2.3重量%、融点146.5℃、融解終了温度165
℃)100重量部当たり、第1表に示す水溶性無機物を同
表に示す量添加して押出機内で溶融混練した後、押出機
先端のダイスからストランド状に押出し水中で急冷した
後、切断してペレット状に造粒した(長さ2.4mm、断面
の直径1.1mm)。このペレット100kgと微粒状の酸化アル
ミニウム400g、水220を配合して密閉容器(容積400
)内で撹拌しながら溶解温度以上の温度に昇温するこ
となく同表に示す一段保持温度に昇温保持した。次いで
同表に示す二段保持温度に昇温し、その直後に第1表に
示す発泡剤を、容器内圧が同表に示す圧力となるように
供給して同温度に保持し、その後、二段保持温度に保持
したまま窒素ガス又は空気(使用した発泡剤に合致させ
た。)で背圧をかけて容器内を第1表に示す圧力に保持
しながら容器の一端を開放して重合体粒子と水とを大気
圧下に放出して発泡せしめた。得られた発泡粒子の平均
嵩発泡倍率及び嵩発泡倍率の最大値、最小値を第1表に
あわせて示す。
Examples 1 to 5 Non-crosslinked ethylene-propylene random copolymer (ethylene component 2.3% by weight, melting point 146.5 ° C, melting end temperature 165
° C) per 100 parts by weight of the water-soluble inorganic material shown in Table 1 was added in the amount shown in the table, melt-kneaded in the extruder, extruded into a strand from the die at the tip of the extruder, quenched in water, and cut. And granulated into pellets (length 2.4 mm, cross-sectional diameter 1.1 mm). A mixture of 100 kg of these pellets, 400 g of finely divided aluminum oxide and 220 g of water,
The temperature was raised to and maintained at the single-stage temperature shown in the table without raising the temperature to a temperature higher than the melting temperature while stirring in). Next, the temperature was raised to the two-stage holding temperature shown in the table, and immediately thereafter, the blowing agent shown in Table 1 was supplied so that the internal pressure of the container became the pressure shown in the table, and was maintained at the same temperature. One end of the container was opened while holding the inside of the container at the pressure shown in Table 1 by applying a back pressure with nitrogen gas or air (matched to the foaming agent used) while maintaining the step holding temperature. The particles and water were released under atmospheric pressure and allowed to foam. The average bulk expansion ratio and the maximum value and the minimum value of the bulk expansion ratio of the obtained expanded particles are shown in Table 1.

比較例1〜2 第1表に示す非水溶性の無機物を添加して造粒した他
は実施例と同様のエチレン−プロピレンランダム共重合
体を用い、第1表に示す条件で実施例1〜5に準じて発
泡を行った。得られた発泡粒子の平均嵩発泡倍率及び嵩
発泡倍率の最大値、最小値を第1表にあわせて示す。
Comparative Examples 1 and 2 The same ethylene-propylene random copolymer as in Example 1 was used, except that the water-insoluble inorganic substance shown in Table 1 was added and granulated, and the conditions of Examples 1 to 2 were used. Bubbling was carried out according to 5. The average bulk expansion ratio and the maximum value and the minimum value of the bulk expansion ratio of the obtained expanded particles are shown in Table 1.

実施例6〜7 実施例1〜5における重合体粒子をプロピレン−ブテ
ンランダム共重合体粒子(ブテン成分6重量%、融点15
0℃、融解終了温度163℃(実施例6)及び直鎖状低密度
ポリエチレン粒子(ブテン成分4.1重量%、融点121℃、
融解終了温度135℃)(実施例7)を使用した以外は実
施例1〜5に準じて発泡粒子を製造した。
Examples 6 to 7 The polymer particles in Examples 1 to 5 were replaced with propylene-butene random copolymer particles (butene component 6% by weight, melting point 15
0 ° C., melting end temperature 163 ° C. (Example 6) and linear low density polyethylene particles (butene component 4.1% by weight, melting point 121 ° C.,
Expanded particles were produced according to Examples 1 to 5, except that the melting end temperature was 135 ° C) (Example 7).

ただし、実施例7は二段保持を行わず、一定温度に保
持した後に発泡剤を供給した。尚、この保持温度を便宜
上、第1表の一段保持温度の欄に示した。得われた発泡
粒子の平均嵩発泡倍率及び嵩発泡倍率の最大値、最小値
を第1表に示す。
However, in Example 7, the foaming agent was supplied after holding at a constant temperature without performing the two-stage holding. This holding temperature is shown in the column of the first-stage holding temperature in Table 1 for convenience. Table 1 shows the average bulk expansion ratio and the maximum and minimum values of the bulk expansion ratio of the obtained expanded particles.

比較例3〜4 実施例6〜7において無機物としてCaCO3を用いた以
外は実施例6〜7に準じて発泡を行った。得られた発泡
粒子の平均嵩倍率及び嵩倍率の最大値、最小値を第1表
にあわせて示す。
Comparative Examples 3 and 4 Foaming was performed according to Examples 6 and 7, except that CaCO 3 was used as an inorganic substance in Examples 6 and 7. The average bulk ratio and the maximum value and the minimum value of the bulk ratio of the obtained expanded particles are also shown in Table 1.

実施例8〜9 無架橋のエチレン−プロピレンランダム共重合体(エ
チレン成分2.3重量%、融点146.5℃、融解終了温度165
℃)100重量部当たり、第1表に示す水溶性無機物を同
表に示す量添加して押出機内で溶融混練した後、押出機
先端のダイスからストランド状に押出し水中で急冷した
後、切断してペレット状に造粒した(長さ2.4mm、断面
の直径1.1mm)。このペレット100kgと微粒状のリン酸三
カルシウム1.5kg、ドデシルベンゼンスルホン酸ソーダ4
0g、水220、発泡剤として固体の二酸化炭素(ドライ
アイス)を7.5kg(実施例8)または7.0kg(実施例9)
を配合して密閉容器(容積400)内で撹拌しながら融
解温度以上の温度に昇温することなく同表に示す一段保
持温度に昇温保持した。次いで同表に示す二段保持温度
に昇温し、その直後に第1表に示す発泡剤(二酸化炭
素)を、容器内圧が同表に示す圧力となるように供給し
て(但し実施例9は更に発泡剤を供給しなかった。)同
温度に保持し、その後、二段保持温度に保持したまま二
酸化炭素で背圧をかけて容器内を第1表に示す圧力に保
持しながら容器の一端を開放して重合体粒子と水とを大
気圧下に放出して発泡せしめた。得られた発泡粒子の平
均嵩発泡倍率及び嵩発泡倍率の最大値、最小値を第1表
にあわせて示す。
Examples 8 to 9 Uncrosslinked ethylene-propylene random copolymer (ethylene component 2.3% by weight, melting point 146.5 ° C, melting end temperature 165)
° C) per 100 parts by weight of the water-soluble inorganic material shown in Table 1 was added in the amount shown in the table, melt-kneaded in the extruder, extruded into a strand from the die at the tip of the extruder, quenched in water, and cut. And granulated into pellets (length 2.4 mm, cross-sectional diameter 1.1 mm). 100 kg of these pellets, 1.5 kg of finely divided tricalcium phosphate, 4 sodium dodecylbenzenesulfonate
7.5 g (Example 8) or 7.0 kg (Example 9) of 0 g, water 220, and solid carbon dioxide (dry ice) as a foaming agent
Was stirred and stirred in a closed vessel (volume 400) without raising the temperature to a temperature higher than the melting temperature, and maintaining the temperature at the one-stage holding temperature shown in the same table. Next, the temperature was raised to the two-stage holding temperature shown in the same table, and immediately thereafter, a blowing agent (carbon dioxide) shown in the first table was supplied so that the internal pressure of the container became the pressure shown in the same table (however, in Example 9). Was supplied with no foaming agent.) After that, the container was kept at the same temperature, and then back-pressured with carbon dioxide while maintaining the two-stage holding temperature, and the inside of the container was kept at the pressure shown in Table 1 while keeping the inside of the container at the pressure shown in Table 1. One end was opened, and the polymer particles and water were released under atmospheric pressure to cause foaming. The average bulk expansion ratio and the maximum value and the minimum value of the bulk expansion ratio of the obtained expanded particles are shown in Table 1.

〔発明の効果〕 以上説明したように本発明方法は、無機ガス系発泡剤
を含浸させたプロピレンン系重合体、高密度ポリエチレ
ン又は直鎖状低密度ポリエチレンのいずれかからなる発
泡性重合体粒子を、密閉容器内で分散媒に分散せしめて
該発泡性重合体粒子の軟化温度以上の温度において、発
泡性重合体粒子と分散媒とを容器内よりも低圧の雰囲気
下に放出して、発泡性重合体粒子を発泡させる重合体発
泡粒子の製造方法であって、上記発泡性重合体粒子が水
溶性無機物を含有する構成を採用した為、揮発性発泡剤
を用いずに無機ガス系発泡剤を用いた場合でも、高温で
発泡することが可能であり、高発泡倍率の発泡粒子を容
易に得ることができる。
[Effects of the Invention] As described above, the method of the present invention is based on a propylene-based polymer impregnated with an inorganic gas-based blowing agent, or an expandable polymer particle composed of any of high-density polyethylene or linear low-density polyethylene. Is dispersed in a dispersion medium in a closed container, and at a temperature equal to or higher than the softening temperature of the expandable polymer particles, the expandable polymer particles and the dispersion medium are released under an atmosphere at a lower pressure than in the container, and foaming is performed. A method for producing a polymer foamed particle for foaming a conductive polymer particle, wherein the foamable polymer particle employs a structure containing a water-soluble inorganic substance, so that an inorganic gas-based foaming agent is used without using a volatile foaming agent. Even when is used, foaming can be performed at a high temperature, and foamed particles having a high expansion ratio can be easily obtained.

【図面の簡単な説明】 第1図は粒子中に二次結晶を有する発泡粒子のDSC曲線
を示すグラフ、第2図は粒子中に二次結晶を有さない発
泡粒子のDSC曲線を示すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing a DSC curve of expanded particles having secondary crystals in the particles, and FIG. 2 is a graph showing a DSC curve of expanded particles having no secondary crystals in the particles. It is.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−208333(JP,A) 特開 昭61−138645(JP,A) 特開 昭64−65141(JP,A) 特開 昭59−111823(JP,A) 特公 昭45−41101(JP,B1) (58)調査した分野(Int.Cl.6,DB名) C08J 9/16 - 9/22──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-208333 (JP, A) JP-A-61-138645 (JP, A) JP-A-64-65141 (JP, A) JP-A-59-208 111823 (JP, A) JP-B-45-41101 (JP, B1) (58) Field surveyed (Int. Cl. 6 , DB name) C08J 9/16-9/22

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】無機ガス系発泡剤を含浸させたプロピレン
ン系重合体、高密度ポリエチレン又は直鎖状低密度ポリ
エチレンのいずれかからなる発泡性重合体粒子を、密閉
容器内で分散媒に分散せしめて該発泡性重合体粒子の軟
化温度以上の温度において、発泡性重合体粒子と分散媒
とを容器内よりも低圧の雰囲気下に放出して、発泡性重
合体粒子を発泡させる重合体発泡粒子の製造方法であっ
て、上記発泡性重合体粒子が水溶性無機物を含有するこ
とを特徴とする重合体発泡粒子の製造方法。
1. An expandable polymer particle comprising a propylene polymer, a high-density polyethylene or a linear low-density polyethylene impregnated with an inorganic gas-based blowing agent is dispersed in a dispersion medium in a closed container. At least at a temperature equal to or higher than the softening temperature of the expandable polymer particles, the expandable polymer particles release the expandable polymer particles and the dispersing medium under a lower pressure atmosphere than in the container to expand the expandable polymer particles. A method for producing particles, wherein the expandable polymer particles contain a water-soluble inorganic substance.
【請求項2】水溶性無機物が硼砂であることを特徴とす
る請求項1記載の重合体発泡粒子の製造方法。
2. The method according to claim 1, wherein the water-soluble inorganic substance is borax.
JP20223890A 1989-11-24 1990-07-30 Method for producing expanded polymer particles Expired - Fee Related JP2826769B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP20223890A JP2826769B2 (en) 1989-11-24 1990-07-30 Method for producing expanded polymer particles
CA002030754A CA2030754C (en) 1989-11-24 1990-11-23 Production method of prefoamed synthetic resin particles
DE69022814T DE69022814T2 (en) 1989-11-24 1990-11-24 Process for producing pre-expanded synthetic resin particles.
EP90122447A EP0429091B1 (en) 1989-11-24 1990-11-24 Production method of prefoamed synthetic resin particles
KR1019900019120A KR0157621B1 (en) 1989-11-24 1990-11-24 Process for making synthetic resin foam particles
US07/617,578 US5122545A (en) 1989-11-24 1990-11-26 Production method of prefoamed synthetic resin particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30786989 1989-11-24
JP1-307869 1989-11-24
JP20223890A JP2826769B2 (en) 1989-11-24 1990-07-30 Method for producing expanded polymer particles

Publications (2)

Publication Number Publication Date
JPH03223347A JPH03223347A (en) 1991-10-02
JP2826769B2 true JP2826769B2 (en) 1998-11-18

Family

ID=26513262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20223890A Expired - Fee Related JP2826769B2 (en) 1989-11-24 1990-07-30 Method for producing expanded polymer particles

Country Status (1)

Country Link
JP (1) JP2826769B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075208A1 (en) 2007-12-11 2009-06-18 Kaneka Corporation Process for producing expanded polyolefin resin bead and expanded polyolefin resin bead

Also Published As

Publication number Publication date
JPH03223347A (en) 1991-10-02

Similar Documents

Publication Publication Date Title
EP0164855B1 (en) Process for the production of expanded particles of a polymeric material
JP3195676B2 (en) Method for producing expanded polyolefin resin particles
JP3279382B2 (en) Non-crosslinked polyethylene resin foam particles and method for producing the same
JP2887291B2 (en) Method for producing expanded polyolefin resin particles
US5130341A (en) Process for the production of foamed poymer particles
JP3195674B2 (en) Method for producing non-crosslinked ethylene polymer expanded particles
EP0429091B1 (en) Production method of prefoamed synthetic resin particles
US6166096A (en) Pre-expanded particles of polypropylene resin, process for producing the same and process for producing in-mold foamed articles therefrom
JPH11209502A (en) Polypropylene-based resin preexpanded particle and production of polypropylene-based resin in-mold expansion molded product using the same
JP2826769B2 (en) Method for producing expanded polymer particles
JP3171272B2 (en) Method for producing expanded polymer particles
JP3195675B2 (en) Method for producing expanded polyolefin resin particles
JP2874772B2 (en) Method for producing expanded polymer particles
JP3198469B2 (en) Expanded polyolefin resin particles and method for producing the same
JP3281904B2 (en) Expanded polypropylene resin particles and molded article thereof
JPH059329A (en) Production of crosslinked expanded polyolefinic resin particle
JP3453647B2 (en) Propylene resin particles for foam molding, expandable propylene resin particles, propylene resin pre-expanded particles, and propylene resin foam molded article
JPH0386737A (en) Production of foamed polyolefin resin particle
JP3218333B2 (en) Expanded polyolefin resin particles and method for producing the same
JP3126171B2 (en) Method for producing expanded polyolefin resin particles
JPH0510374B2 (en)
JP2999812B2 (en) Method for producing expanded polypropylene resin particles
JPH07228721A (en) Production of polypropylene resin foam particle
JPH04359037A (en) Production of synthetic resin foam granules
JP3341426B2 (en) Method for producing expanded synthetic resin particles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20070918

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080918

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090918

LAPS Cancellation because of no payment of annual fees