JP2015183137A - Polyvinylidene fluoride-based resin expanded particle, production method and molded product thereof - Google Patents

Polyvinylidene fluoride-based resin expanded particle, production method and molded product thereof Download PDF

Info

Publication number
JP2015183137A
JP2015183137A JP2014062703A JP2014062703A JP2015183137A JP 2015183137 A JP2015183137 A JP 2015183137A JP 2014062703 A JP2014062703 A JP 2014062703A JP 2014062703 A JP2014062703 A JP 2014062703A JP 2015183137 A JP2015183137 A JP 2015183137A
Authority
JP
Japan
Prior art keywords
particles
polyvinylidene fluoride
resin
foamed
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014062703A
Other languages
Japanese (ja)
Other versions
JP6228877B2 (en
Inventor
篠原 充
Mitsuru Shinohara
篠原  充
政春 及川
Masaharu Oikawa
政春 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2014062703A priority Critical patent/JP6228877B2/en
Publication of JP2015183137A publication Critical patent/JP2015183137A/en
Application granted granted Critical
Publication of JP6228877B2 publication Critical patent/JP6228877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyvinylidene fluoride-based resin expanded particle that can yield an in-mold molded product excellent in light-weight and conductivity; and a production method thereof.SOLUTION: Provided is a polyvinylidene fluoride-based resin expanded particle in which polyvinylidene fluoride-based resin is the base resin of the expanded particle, and in which the polyvinylidene fluoride-based resin has a flexural elasticity of 450 MPa or more, has a melt flow rate at 230°C and loading of 2.16 kg, of 1 g/10 minutes or more, carbon black is incorporated in the base resin, and the apparent density of the polyvinylidene fluoride-based resin expanded particle is 25 to 700 g/L.

Description

本発明は、ポリフッ化ビニリデン系樹脂発泡粒子、ポリフッ化ビニリデン系樹脂発泡粒
子の製造方法、及びポリフッ化ビニリデン系樹脂発泡粒子成形体に関する。
The present invention relates to a foamed polyvinylidene fluoride resin particle, a method for producing a polyvinylidene fluoride resin foam particle, and a molded article of a polyvinylidene fluoride resin foam particle.

ポリフッ化ビニリデン系樹脂は非汚染性素材としてクリーンルームに使用される部材や
高性能分析機器の部品等に使用されている。さらに、優れた耐候性も有しており、屋外用
の塗料にも使用されている。また、ポリフッ化ビニリデン系樹脂は難燃性にも優れており
、高度な難燃性を生かした難燃材料の分野にも使用されている。
Polyvinylidene fluoride resin is used as a non-contaminating material for components used in clean rooms, parts for high-performance analytical instruments, and the like. Furthermore, it has excellent weather resistance and is also used in paints for outdoor use. Polyvinylidene fluoride resins are also excellent in flame retardancy, and are used in the field of flame retardant materials that make use of advanced flame retardancy.

従来、ポリフッ化ビニリデン系樹脂発泡体としては、ポリフッ化ビニリデン系樹脂を架橋処理し、原料樹脂の溶融温度で分解する分解型発泡剤を練り込み、発泡剤を加熱分解して発泡させることにより得られるものが知られていたが、これらはシート状、板状、棒状等、得ることのできる形状に制約があった。本出願人は、金型内で加熱成形することができるポリフッ化ビニリデン系樹脂発泡粒子を先に提案し、この発泡粒子を用いることにより、金型形状にあわせた様々な形状のポリフッ化ビニリデン系樹脂発泡体を得ることが可能となった(特許文献1)。   Conventionally, a polyvinylidene fluoride resin foam is obtained by crosslinking a polyvinylidene fluoride resin, kneading a decomposable foaming agent that decomposes at the melting temperature of the raw resin, and thermally decomposing the foaming agent to foam. However, there are restrictions on the shapes that can be obtained, such as a sheet shape, a plate shape, and a rod shape. The present applicant has previously proposed polyvinylidene fluoride resin expanded particles that can be heat-molded in a mold, and by using the expanded particles, various shapes of polyvinylidene fluoride-based resins can be formed in accordance with the shape of the mold. It became possible to obtain a resin foam (Patent Document 1).

特開2010−209224号公報JP 2010-209224 A

しかしながら、特許文献1に示される発泡粒子は、比較的高い発泡倍率の成形体を得るために高発泡倍率の発泡粒子を得ようとすると、発泡粒子が収縮し易いものであった。したがって、発泡粒子の密度管理を厳密に行う必要があり生産性の点から改良すべき課題を残すものであった。また、該発泡粒子を型内成形して得られる発泡粒子成形体は、高い発泡倍率を有する成形体とした場合には、発泡粒子と同様に、得られる成形体の収縮が生じ易く、金型再現性や寸法安定性の点から未だ課題を残すものであった。   However, the foamed particles shown in Patent Document 1 tend to shrink when the foamed particles having a high foaming ratio are obtained in order to obtain a molded article having a relatively high foaming ratio. Therefore, it is necessary to strictly control the density of the expanded particles, and there remains a problem to be improved in terms of productivity. Further, when the foamed particle molded body obtained by in-mold molding of the foamed particles is a molded body having a high expansion ratio, the molded body obtained is likely to shrink like the foamed particles. Problems still remained from the point of reproducibility and dimensional stability.

また、近年、電子部品の包装用や電波吸収体等の用途に発泡体を利用するためには、発泡体が体積固有抵抗値が1×10〜1×10Ω・cmという導電性を有することが必要とされており、導電性を有するとともに、軽量性に優れたポリフッ化ビニリデン系樹脂発泡粒子、該発泡粒子を型内成形してなるポリフッ化ビニリデン系樹脂発泡粒子成形体が望まれていた。 Also, in recent years, in order to use foam for applications such as packaging of electronic parts and radio wave absorbers, the foam has a conductivity with a volume resistivity of 1 × 10 2 to 1 × 10 8 Ω · cm. There is a need for expanded polyvinylidene fluoride resin foam particles that are electrically conductive and have excellent lightness, and molded polyvinylidene fluoride resin particles formed by molding the expanded particles in a mold. It was.

本発明は上記従来技術の問題を解決すべくなされたもので、軽量性と導電性とに優れた型内成形体を得ることができるポリフッ化ビニリデン系樹脂発泡粒子及びその製造方法を提供することを目的とする。また、本発明は軽量性、導電性に優れたポリフッ化ビニリデン系樹脂発泡粒子を型内で成型して得られるポリフッ化ビニリデン系樹脂発泡粒子成形体を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems of the prior art, and provides a polyvinylidene fluoride resin expanded particle capable of obtaining an in-mold molded article excellent in lightness and conductivity and a method for producing the same. With the goal. Another object of the present invention is to provide a molded article of polyvinylidene fluoride-based resin expanded particles obtained by molding in a mold the expanded polyvinylidene fluoride-based resin particles having excellent lightness and conductivity.

すなわち、本発明は、
(1)ポリフッ化ビニリデン系樹脂を基材樹脂とする発泡粒子であって、
該ポリフッ化ビニリデン系樹脂の曲げ弾性率が450MPa以上であり、
該ポリフッ化ビニリデン系樹脂の230℃、荷重2.16kgにおけるメルトフローレイトが1g/10分以上であり、
前記基材樹脂にカーボンブラックが配合されており、
前記ポリフッ化ビニリデン系樹脂発泡粒子の見かけ密度が25〜700g/L、
であることを特徴とするポリフッ化ビニリデン系樹脂発泡粒子、
(2)前記カーボンブラックのジブチルフタレート吸油量が200〜500ml/100gである上記(1)のポリフッ化ビニリデン系樹脂発泡粒子、
(3)前記カーボンブラックの配合量が、基材樹脂100重量部に対し3〜15重量部である上記(1)または(2)のポリフッ化ビニリデン系樹脂発泡粒子、
(4)熱流束示差走査熱量測定法により、前記発泡粒子を10℃/分の昇温速度で30℃から200℃まで加熱したときに得られる、1回目加熱のDSC曲線が、ポリフッ化ビニリデン系樹脂に固有の固有吸熱ピークと、該固有吸熱ピークより高温側に1つ以上の高温側吸熱ピークとを有し、前記1回目加熱のDSC曲線において、下記式(1)の条件を満足することを特徴とする上記(1)〜(3)のいずれかのポリフッ化ビニリデン系樹脂発泡粒子、
(数1)
0.05≦Eh/Et≦0.25・・・・・・(1)
(ただし、上記式中、Etは1回目加熱のDSC曲線の吸熱ピークの全融解熱量(J/g)、Ehは前記高温側吸熱ピークの融解熱量(J/g)を示す。)
(5)前記発泡粒子の見かけ密度が40〜250g/Lである上記(1)〜(4)のいずれかのポリフッ化ビニリデン系樹脂発泡粒子、
(6)前記発泡粒子の独立気泡率が80%以上である上記(1)〜(5)のいずれかのポリフッ化ビニリデン系樹脂発泡粒子、
(7)ポリフッ化ビニリデン系樹脂を基材樹脂とする樹脂粒子を、密閉容器内において分散媒に分散させると共に、加熱下で発泡剤を含浸させて発泡性樹脂粒子とした後、前記発泡性樹脂粒子を分散媒と共に密閉容器内から密閉容器内の圧力よりも低圧下に放出して発泡粒子を製造する方法であって、
前記ポリフッ化ビニリデン系樹脂の、曲げ弾性率が450MPa以上であり、230℃、荷重2.16kgにおけるメルトフローレイトが1g/10分以上であり、前記基材樹脂にカーボンブラックが配合されていることを特徴とするポリフッ化ビニリデン系樹脂発泡粒子の製造方法、
(8)前記(1)〜(6)のいずれかの発泡粒子を型内成形してなるポリフッ化ビニリデン系樹脂発泡粒子成形体、
を要旨とするものである。
That is, the present invention
(1) Expanded particles having a polyvinylidene fluoride resin as a base resin,
The flexural modulus of the polyvinylidene fluoride resin is 450 MPa or more,
The melt flow rate at 230 ° C. and a load of 2.16 kg of the polyvinylidene fluoride resin is 1 g / 10 min or more,
Carbon black is blended in the base resin,
The polyvinylidene fluoride resin expanded particles have an apparent density of 25 to 700 g / L,
Polyvinylidene fluoride resin expanded particles, characterized in that
(2) The polyvinylidene fluoride resin expanded particles according to (1), wherein the carbon black has a dibutyl phthalate oil absorption of 200 to 500 ml / 100 g,
(3) The polyvinylidene fluoride resin expanded particles according to (1) or (2) above, wherein the amount of the carbon black is 3 to 15 parts by weight with respect to 100 parts by weight of the base resin.
(4) The DSC curve of the first heating obtained when the expanded particles are heated from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min by a heat flux differential scanning calorimetry is a polyvinylidene fluoride type It has an intrinsic endothermic peak unique to the resin and one or more high temperature side endothermic peaks on the higher temperature side than the intrinsic endothermic peak, and satisfies the condition of the following formula (1) in the DSC curve of the first heating. The expanded polyvinylidene fluoride resin particles according to any one of (1) to (3) above,
(Equation 1)
0.05 ≦ Eh / Et ≦ 0.25 (1)
(In the above formula, Et represents the total heat of fusion (J / g) of the endothermic peak of the DSC curve of the first heating, and Eh represents the heat of fusion (J / g) of the high temperature side endothermic peak.)
(5) The polyvinylidene fluoride resin expanded particles according to any one of (1) to (4), wherein the apparent density of the expanded particles is 40 to 250 g / L,
(6) The polyvinylidene fluoride resin expanded particles according to any one of the above (1) to (5), wherein the closed cell ratio of the expanded particles is 80% or more,
(7) Resin particles having a polyvinylidene fluoride resin as a base resin are dispersed in a dispersion medium in a sealed container and impregnated with a foaming agent under heating to form expandable resin particles. A method for producing foamed particles by discharging particles together with a dispersion medium from a sealed container to a pressure lower than the pressure in the sealed container,
The polyvinylidene fluoride resin has a flexural modulus of 450 MPa or more, a melt flow rate at 230 ° C. and a load of 2.16 kg of 1 g / 10 min or more, and carbon black is blended in the base resin. A method for producing expanded polyvinylidene fluoride resin particles,
(8) A molded article of polyvinylidene fluoride resin foamed particles obtained by molding the foamed particles according to any one of (1) to (6) above,
Is a summary.

特定の物性を有するポリフッ化ビニリデン系樹脂を基材樹脂とする、本発明のポリフッ化ビニリデン系樹脂発泡粒子は、見かけ密度が低いとともに、導電性を有するものである。
また、該発泡粒子を型内成形して得られる発泡粒子成形体は、見かけ密度が低く、基材樹脂にカーボンブラックが配合された発泡粒子成形体であっても、成形体の収縮が小さく、寸法安定性に優れる上に、金型形状の再現性にも優れる。
さらに、発泡粒子中に含有されるカーボンブラックのジブチルフタレート吸油量が特定範囲のものであると、特に良好な型内成形性を有する。
このため本発明のポリフッ化ビニリデン系樹脂発泡粒子は、種々の形状に成形して航空産業や電気電子産業などの構造体、電子部品の包装材、断熱材、電波吸収体等、多岐の分野での利用が可能である。
The expanded polyvinylidene fluoride resin particles of the present invention using a polyvinylidene fluoride resin having specific physical properties as a base resin have low apparent density and conductivity.
Further, the foamed particle molded body obtained by in-mold molding of the foamed particles has a low apparent density, and even a foamed particle molded body in which carbon black is blended with a base resin has a small shrinkage of the molded body, In addition to excellent dimensional stability, it also excels in mold shape reproducibility.
Furthermore, when the dibutyl phthalate oil absorption of the carbon black contained in the expanded particles is in a specific range, particularly good in-mold moldability is obtained.
For this reason, the polyvinylidene fluoride resin expanded particles of the present invention are molded into various shapes and used in various fields such as structures in the aviation industry and electrical and electronics industry, packaging materials for electronic components, heat insulating materials, radio wave absorbers, etc. Can be used.

本発明に係る発泡粒子を熱流束示差走査熱量測定法により、10℃/分の昇温速度で30℃から200℃まで加熱したときに得られる1回目加熱のDSC曲線の代表的な一例を示す図である。The typical example of the DSC curve of the 1st heating obtained when the expanded particle which concerns on this invention is heated from 30 degreeC to 200 degreeC by the heat flux differential scanning calorimetry method at the temperature increase rate of 10 degreeC / min is shown. FIG.

本明細書において、ポリフッ化ビニリデン系樹脂発泡粒子を、単に「発泡粒子」ということがある。また、該発泡粒子を型内成形して得られるポリフッ化ビニリデン系樹脂発泡粒子成形体を、単に「発泡粒子成形体」あるいは「発泡成形体」ということがある。また、熱流束示差走査熱量測定法によるDSC曲線を単に「DSC曲線」ということがある。   In the present specification, the polyvinylidene fluoride resin expanded particles are sometimes simply referred to as “expanded particles”. In addition, a polyvinylidene fluoride resin expanded particle molded body obtained by molding the expanded particles in a mold may be simply referred to as “foamed particle molded body” or “foamed molded body”. Further, the DSC curve obtained by the heat flux differential scanning calorimetry may be simply referred to as “DSC curve”.

本発明における発泡粒子の基材樹脂は、ポリフッ化ビニリデン系樹脂を主成分とするものである。なお、本明細書において、ポリフッ化ビニリデン系樹脂を主成分とする基材樹脂とは、前記ポリフッ化ビニリデン系樹脂の含有量が発泡粒子を構成する基材樹脂の全重量の50重量%以上であることをいい、好ましくは70重量%以上、より好ましくは80重量%以上、さらに好ましくは90重量%以上である。   The base resin for the expanded particles in the present invention is mainly composed of a polyvinylidene fluoride resin. In the present specification, the base resin mainly composed of polyvinylidene fluoride resin means that the content of the polyvinylidene fluoride resin is 50% by weight or more of the total weight of the base resin constituting the expanded particles. It is preferably 70% by weight or more, more preferably 80% by weight or more, and still more preferably 90% by weight or more.

また、前記ポリフッ化ビニリデン系樹脂は、曲げ弾性率が450MPa以上であり、230℃、荷重2.16kgにおけるメルトフローレイト(MFR)が1g/10分以上のものである。前記ポリフッ化ビニリデン系樹脂は、前記の曲げ弾性率の要件と、メルトフローレイトの要件とを共に満足することが必要である。メルトフローレイトの値は、見かけ密度が低い発泡粒子を得る場合、発泡時のポリフッ化ビニリデン系樹脂の伸びやすさの指標、すなわち発泡時の気泡の成長性の良否に関連した指標である。一方、曲げ弾性率の値は、発泡粒子の気泡膜の強度と関連する指標である。すなわち、メルトフローレイトか曲げ弾性率のいずれか一方が上記範囲を満たさない場合には所期の目的である、見かけ密度が25〜700g/Lであるとともに導電性を有する発泡粒子を得ることができないおそれがある。また、寸法安定性、金型再現性等に優れた発泡成形体が得られないおそれがある。   The polyvinylidene fluoride resin has a flexural modulus of 450 MPa or more and a melt flow rate (MFR) at 230 ° C. and a load of 2.16 kg of 1 g / 10 min or more. The polyvinylidene fluoride-based resin needs to satisfy both the requirements for the flexural modulus and the melt flow rate. The value of the melt flow rate is an index related to the ease of elongation of the polyvinylidene fluoride resin at the time of foaming, that is, an index related to the quality of bubble growth at the time of foaming when obtaining expanded particles having a low apparent density. On the other hand, the value of the flexural modulus is an index related to the strength of the bubble film of the expanded particles. That is, when either the melt flow rate or the flexural modulus does not satisfy the above range, it is an intended purpose to obtain expanded particles having an apparent density of 25 to 700 g / L and having conductivity. It may not be possible. Moreover, there exists a possibility that the foaming molding excellent in dimensional stability, mold reproducibility, etc. may not be obtained.

前記ポリフッ化ビニリデン系樹脂の曲げ弾性率が、450MPa未満の場合、特に高発泡倍率(低い見かけ密度)の発泡粒子を得ようとすると、発泡時に気泡が成長する過程において気泡同士が合一したり、気泡が破泡して高発泡倍率の発泡粒子が得られないおそれがある。あるいは、高発泡倍率の発泡粒子は得られたとしても、発泡時に気泡膜が延伸配向されにくくなるためか、発泡後の気泡内において発泡剤の逸散や温度の変化に伴う圧力変化などが生じると、発泡粒子が収縮し易くなり、発泡粒子の見かけ密度のバラツキが大きくなって、その結果、所望の見かけ密度の発泡粒子が得られなくなるおそれがある。また、発泡粒子が収縮し易いと発泡粒子成形体においても収縮が起こり易くなることから、金型再現性や寸法安定性に優れた発泡粒子成形体が得られなくなるおそれがある。前記ポリフッ化ビニリデン系樹脂の曲げ弾性率の上限は、概ね1300MPaである。上記観点から、前記ポリフッ化ビニリデン系樹脂の曲げ弾性率は500〜1200MPaであることが好ましく、更に好ましくは600〜1100MPaである。尚、前記曲げ弾性率は、JIS K7171(2002年)に準拠して測定することができる。   When the flexural modulus of the polyvinylidene fluoride-based resin is less than 450 MPa, especially when trying to obtain expanded particles with a high expansion ratio (low apparent density), the bubbles may coalesce in the process in which the bubbles grow during expansion. There is a possibility that bubbles may break and foamed particles having a high expansion ratio cannot be obtained. Alternatively, even if expanded particles with a high expansion ratio are obtained, the foam film is less likely to be stretched and oriented during foaming, or the foaming agent dissipates in the foamed foam and changes in pressure due to temperature changes occur. Then, the expanded particles tend to shrink, and the variation in the apparent density of the expanded particles increases, and as a result, the expanded particles having a desired apparent density may not be obtained. Further, if the foamed particles are easily contracted, the foamed particle molded body is easily contracted, so that there is a possibility that a foamed particle molded body having excellent mold reproducibility and dimensional stability cannot be obtained. The upper limit of the flexural modulus of the polyvinylidene fluoride resin is approximately 1300 MPa. From the above viewpoint, the flexural modulus of the polyvinylidene fluoride-based resin is preferably 500 to 1200 MPa, and more preferably 600 to 1100 MPa. The flexural modulus can be measured according to JIS K7171 (2002).

前記ポリフッ化ビニリデン系樹脂のメルトフローレイト(MFR)は1g/10分以上(230℃、荷重2.16kg)である。メルトフローレイトが1g/10分未満の場合には、発泡する際に局所的な応力集中が起こり連続気泡化し易いという問題を生じ、見かけ密度が低く収縮し難い良好な発泡粒子が得られ難くなるおそれがある。一方、メルトフローレイトの上限に特に制限はないが、発泡時の気泡同士の合一や気泡の破泡を防止する観点から、概ね20g/10分である。前記メルトフローレイトは、1.5〜15g/10分であることがより好ましい。なお、メルトフローレイト(MFR)の値はASTM D1238に基づき、試験条件:温度230℃、2.16kg荷重で測定したものである。   The melt flow rate (MFR) of the polyvinylidene fluoride resin is 1 g / 10 min or more (230 ° C., load 2.16 kg). When the melt flow rate is less than 1 g / 10 min, local stress concentration occurs during foaming, and there is a problem that open cells are easily formed, and it is difficult to obtain good foamed particles having a low apparent density and difficult to shrink. There is a fear. On the other hand, the upper limit of the melt flow rate is not particularly limited, but is approximately 20 g / 10 minutes from the viewpoint of preventing coalescence of bubbles during foaming and bubble breakage. The melt flow rate is more preferably 1.5 to 15 g / 10 minutes. In addition, the value of melt flow rate (MFR) is measured under test conditions: temperature 230 ° C. and 2.16 kg load based on ASTM D1238.

本発明のポリフッ化ビニリデン系樹脂発泡粒子としては、フッ化ビニリデンの単独重合体、またはフッ化ビニリデンと他の単量体との共重合体であり、かつフッ化ビニリデンを主成分とする共重合体が包含される。ここで、フッ化ビニリデンを主成分とする共重合体とは、共重合体中にフッ化ビニリデン成分を少なくとも50重量%以上、好ましくは70重量%以上含有するものを意味する。また、フッ化ビニリデンと共重合可能な他の単量体としては、4フッ化エチレンや6フッ化プロピレンなどが例示できるが、共重合モノマー成分として6フッ化プロピレンを含有する、フッ化ビニリデン共重合体が好ましい。   As the polyvinylidene fluoride resin expanded particles of the present invention, a homopolymer of vinylidene fluoride or a copolymer of vinylidene fluoride and other monomers, and a copolymer containing vinylidene fluoride as a main component Coalescence is included. Here, the copolymer having vinylidene fluoride as a main component means a copolymer containing at least 50% by weight, preferably 70% by weight or more of the vinylidene fluoride component in the copolymer. Examples of other monomers copolymerizable with vinylidene fluoride include ethylene tetrafluoride and propylene hexafluoride, but vinylidene fluoride copolymer containing propylene hexafluoride as a copolymerization monomer component. Polymers are preferred.

さらに、フッ化ビニリデン共重合体は、共重合モノマー成分として、6フッ化プロピレン成分を3重量%〜14重量%含有する共重合体であることが好ましい。さらには、上記観点から、前記共重合体の6フッ化プロピレン成分の含有量の上限は、12重量%であることが好ましく、11重量%であることが更に好ましい。   Furthermore, the vinylidene fluoride copolymer is preferably a copolymer containing 3 wt% to 14 wt% of a propylene hexafluoride component as a copolymerization monomer component. Furthermore, from the above viewpoint, the upper limit of the content of the propylene hexafluoride component of the copolymer is preferably 12% by weight, and more preferably 11% by weight.

なお、曲げ弾性率及びMFRが前記した条件を満足するポリフッ化ビニリデン系樹脂としては、例えばソルベイスペシャルティポリマーズ社から市販されている、Solef 20808、Solef 11008、Solef 11010などが挙げられる。   Examples of the polyvinylidene fluoride resin whose bending elastic modulus and MFR satisfy the above-described conditions include Solef 20808, Solef 11008, and Solef 11010, which are commercially available from Solvay Specialty Polymers.

前記ポリフッ化ビニリデン系樹脂は、無架橋ポリフッ化ビニリデン系樹脂であっても、例えば、従来公知の方法により架橋された架橋ポリフッ化ビニリデン系樹脂であってもよいが、リサイクル性、発泡粒子の生産性などを考慮すると無架橋ポリフッ化ビニリデン系樹脂が好ましい。また、前記ポリフッ化ビニリデン系樹脂としては、2種以上のポリフッ化ビニリデン系樹脂を混合して用いることもできる。前記ポリフッ化ビニリデン系樹脂の密度は、概ね1.7〜1.9g/cmである。 The polyvinylidene fluoride resin may be a non-crosslinked polyvinylidene fluoride resin, for example, a crosslinked polyvinylidene fluoride resin crosslinked by a conventionally known method. In view of the properties, non-crosslinked polyvinylidene fluoride resin is preferable. In addition, as the polyvinylidene fluoride resin, two or more kinds of polyvinylidene fluoride resins can be mixed and used. The density of the polyvinylidene fluoride resin is approximately 1.7 to 1.9 g / cm 3 .

本発明の発泡粒子の基材樹脂には、本発明の効果を損なわない範囲内で他のポリマー成分や、添加剤を添加することができる。   Other polymer components and additives can be added to the base resin of the expanded particles of the present invention within a range not impairing the effects of the present invention.

前記、添加され得る他のポリマー成分としては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状超低密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、ポリプロピレン系樹脂などのポリオレフィン系樹脂、あるいは、ポリスチレン、スチレン−無水マレイン酸共重合体、スチレン−アクリル酸共重合体、スチレン−メタクリル酸共重合体等のポリスチレン系樹脂、エチレン−プロピレン系ゴム、エチレン−1−ブテンゴム、プロピレン−1−ブテンゴム、エチレン−プロピレン−ジエン系ゴム、イソプレンゴム、ネオプレンゴム、ニトリルゴムなどのゴム、スチレン−ジエンブロック共重合体、スチレン−ジエンブロック共重合体の水添物などのスチレン系熱可塑性エラストマー、ポリ4フッ化エチレン、4フッ化エチレン−パーフルオロアルコキシエチレン共重合体、4フッ化エチレン−6フッ化プロピレン共重合体、4フッ化エチレン−エチレン共重合体、ポリ3フッ化エチレン、3フッ化エチレン−エチレン共重合体、及びこれらの混合物などが挙げられる。他のポリマー成分を添加する場合、基材樹脂中の他のポリマーの割合が10重量%以下となるように添加することが好ましい。   Examples of other polymer components that can be added include, for example, high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear ultra-low-density polyethylene, linear low-density polyethylene, ethylene-vinyl acetate copolymer, and ethylene. -Acrylic acid copolymer, ethylene-methacrylic acid copolymer, polyolefin resin such as polypropylene resin, polystyrene, styrene-maleic anhydride copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer Polystyrene resins such as polymers, ethylene-propylene rubber, ethylene-1-butene rubber, propylene-1-butene rubber, ethylene-propylene-diene rubber, isoprene rubber, neoprene rubber, nitrile rubber and other rubber, styrene-diene block Copolymer, styrene Styrenic thermoplastic elastomer such as hydrogenated enblock copolymer, polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkoxyethylene copolymer, tetrafluoroethylene-6-fluoropropylene copolymer, 4 Examples thereof include a fluorinated ethylene-ethylene copolymer, a polytrifluorinated ethylene, a trifluorinated ethylene-ethylene copolymer, and a mixture thereof. When adding another polymer component, it is preferable to add so that the ratio of the other polymer in base resin may be 10 weight% or less.

本発明の発泡粒子は基材樹脂中にカーボンブラックが配合されている。該カーボンブラックのジブチルフタレート吸油量(DBP吸油量)が200〜500ml/100gであるものを用いると、発泡粒子の発泡性や融着性などの型内成形性が更に向上するため好ましい。カーボンブラックのジブチルフタレート吸油量は、カーボンブラック100g当たりに包含されるジブチルフタレート量(cc)であり、アブソープトメーターによりJIS K6221に記載の吸油量A法(機械法)に準じて測定した値である。   In the foamed particles of the present invention, carbon black is blended in the base resin. When carbon black having a dibutyl phthalate oil absorption (DBP oil absorption) of 200 to 500 ml / 100 g is used, it is preferable because in-mold moldability such as foamability and fusion property of the expanded particles is further improved. The amount of dibutyl phthalate oil absorption of carbon black is the amount of dibutyl phthalate (cc) included per 100 g of carbon black, and is a value measured by an absorption meter according to the oil absorption amount A method (mechanical method) described in JIS K6221. It is.

また、カーボンブラックの平均粒子径は、1〜100nmであることが好ましく、5〜80nmであることがより好ましい。前記カーボンブラックの平均粒径は、電子顕微鏡を用いて測定される。具体的には、視野内に数百個の粒子を含む電子顕微鏡写真をとり、定方向径(Green径)を代表径として無作為に1000個測定し、得られた値より個数基準の積算分布曲線を作成し、個数基準の積算分布の50%径を平均粒径として採用する。   Moreover, the average particle diameter of carbon black is preferably 1 to 100 nm, and more preferably 5 to 80 nm. The average particle diameter of the carbon black is measured using an electron microscope. Specifically, take an electron micrograph containing hundreds of particles in the field of view, measure 1,000 random samples with the directional diameter (Green diameter) as the representative diameter, and count distribution based on the number obtained. A curve is prepared and the 50% diameter of the cumulative distribution based on the number is adopted as the average particle diameter.

カーボンブラックの比表面積は、50〜1400m/g、特に、60〜1200m/gとすることが好ましい。なお、比表面積は、BET法(窒素吸着法)により測定した値をいう。 The specific surface area of carbon black is preferably 50 to 1400 m 2 / g, particularly preferably 60 to 1200 m 2 / g. The specific surface area is a value measured by the BET method (nitrogen adsorption method).

発泡粒子中のカーボンブラックの割合は、ポリフッ化ビニリデン系樹脂100重量部当たり、3〜15重量部が好ましく、5〜13重量部がより好ましい。上記範囲内であれば、特に導電性と型内成形性に優れる発泡粒子となる。なお、カーボンブラックを添加した場合には、発泡粒子の見かけ密度は高くなる傾向にある上に、発泡粒子の発泡性や型内成形性が低下する傾向にある。したがって、本発明における、特定のポリフッ化ビニリデン系樹脂を使用すると、発泡性や型内成形性を低下させることがなく、高発泡倍率の発泡粒子が得られることから特に好ましい。
さらに、カーボンブラックを添加すると発泡粒子の難燃性が低下する傾向にあるが、本発明のポリフッ化ビニリデン系樹脂を用いた場合には、難燃剤を添加しなくても十分な難燃性を有する発泡粒子となる。
The proportion of carbon black in the expanded particles is preferably 3 to 15 parts by weight, more preferably 5 to 13 parts by weight per 100 parts by weight of the polyvinylidene fluoride resin. If it is in the said range, it will become an expanded particle which is excellent in especially electroconductivity and in-mold moldability. When carbon black is added, the apparent density of the expanded particles tends to increase, and the expandability and in-mold moldability of the expanded particles tend to decrease. Therefore, the use of a specific polyvinylidene fluoride resin in the present invention is particularly preferable because foamed particles having a high expansion ratio can be obtained without deteriorating foamability and in-mold moldability.
Furthermore, when carbon black is added, the flame retardancy of the expanded particles tends to decrease. However, when the polyvinylidene fluoride resin of the present invention is used, sufficient flame retardancy can be achieved without adding a flame retardant. It becomes the expanded particle which has.

本発明の発泡粒子は、熱流束示差走査熱量測定法により、発泡粒子1〜5mgを、10℃/分の昇温速度で30℃から200℃まで加熱したときの1回目の加熱で得られるDSC曲線(以下、1回目加熱のDSC曲線という)が、ポリフッ化ビニリデン系樹脂に固有の固有吸熱ピーク(固有ピーク)と、該固有吸熱ピークの高温側に1つ以上の高温側吸熱ピーク(高温ピーク)とを有する結晶構造を有するものが好ましく、前記1回目加熱のDSC曲線に認められる高温側吸熱ピークの融解熱量は、2J/g以上であることが好ましい。前記高温側吸熱ピークを有し、その融解熱量が上記範囲内であれば、見掛け密度の低い発泡粒子をより容易に得ることができる。なお、高温側吸熱ピークの融解熱量の上限は、型内成形時の発泡粒子の二次発泡性が良好であるためには概ね30J/gであることが望ましい。さらに、発泡粒子の二次発泡性が良好で、発泡粒子同士の融着性が優れたものであるために、高温側吸熱ピークの融解熱量は、好ましくは2.5〜15J/g、さらに好ましくは3〜10J/gである。   The expanded particles of the present invention are obtained by the first heating when 1 to 5 mg of expanded particles are heated from 30 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./min by heat flux differential scanning calorimetry. The curve (hereinafter referred to as the DSC curve of the first heating) has an intrinsic endothermic peak (intrinsic peak) unique to the polyvinylidene fluoride resin and one or more high temperature side endothermic peaks (high temperature peak) on the high temperature side of the intrinsic endothermic peak. ), And the heat of fusion of the high-temperature endothermic peak observed in the DSC curve of the first heating is preferably 2 J / g or more. If it has the said high temperature side endothermic peak and the heat of fusion is in the said range, an expanded particle with a low apparent density can be obtained more easily. The upper limit of the heat of fusion at the high temperature side endothermic peak is preferably about 30 J / g in order to obtain good secondary foamability of the foamed particles during in-mold molding. Furthermore, since the secondary foamability of the foamed particles is good and the meltability between the foamed particles is excellent, the heat of fusion at the high temperature side endothermic peak is preferably 2.5 to 15 J / g, more preferably Is 3 to 10 J / g.

なお、高温側吸熱ピークが2つ以上現れる場合には、該高温側吸熱ピークの融解熱量は、全ての高温側吸熱ピークの融解熱量の合計熱量を意味する。前記高温側吸熱ピークは、後述する発泡粒子製造時における温度の保持操作により、高温側吸熱ピークの融解熱量を調整することができる。   In addition, when two or more high temperature side endothermic peaks appear, the heat of fusion of the high temperature side endothermic peak means the total amount of heat of fusion of all the high temperature side endothermic peaks. The high-temperature side endothermic peak can adjust the heat of fusion of the high-temperature side endothermic peak by a temperature holding operation at the time of producing expanded particles, which will be described later.

本発明における発泡粒子の高温側吸熱ピークの融解熱量の測定方法を、図1により説明する。熱流束示差走査熱量測定法によって、前記発泡粒子1〜5mgを、30℃から200℃まで10℃/分の昇温速度で加熱したときに得られる1回目加熱のDSC曲線において、ポリフッ化ビニリデン系樹脂に固有の頂点温度PTmcを有する固有吸熱ピークPcが現れる。また、該固有吸熱ピークの高温側の温度領域に頂点温度PTmdを有する1以上の高温側吸熱ピークPdが現れる。   A method for measuring the heat of fusion of the high-temperature endothermic peak of the expanded particles in the present invention will be described with reference to FIG. In the DSC curve of the first heating obtained when the foamed particles 1 to 5 mg are heated from 30 ° C. to 200 ° C. at a heating rate of 10 ° C./min by a heat flux differential scanning calorimetry method, An intrinsic endothermic peak Pc having an apex temperature PTmc intrinsic to the resin appears. In addition, one or more high temperature side endothermic peaks Pd having apex temperature PTmd appear in the temperature region on the high temperature side of the intrinsic endothermic peak.

この高温側吸熱ピークPdは、上記のようにして測定した1回目加熱のDSC曲線には現れるが、1回目加熱のDSC曲線を得た後、200℃から10℃/分で一旦、30℃付近まで降温し、再び10℃/分で200℃まで昇温したときに得られる2回目加熱のDSC曲線には現れず、2回目加熱のDSC曲線にはポリフッ化ビニリデン系樹脂に固有の固有吸熱ピークのみが現れるので、固有吸熱ピークと高温側吸熱ピークとを容易に判別することができる。   This high-temperature endothermic peak Pd appears in the DSC curve of the first heating measured as described above, but after obtaining the DSC curve of the first heating, once from 200 ° C. to 10 ° C./min, once around 30 ° C. The DSC curve of the second heating obtained when the temperature is lowered to 200 ° C. at 10 ° C./min again does not appear in the DSC curve of the second heating, and the intrinsic endothermic peak inherent in the polyvinylidene fluoride resin Therefore, the intrinsic endothermic peak and the high temperature side endothermic peak can be easily distinguished.

前記高温側吸熱ピークの融解熱量は、高温側吸熱ピークPdの面積(D)を定めることにより熱流束示差走査熱量測定法により算出される。前記高温側吸熱ピークPdの面積は、例えば、以下のように定めることができる。   The heat of fusion of the high temperature side endothermic peak is calculated by a heat flux differential scanning calorimetry method by determining the area (D) of the high temperature side endothermic peak Pd. The area of the high temperature side endothermic peak Pd can be determined as follows, for example.

図1に示すように、DCS曲線の80℃に相当する点αと、発泡粒子の融解終了温度Teに相当する点βとを結ぶ直線α−βを引く。次に、固有吸熱ピークPcと高温側吸熱ピークPdとの間の谷部にあたるDSC曲線上の点γからグラフの縦軸と平行な直線を引き、前記直線α−βとの交点をδとする。高温側吸熱ピークPdの面積(D)は、DSC曲線の高温側吸熱ピークPdを示すDSC曲線と、線分δ−βと、線分γ−δとによって囲まれる部分(図1において斜線で示す部分(D))の面積として定められる。なお、前記測定方法において、ベースラインである直線α−βを引くために、DSC曲線上の点αを温度80℃に対応する点とした理由は、80℃に対応する点を始点とし、融解終了温度を終点としたベースラインが、高温側吸熱ピークの熱量を再現性良く安定して求める上で好適であることによる。   As shown in FIG. 1, a straight line α-β connecting a point α corresponding to 80 ° C. of the DCS curve and a point β corresponding to the melting end temperature Te of the expanded particles is drawn. Next, a straight line parallel to the vertical axis of the graph is drawn from the point γ on the DSC curve corresponding to the valley between the intrinsic endothermic peak Pc and the high temperature side endothermic peak Pd, and the intersection with the straight line α-β is defined as δ. . The area (D) of the high temperature side endothermic peak Pd is a portion surrounded by a DSC curve showing the high temperature side endothermic peak Pd of the DSC curve, a line segment δ-β, and a line segment γ-δ (shown by diagonal lines in FIG. 1). Defined as the area of the part (D)). In the measurement method, in order to draw the baseline α-β, the point α on the DSC curve is a point corresponding to a temperature of 80 ° C. This is because the base line with the end temperature as the end point is suitable for stably obtaining the heat quantity of the high-temperature endothermic peak with good reproducibility.

本発明のポリフッ化ビニリデン系樹脂発泡粒子は、前記熱流束示差走査熱量測定において得られるDSC曲線における前記1回目加熱のDSC曲線における、ポリフッ化ビニリデン系樹脂に固有の固有吸熱ピークよりも高温側に現れる高温側吸熱ピークの融解熱量Eh(J/g)と全融解熱量Et(J/g)とが、下記式(1)を満足することが好ましい。   The expanded polyvinylidene fluoride resin particles of the present invention are higher in temperature than the intrinsic endothermic peak inherent in the polyvinylidene fluoride resin in the DSC curve of the first heating in the DSC curve obtained in the above-mentioned heat flux differential scanning calorimetry. It is preferable that the heat of fusion Eh (J / g) and the total heat of fusion Et (J / g) of the high-temperature endothermic peak appearing satisfy the following formula (1).

(数2)
0.05≦Eh/Et≦0.25・・・・・(1)
(ただし、式中Etは1回目加熱のDSC曲線の吸熱ピークの全融解熱量(J/g)、Ehは高温側吸熱ピークの融解熱量(J/g)である。)
(Equation 2)
0.05 ≦ Eh / Et ≦ 0.25 (1)
(In the formula, Et is the total heat of fusion (J / g) of the endothermic peak of the DSC curve of the first heating, and Eh is the heat of fusion (J / g) of the high temperature side endothermic peak.)

上記式(1)を満足する場合には、発泡粒子製造時に樹脂粒子に存在する結晶成分量が、樹脂粒子を発泡させる際の発泡性や、得られた発泡粒子を型内で成形する際の成形性に適するものとなる。すなわち、発泡粒子を得る際の気泡発生直後に気泡が合一したり、気泡成長速度が大きくなり過ぎて気泡が破泡してしまうことがなく、さらに得られた発泡粒子を型内成形する際に発泡粒子の膨張性(発泡性)が優れたものとなる。
上記観点からEh/Etは、発泡粒子を得る際の樹脂粒子の発泡性と、得られた発泡粒子の型内成形性の両者から上記の式を満足することが望ましく、さらには下記式(2)を満足することがより望ましく、下記式(3)を満足することがさらに好ましい。
When the above formula (1) is satisfied, the amount of crystal components present in the resin particles at the time of producing the foamed particles is such that the foamability when foaming the resin particles and the obtained foamed particles are molded in the mold. It is suitable for moldability. That is, bubbles are not coalesced immediately after the generation of bubbles when foamed particles are obtained, or the bubble growth rate does not increase so much that bubbles are broken, and when the obtained foamed particles are molded in the mold In addition, the expandability (foamability) of the expanded particles is excellent.
From the above viewpoint, Eh / Et preferably satisfies the above formula from both the foamability of the resin particles when obtaining the foamed particles and the in-mold moldability of the obtained foamed particles. ) Is more preferable, and it is more preferable that the following formula (3) is satisfied.

(数3)
0.08≦Eh/Et≦0.20・・・・・(2)
(数4)
0.10≦Eh/Et≦0.16・・・・・(3)
(Equation 3)
0.08 ≦ Eh / Et ≦ 0.20 (2)
(Equation 4)
0.10 ≦ Eh / Et ≦ 0.16 (3)

本発明の発泡粒子は、その見かけ密度が、25〜700g/Lである。発泡粒子の見かけ密度が低すぎる場合、発泡粒子の収縮が激しくなり過ぎて安定して発泡粒子を得ることができなるおそれがある。一方、発泡粒子の見かけ密度が高すぎる場合、目的の軽量性を満足することができなくなるおそれがある。上記観点から、発泡粒子の見かけ密度は30〜500g/Lが好ましく、40〜250g/Lがより好ましく、50〜200g/Lがさらに好ましい。なお、本発明の発泡粒子の見かけ密度は、発泡粒子を空気で加圧処理し、その後、大気圧下で養生して安定化した後の見かけ密度であり、発泡時の最大発泡倍率に相当する。具体的には、30℃で0.10MPaの圧縮空気で48時間加圧処理し、その後30℃で240時間放置した後の見かけ密度を測定した値である。なお、上記測定法により得られる見かけ密度を、以下、見かけ密度(A)、あるいは回復後の見かけ密度ということがある。 The apparent density of the expanded particles of the present invention is 25 to 700 g / L. If the apparent density of the expanded particles is too low, the expanded particles may become too shrinkable to stably obtain the expanded particles. On the other hand, if the apparent density of the expanded particles is too high, the intended lightness may not be satisfied. From the above viewpoint, the apparent density of the expanded particles is preferably 30 to 500 g / L, more preferably 40 to 250 g / L, and still more preferably 50 to 200 g / L. The apparent density of the expanded particles of the present invention is an apparent density after the expanded particles are pressurized with air and then cured under atmospheric pressure and stabilized, and corresponds to the maximum expansion ratio at the time of expansion. . Specifically, it is a value obtained by measuring the apparent density after pressurizing with compressed air of 0.10 MPa at 30 ° C. for 48 hours and then leaving at 30 ° C. for 240 hours. In addition, the apparent density obtained by the above measuring method may hereinafter be referred to as an apparent density (A) or an apparent density after recovery.

なお、見かけ密度が低い発泡粒子を製造する場合、まず見かけ密度150〜300g/L程度の発泡粒子を得た後(一段発泡)、一段発泡によって得た発泡粒子に加圧気体で内圧を付与し、スチーム等で加熱してさらに発泡(二段発泡)させてより低密度の発泡粒子とする二段発泡法を採用することもできる。   In the case of producing expanded particles having a low apparent density, first, expanded particles having an apparent density of about 150 to 300 g / L are obtained (one-stage expansion), and then an internal pressure is applied to the expanded particles obtained by the first-stage expansion with a pressurized gas. It is also possible to employ a two-stage foaming method in which it is further foamed (two-stage foaming) by heating with steam or the like to obtain foam particles with lower density.

発泡粒子の気泡膜の強度が弱いと、発泡時に最大発泡倍率に到達してから、発泡粒子が過度に収縮してしまうが、本発明の発泡粒子は、上記のように高発泡倍率とした場合でも、収縮が小さいという特徴を有するものである。下記式(4)で表される、発泡粒子の収縮率は、50%以下であることが好ましく、45%以下であることがより好ましい。   If the strength of the foam film of foamed particles is weak, the foamed particles will shrink excessively after reaching the maximum foaming ratio during foaming, but the foamed particles of the present invention have a high foaming ratio as described above. However, it has a feature that shrinkage is small. The shrinkage ratio of the expanded particles represented by the following formula (4) is preferably 50% or less, and more preferably 45% or less.

(数5)
発泡粒子の収縮率=[1−(A/B)]×100 ・・・(4)
(ただし、Aは、上記回復後の発泡粒子の見かけ密度、Bは、発泡後、60℃、1時間乾燥した後の発泡粒子の見かけ密度である。)
(Equation 5)
Shrinkage rate of expanded particles = [1- (A / B)] × 100 (4)
(However, A is the apparent density of the expanded particles after the recovery, and B is the apparent density of the expanded particles after foaming and drying at 60 ° C. for 1 hour.)

本発明の発泡粒子は、平均気泡径が20〜800μmであることが好ましい。上記範囲の気泡径である場合には、外観や機械的物性が良好な発泡粒子成形体を得ることができる。発泡粒子の平均気泡径は、好ましくは30〜500μm、更に好ましくは40〜350μmである。   The foamed particles of the present invention preferably have an average cell diameter of 20 to 800 μm. When the cell diameter is in the above range, a foamed particle molded article having good appearance and mechanical properties can be obtained. The average cell diameter of the expanded particles is preferably 30 to 500 μm, more preferably 40 to 350 μm.

発泡粒子の平均気泡径は、次のようにして求める。先ず、発泡粒子を略2等分に切断し、該断面を顕微鏡で撮影した拡大写真に基づき、以下の操作によって求めることができる。上記気泡断面の拡大写真において、発泡粒子の表面(断面における周縁)の一点から周縁の他の点に向かい発泡粒子断面の中心部を通る直線を4本引く。次いで、前記4本の直線と交わる気泡の数の総数:N(個)を求める。前記4本の各直線の長さの総和:L(μm)を気泡の数の総数:Nで除する(L/N)ことにより求められる値を発泡粒子の平均気泡径とする。   The average cell diameter of the expanded particles is determined as follows. First, the foamed particles can be cut into approximately two equal parts, and the cross section can be obtained by the following operation based on an enlarged photograph taken with a microscope. In the enlarged photograph of the bubble cross section, four straight lines passing through the center of the foam particle cross section from one point on the surface of the foam particle (periphery in the cross section) to another point on the periphery are drawn. Next, the total number of bubbles intersecting the four straight lines: N (number) is obtained. The total length of the four straight lines: L (μm) divided by the total number of bubbles: N (L / N) is taken as the average bubble diameter of the expanded particles.

また、本発明の発泡粒子の独立気泡率は、80%以上であることが好ましい。独立気泡率が低すぎると、発泡粒子の二次発泡性が劣るとともに、得られる発泡粒子成形体の機械的物性も劣ったものとなりやすい。発泡粒子の二次発泡性、機械特性に優れた発泡粒子成形体を得る上で、前記独立気泡率はより好ましくは85%以上、さらに好ましくは90%以上である。なお、本発明においては、特定のポリフッ化ビニリデン系樹脂を用いることによって、発泡時の気泡の合一や破泡が防止されるので、独立気泡率の高い発泡粒子が得られる。独立気泡率の測定は、ASTM−D−2856−70に記載されている手順Cに準拠して求めることができる。   Moreover, it is preferable that the closed cell rate of the expanded particle of this invention is 80% or more. When the closed cell ratio is too low, the secondary foamability of the foamed particles is inferior, and the mechanical properties of the obtained foamed particle molded body are likely to be inferior. In obtaining a foamed particle molded body having excellent secondary foamability and mechanical properties of the foamed particles, the closed cell ratio is more preferably 85% or more, and still more preferably 90% or more. In the present invention, the use of a specific polyvinylidene fluoride resin prevents coalescence and bubble breakage during foaming, so that foamed particles having a high closed cell ratio can be obtained. The measurement of the closed cell ratio can be obtained according to the procedure C described in ASTM-D-2856-70.

本発明の発泡粒子は、成形用の金型キャビティ内に充填し、加熱媒体により加熱して型内成形を行うことにより発泡粒子成形体を得ることができる。本発明発泡粒子の型内成形により得ることができる発泡粒子成形体の形状は、特に制約されず、板状、柱状、容器状、ブロック状はもとより、三次元の複雑な形状のものや、特に厚みの厚いもの等が挙げられる。   The foamed particles of the present invention can be filled into a mold cavity for molding, and heated with a heating medium to perform in-mold molding to obtain a foamed particle molded body. The shape of the foamed particle molded body that can be obtained by in-mold molding of the foamed particles of the present invention is not particularly limited, and is not limited to a plate shape, a column shape, a container shape, a block shape, or a three-dimensional complicated shape, The thing with thick thickness etc. are mentioned.

本発明の発泡粒子を型内成形して得られる発泡粒子成形体の見かけ密度は、概ね15〜500g/L、好ましくは20〜400g/L、より好ましくは30〜200g/Lである。なお、発泡粒子成形体の見かけ密度が低いほど、燃焼した際に発生するフッ化水素ガス(HF)の発生量を低減することが可能となることから、難燃性を要求される用途などより幅広い分野で使用することが可能となる。   The apparent density of the foamed particle molded body obtained by in-mold molding of the foamed particles of the present invention is generally 15 to 500 g / L, preferably 20 to 400 g / L, more preferably 30 to 200 g / L. Note that the lower the apparent density of the foamed particle molded body, the more it is possible to reduce the amount of hydrogen fluoride gas (HF) generated when it is burned. It can be used in a wide range of fields.

該発泡粒子成形体の独立気泡率は、前記発泡粒子と同様に、60%以上が好ましく、より好ましくは70%以上、さらに好ましくは80%以上である。該独立気泡率が低すぎると発泡粒子成形体の圧縮強度等の機械的物性が低下する虞がある。なお、成形体の独立気泡率の測定も、前記発泡粒子と同様に、ASTM−D−2856−70に記載されている手順Cに準拠して求めることができる。   The closed cell ratio of the foamed particle molded body is preferably 60% or more, more preferably 70% or more, and further preferably 80% or more, like the foamed particles. If the closed cell ratio is too low, mechanical properties such as compression strength of the foamed particle molded body may be lowered. In addition, the measurement of the closed cell rate of a molded object can also be calculated | required based on the procedure C described in ASTM-D-2856-70 similarly to the said foaming particle.

発泡粒子成形体の独立気泡率測定は、発泡粒子成形体断面中央部より切り出した、成形スキンを全て切り落としたサンプルを測定用サンプルとする他は、前記発泡粒子の独立気泡率の測定と同様にして求めることができる。   The measurement of the closed cell ratio of the foamed particle molded body is the same as the measurement of the closed cell ratio of the foamed particles, except that the sample cut from the center of the cross section of the foamed particle molded body and cut off all the molding skin is used as the measurement sample. Can be obtained.

また、本発明の発泡粒子は発泡粒子同士の融着性に優れることから、発泡粒子相互の融着率の高い発泡粒子成形体を得ることができる。発泡粒子成形体の発泡粒子同士の融着率は少なくとも50%以上であるが、更に60%以上、特に80%以上であることが好ましい。融着率が高い発泡粒子成形体は機械的物性、特に曲げ強度に優れる。なお、該融着率は、発泡粒子成形体を破断した際の破断面において、破断面の全発泡粒子中、発泡粒子自体が破壊された割合(発泡粒子の材料破壊率)を意味する。なお、融着率を高めた発泡粒子成形体を得るには、特に上述のポリフッ化ビニリデン系樹脂を用いて発泡粒子を作製することが好ましい。   Moreover, since the expanded particle of this invention is excellent in the meltability of expanded particles, the expanded particle molded object with a high fusion rate between expanded particles can be obtained. The fusion rate between the foamed particles of the foamed particle molded body is at least 50% or more, more preferably 60% or more, and particularly preferably 80% or more. A foamed particle molded body having a high fusion rate is excellent in mechanical properties, particularly bending strength. In addition, this fusion rate means the ratio (material destruction rate of foamed particles) at which the foamed particles themselves are destroyed in the total foamed particles of the fractured surface in the fractured surface when the foamed particle molded body is broken. In order to obtain a foamed particle molded body having an increased fusion rate, it is particularly preferable to produce foamed particles using the above-mentioned polyvinylidene fluoride resin.

本発明の発泡粒子は収縮率が小さいが、本発明発泡粒子を型内成形して得られる発泡粒子成形体も収縮率が小さく、寸法安定性や金型再現性に優れ、外観が良好なものとなる。寸法安定性や金型再現性の観点から、該発泡粒子成形体の収縮率は、5%以下であること好ましく、4%以下であることがより好ましく、3.5%以下であることがさらに好ましい。なお、収縮率のより低い発泡粒子成形体を得るには、特定のポリフッ化ビニリデン系樹脂を用いて発泡粒子を作製し、該発泡粒子を用いて型内成形を行うことが好ましい。   The foamed particles of the present invention have a small shrinkage rate, but the foamed particle molded body obtained by molding the foamed particles of the present invention in the mold also has a small shrinkage rate, excellent dimensional stability and mold reproducibility, and good appearance. It becomes. From the viewpoint of dimensional stability and mold reproducibility, the shrinkage ratio of the foamed particle molded body is preferably 5% or less, more preferably 4% or less, and further preferably 3.5% or less. preferable. In order to obtain a foamed particle molded body having a lower shrinkage rate, it is preferable to produce foamed particles using a specific polyvinylidene fluoride resin and perform in-mold molding using the foamed particles.

本発明の発泡粒子の製造には、例えば、カーボンブラックを配合したポリフッ化ビニリデン系樹脂を造粒して得られる樹脂粒子と発泡剤とを耐圧密閉容器内で水等の分散媒体中に分散させ、撹拌下加熱して樹脂粒子を軟化させるとともに、樹脂粒子に発泡剤を含浸させた後、樹脂粒子の軟化温度以上の温度で密閉容器内から低圧域(通常大気圧下)に、発泡剤を含浸させた発泡性樹脂粒子を分散媒体と共に放出して発泡させる方法を適用することができる。また、樹脂粒子に発泡剤を含浸させた後、低圧域に放出することなく冷却して、発泡性樹脂粒子を得、該発泡性樹脂粒子を加熱することにより発泡させて発泡粒子とすることもできる。以下に、発泡性樹脂粒子を分散媒体と共に容器内から低圧域に放出して発泡させる方法について更に詳しく説明する。   In the production of the foamed particles of the present invention, for example, resin particles obtained by granulating a polyvinylidene fluoride resin blended with carbon black and a foaming agent are dispersed in a dispersion medium such as water in a pressure-resistant sealed container. The resin particles are softened by heating with stirring, and after the resin particles are impregnated with the foaming agent, the foaming agent is introduced into the low-pressure region (usually under atmospheric pressure) from the inside of the sealed container at a temperature equal to or higher than the softening temperature of the resin particles. It is possible to apply a method in which the impregnated expandable resin particles are discharged together with a dispersion medium and foamed. In addition, after impregnating the resin particles with a foaming agent, the resin particles are cooled without being discharged to a low pressure region to obtain expandable resin particles, and the expandable resin particles are expanded by heating to form expanded particles. it can. Hereinafter, a method for discharging foaming resin particles together with a dispersion medium from a container to a low pressure region and foaming will be described in more detail.

樹脂粒子は、ポリフッ化ビニリデン系樹脂が溶融する温度に加熱して押出機で混練後、混練物を押出機先端に取付けられた口金の小孔から紐状に押出し、これを適宜の長さに切断して、発泡粒子を製造するのに適した大きさの円柱状に造粒することにより得ることができる。樹脂粒子の1個あたりの平均重量は、通常0.01〜20mgであり、特に0.1〜10mgであることが好ましい。前記樹脂粒子の粒子径(直径)は、0.1〜3.0mmであることが好ましく、0.3〜1.5mmであることがより好ましい。さらに、通常、前記樹脂粒子は、長さ/直径比が0.5〜3.0となるように調整されることが好ましく、0.8〜2.5となるように調節されることがより好ましい。なお、押出機を用いて樹脂粒子を得る際には、樹脂粒子の粒子径、長さ/直径比や平均質量の調整は、例えば押出機先端に取り付けられた微細な多数の孔を有するダイからポリフッ化ビニリデン系樹脂溶融物を押出し、押出速度、カッタースピードなど、ストランドカット法の場合は引き取り速度を適宜変えて所定の大きさに切断することにより行うことができる。   The resin particles are heated to a temperature at which the polyvinylidene fluoride resin is melted and kneaded by an extruder, and then the kneaded product is extruded into a string shape from a small hole in a die attached to the tip of the extruder, and this is made to an appropriate length. It can be obtained by cutting and granulating into a cylindrical shape having a size suitable for producing expanded particles. The average weight per resin particle is usually 0.01 to 20 mg, and preferably 0.1 to 10 mg. The particle diameter (diameter) of the resin particles is preferably 0.1 to 3.0 mm, and more preferably 0.3 to 1.5 mm. Furthermore, usually, the resin particles are preferably adjusted to have a length / diameter ratio of 0.5 to 3.0, more preferably 0.8 to 2.5. preferable. When resin particles are obtained using an extruder, the particle diameter, length / diameter ratio and average mass of the resin particles are adjusted from, for example, a die having a large number of fine holes attached to the tip of the extruder. In the case of strand cutting methods such as extrusion speed and cutter speed by extruding a polyvinylidene fluoride resin melt, it can be carried out by changing the take-up speed as appropriate and cutting it into a predetermined size.

前記樹脂粒子には、通常使用される気泡調整剤、帯電防止剤、滑剤、酸化防止剤、紫外線吸収剤、難燃剤、金属不活性剤、顔料、染料、結晶核剤、あるいは充填材等の各種の添加剤を所望に応じて適宜含有させることができる。   The resin particles include various commonly used cell conditioners, antistatic agents, lubricants, antioxidants, ultraviolet absorbers, flame retardants, metal deactivators, pigments, dyes, crystal nucleating agents, or fillers. These additives can be appropriately contained as desired.

上記の気泡調整剤としては、タルク、塩化ナトリウム、炭酸カルシウム、シリカ、酸化チタン、石膏、ゼオライト、ホウ砂、水酸化アルミニウム、カーボン等の無機物、その他リン酸系核剤、フェノール系核剤、アミン系核剤、ポリテトラフルオロエチレン(PTFE)等の有機系核剤が挙げられる。気泡調整剤等の各種添加剤の添加量は、それらの添加目的により異なるが、ポリフッ化ビニリデン系樹脂100重量部に対して好ましくは25重量部以下、より好ましくは15重量部以下であり、5重量部以下が特に好ましい。   As the above-mentioned bubble regulator, talc, sodium chloride, calcium carbonate, silica, titanium oxide, gypsum, zeolite, borax, aluminum hydroxide, carbon and other inorganic substances, other phosphate nucleating agents, phenolic nucleating agents, amines And organic nucleating agents such as polynuclear nucleating agents and polytetrafluoroethylene (PTFE). The addition amount of various additives such as a bubble regulator varies depending on the purpose of addition, but is preferably 25 parts by weight or less, more preferably 15 parts by weight or less, based on 100 parts by weight of the polyvinylidene fluoride resin. Part by weight or less is particularly preferred.

発泡粒子の製造に際して樹脂粒子を分散させる分散媒体としては、前記した水に限らず、樹脂粒子を溶解させない溶媒であれば使用することが可能である。水以外の分散媒体としては、例えばエチレングリコール、グリセリン、メタノール、エタノール等が挙げられるが、通常は水が使用される。   The dispersion medium for dispersing the resin particles in the production of the expanded particles is not limited to the above-described water, and any solvent that does not dissolve the resin particles can be used. Examples of the dispersion medium other than water include ethylene glycol, glycerin, methanol, ethanol and the like, but usually water is used.

上記の方法において、分散媒体中には、樹脂粒子が分散媒体中に均一に分散するように、必要に応じ、酸化アルミニウム、第三リン酸カルシウム、ピロリン酸マグネシウム、酸化亜鉛、カオリン、マイカ、タルクなどの難水溶性無機物質等の分散剤や、ドデシルベンゼンスルホン酸ナトリウム、アルカンスルホン酸ナトリウムなどのアニオン性界面活性剤等の分散助剤を添加することが好ましい。発泡粒子を製造する際に分散媒体中に添加される分散剤及び分散助剤の量は、樹脂粒子の重量と、分散剤及び分散助剤の合計重量との比(樹脂粒子の重量/分散剤及び分散助剤の合計重量)が20〜2000、さらに30〜1000となる量が好ましい。また、分散剤の重量と分散助剤の重量との比(分散剤の重量/分散助剤の重量)が1〜500、さらに5〜100となるように添加することが好ましい。   In the above method, in the dispersion medium, aluminum oxide, tricalcium phosphate, magnesium pyrophosphate, zinc oxide, kaolin, mica, talc, etc., as necessary, so that the resin particles are uniformly dispersed in the dispersion medium. It is preferable to add a dispersing agent such as a poorly water-soluble inorganic substance or a dispersing aid such as an anionic surfactant such as sodium dodecylbenzenesulfonate or sodium alkanesulfonate. The amount of the dispersant and the dispersion aid added to the dispersion medium when producing the expanded particles is the ratio of the weight of the resin particles to the total weight of the dispersant and the dispersion aid (resin particle weight / dispersant). And the total weight of the dispersion aid) is preferably 20 to 2000, more preferably 30 to 1000. Further, it is preferable to add so that the ratio of the weight of the dispersing agent to the weight of the dispersing aid (the weight of the dispersing agent / the weight of the dispersing aid) is 1 to 500, and further 5 to 100.

上記発泡粒子の製造に用いられる発泡剤としては、有機系物理発泡剤や無機系物理発泡剤、あるいはこれらの混合物等を用いることができる。有機系物理発泡剤としては、プロパン、ブタン、ヘキサン、ヘプタン等の脂肪族炭化水素類、シクロブタン、シクロヘキサン等の脂環式炭化水素類、クロロフロロメタン、トリフロロメタン、1,1−ジフロロメタン、1,1,1,2−テトラフロロエタン、メチルクロライド、エチルクロライド、メチレンクロライド等のハロゲン化炭化水素、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル等のジアルキルエーテル等が挙げられる。これらは2種以上を混合して用いることができる。また、無機系物理発泡剤としては、窒素、二酸化炭素、アルゴン、空気、水等が挙げられ、これらは2種以上を混合して用いることができる。有機系物理発泡剤と無機系物理発泡剤とを混合して用いる場合、有機系物理発泡剤と無機系物理発泡剤より任意に選択された化合物を組み合わせて用いることができる。   As the foaming agent used in the production of the foamed particles, an organic physical foaming agent, an inorganic physical foaming agent, or a mixture thereof can be used. Examples of organic physical blowing agents include aliphatic hydrocarbons such as propane, butane, hexane, and heptane, alicyclic hydrocarbons such as cyclobutane and cyclohexane, chlorofluoromethane, trifluoromethane, 1,1-difluoromethane, 1 , 1,1,2-tetrafluoroethane, halogenated hydrocarbons such as methyl chloride, ethyl chloride, and methylene chloride, and dialkyl ethers such as dimethyl ether, diethyl ether, and methyl ethyl ether. These can be used in combination of two or more. Moreover, as an inorganic type physical foaming agent, nitrogen, carbon dioxide, argon, air, water, etc. are mentioned, These can be used in mixture of 2 or more types. When mixing and using an organic physical foaming agent and an inorganic physical foaming agent, the compound arbitrarily selected from the organic physical foaming agent and the inorganic physical foaming agent can be used in combination.

前記発泡剤のうち、環境汚染等の虞のない無機系物理発泡剤を用いることが好ましく、中でも窒素、空気、二酸化炭素、水が好ましい。発泡粒子を得る際に耐圧密閉容器内に樹脂粒子と共に分散媒体として水を使用する場合には、該樹脂粒子に吸水性物質などを配合したものを使用することにより、分散媒体である水を効率的に発泡剤として使用することができる。   Among the foaming agents, it is preferable to use an inorganic physical foaming agent that does not cause environmental pollution, among which nitrogen, air, carbon dioxide, and water are preferable. When water is used as a dispersion medium together with resin particles in a pressure-resistant airtight container when obtaining expanded particles, water that is a dispersion medium is efficiently used by mixing the resin particles with a water-absorbing substance. It can be used as a blowing agent.

発泡剤の使用量は、目的とする発泡粒子の見かけ密度、または発泡剤の種類等を考慮して決定するが、通常は、樹脂粒子100重量部あたり、有機系物理発泡剤では5〜50重量部、無機系物理発泡剤では0.5〜30重量部を用いることが好ましい。   The amount of the foaming agent used is determined in consideration of the apparent density of the desired foamed particles or the type of the foaming agent, but is usually 5 to 50 weights per 100 parts by weight of the resin particles for the organic physical foaming agent. In an inorganic physical foaming agent, it is preferable to use 0.5 to 30 parts by weight.

前記高温側吸熱ピークを有する発泡粒子は、発泡粒子を得る工程で、前記の樹脂粒子を密閉容器内で分散媒体中に分散させて撹拌下に加熱する時の加熱温度を、樹脂粒子の融解終了温度:Te以上に昇温することなく、樹脂粒子の融点:Tmよりも15℃低い温度(Tm−15℃)以上、融解終了温度:Te未満の範囲内の任意の温度:Taとし、その温度:Taで十分な時間、好ましくは10〜60分間程度保持した後、樹脂粒子の融点:Tmよりも15℃低い温度(Tm−15℃)〜融解終了温度:Teよりも5℃高い温度(Te+5℃)の範囲の任意の温度:Tbに調節して、その温度:Tbで樹脂粒子を分散媒体とともに密閉容器内から低圧域に放出して発泡させることにより得ることができる。また、高温側吸熱ピークを形成するための上記(Tm−15℃)以上、Te未満の範囲内の温度:Taでの保持は、該温度範囲内の異なる温度で多段階で行っても、また、該温度範囲内で十分な時間を要してゆっくりと昇温して行っても良く、(Tm−15℃)〜Teの間の温度で十分な時間保持することにより、高温側吸熱ピークを有する発泡粒子を得ることが可能である。   The expanded particles having the high-temperature side endothermic peak are obtained in the step of obtaining expanded particles, the heating temperature when the resin particles are dispersed in a dispersion medium in a closed container and heated with stirring, the melting of the resin particles is completed. Temperature: Melting point of resin particles: temperature not lower than Te: 15 ° C. lower than Tm (Tm−15 ° C.) or higher, melting end temperature: Arbitrary temperature within range of Te: Ta, temperature : Ta is held for a sufficient time, preferably about 10 to 60 minutes, and then the melting point of the resin particles: a temperature 15 ° C. lower than Tm (Tm-15 ° C.) to a melting end temperature: a temperature 5 ° C. higher than Te (Te + 5) It can be obtained by adjusting the temperature to an arbitrary temperature in the range of ° C.): Tb, and releasing the resin particles together with the dispersion medium from the inside of the sealed container into the low pressure region and foaming at that temperature: Tb. Further, the temperature within the range of (Tm−15 ° C.) or more and less than Te for forming the high temperature side endothermic peak may be maintained in multiple stages at different temperatures within the temperature range. In this temperature range, a sufficient time may be required and the temperature may be raised slowly, and by holding at a temperature between (Tm−15 ° C.) and Te for a sufficient time, the high temperature side endothermic peak is increased. It is possible to obtain expanded particles having the same.

発泡粒子における高温側吸熱ピークの形成、および高温側吸熱ピークの熱量の大小は、主として、発泡粒子を製造する際の樹脂粒子に対する前記温度:Taと、前記温度:Taにおける保持時間、及び前記温度:Tb、ならびに(Tm−15℃)〜(Te+5℃)の範囲内での昇温速度に依存する。発泡粒子の上記高温側吸熱ピークの熱量は、温度:Taまたは温度:Tbが上記各々の温度範囲内において低い程、(Tm−15℃)以上、Te未満の温度範囲内での保持時間が長い程、そして(Tm−15℃)以上、Te未満の温度範囲内での昇温速度が遅い程、大きくなる傾向を示す。なお、前記昇温速度は通常0.5〜5℃/分が採用される。一方、温度:Taまたは温度:Tbが前記各々の温度範囲内において高い程、(Tm−15℃)以上、Te未満の温度範囲内での保持時間が短い程、そして(Tm−15℃)以上、Te未満の温度範囲内での昇温速度が速い程、Te〜(Te+5℃)の温度範囲内での昇温速度が遅い程、高温側吸熱ピークの熱量は小さくなる傾向を示す。これらの点を考慮して予備試験を行うことにより所望の高温側吸熱ピーク熱量を示す発泡粒子の製造条件を知ることができる。なお、上記高温側吸熱ピークの形成に係る温度範囲は、発泡剤として無機系物理発泡剤(例えば二酸化炭素)を使用した場合の適切な温度範囲である。したがって、発泡剤が例えば有機系物理発泡剤に変更された場合には、その種類や使用量に応じてその適切な温度は、上記温度範囲よりもそれぞれの工程において低温側に0〜30℃程度シフトする。   The formation of the high temperature side endothermic peak in the expanded particles and the magnitude of the heat quantity of the high temperature side endothermic peak are mainly due to the temperature: Ta, the retention time at the temperature: Ta, and the temperature of the resin particles when the expanded particles are produced. : Tb as well as the rate of temperature rise in the range of (Tm−15 ° C.) to (Te + 5 ° C.). The amount of heat of the high-temperature endothermic peak of the expanded particles is such that the lower the temperature: Ta or the temperature: Tb within each of the above temperature ranges, the longer the holding time in the temperature range of (Tm−15 ° C.) or more and less than Te. As the rate of temperature rise in the temperature range of (Tm−15 ° C.) or higher and lower than Te is lower, the tendency is larger. In addition, 0.5-5 degreeC / min is normally employ | adopted for the said temperature increase rate. On the other hand, the higher the temperature: Ta or the temperature: Tb in each of the temperature ranges, the higher the (Tm-15 ° C) or higher, the shorter the holding time in the temperature range lower than Te, and the higher (Tm-15 ° C) or higher. The higher the rate of temperature rise within the temperature range below Te, the lower the rate of temperature rise within the temperature range of Te to (Te + 5 ° C.). By conducting a preliminary test in consideration of these points, it is possible to know the production conditions of the expanded particles exhibiting a desired high-temperature side endothermic peak calorific value. In addition, the temperature range which concerns on formation of the said high temperature side endothermic peak is a suitable temperature range at the time of using an inorganic type physical foaming agent (for example, carbon dioxide) as a foaming agent. Therefore, when the foaming agent is changed to, for example, an organic physical foaming agent, the appropriate temperature is about 0 to 30 ° C. on the low temperature side in each step from the above temperature range depending on the type and amount of use. shift.

なお、発泡粒子を製造するために耐圧密閉容器内の内容物を密閉容器内から低圧域に放出する際には、使用した発泡剤あるいは窒素、空気等の無機物の気体で密閉容器内に背圧をかけ、該容器内の圧力が急激に低下しないように圧力を保ちながら内容物を放出することが、得られる発泡粒子の見かけ密度を均一化するために好ましい。   In addition, when the contents in the pressure-resistant airtight container are discharged from the airtight container to the low pressure region in order to produce the foamed particles, the back pressure is put into the airtight container with the used foaming agent or an inorganic gas such as nitrogen or air. It is preferable to release the contents while maintaining the pressure so that the pressure in the container does not drop rapidly, in order to make the apparent density of the obtained expanded particles uniform.

上述のように、発泡剤を含浸させた樹脂粒子を密閉容器内から低圧下に放出して発泡させること(一段発泡)により、発泡粒子を得ることができる。さらに、高発泡倍率の発泡粒子を得ることを目的とした場合、一段発泡によって得た発泡粒子に内圧を付与した後、スチーム等で加熱して更に発泡(二段発泡)させた発泡粒子を得ることもできる。   As described above, the foamed particles can be obtained by releasing the resin particles impregnated with the foaming agent from the inside of the sealed container under a low pressure and foaming (single-stage foaming). Furthermore, when the purpose is to obtain expanded particles with a high expansion ratio, after applying internal pressure to the expanded particles obtained by one-stage expansion, the expanded particles are further expanded (two-stage expanded) by heating with steam or the like. You can also.

具体的には、上記した方法によって密閉容器内から低圧域に放出されることにより得られた発泡粒子に、放出後に通常行なわれる養生を行った後、この発泡粒子(一段発泡粒子)を加圧用密閉容器に充填し、空気等の加圧気体により加圧処理して発泡粒子内の圧力を0.01〜0.9MPa(G)に調整した後、該発泡粒子を該容器から取り出して、水蒸気や熱風等の加熱媒体を用いて加熱することにより、より低い見かけ密度の発泡粒子(二段発泡粒子)とすることができる。   Specifically, the foamed particles obtained by being discharged into the low-pressure region from the inside of the closed container by the above-described method are subjected to curing usually performed after the release, and then the foamed particles (single-stage foamed particles) are used for pressurization. After filling the airtight container and pressurizing with a pressurized gas such as air to adjust the pressure inside the foamed particles to 0.01 to 0.9 MPa (G), the foamed particles are taken out of the container and steamed. By using a heating medium such as hot air or the like, foam particles having a lower apparent density (two-stage foam particles) can be obtained.

本発明の発泡粒子成形体は、加熱及び冷却が可能であり且つ開閉し密閉できる従来公知の熱可塑性樹脂発泡粒子型内成形用の金型のキャビティ内に上記発泡粒子を充填し、飽和蒸気圧が0.05〜0.48MPa(G)、好ましくは0.08〜0.42MPa(G)の飽和水蒸気を供給して金型キャビティ内で発泡粒子を加熱して膨張させ、発泡粒子相互を融着させて発泡粒子成形体を形成し、次いで得られた発泡粒子成形体を冷却して、キャビティから取り出すバッチ式型内成形法(例えば、特公平4−46217号公報、特公平6−49795号公報等に記載されている成形方法)を採用して製造することができる。   The foamed particle molded body of the present invention is filled with the above-mentioned foamed particles in a mold of a conventionally known thermoplastic resin foam particle molding mold that can be heated and cooled, and that can be opened and closed and sealed, and has a saturated vapor pressure. Is supplied with a saturated water vapor of 0.05 to 0.48 MPa (G), preferably 0.08 to 0.42 MPa (G) to heat and expand the expanded particles in the mold cavity to melt the expanded particles. To form a foamed particle molded body, and then the obtained foamed particle molded body is cooled and taken out from the cavity by a batch type in-mold molding method (for example, Japanese Patent Publication No. 4-46217, Japanese Patent Publication No. 6-49795). It can be manufactured by adopting a molding method described in a publication or the like.

なお、型内成形を行うに際して、上記した二段発泡粒子を得る際に、一段発泡粒子を加圧処理する操作と同様の、発泡粒子内の圧力を高める操作を行い、発泡粒子内の圧力を0.01〜0.3MPa(G)に調整した発泡粒子を型内に充填して、成形することができる。また、発泡粒子を圧縮して金型に充填する圧縮充填法を採用することもできる。   In addition, when performing in-mold molding, when obtaining the above-mentioned two-stage expanded particles, the same operation as that for pressurizing the first-stage expanded particles is performed to increase the pressure in the expanded particles, and the pressure in the expanded particles is reduced. The foamed particles adjusted to 0.01 to 0.3 MPa (G) can be filled in a mold and molded. Further, it is possible to adopt a compression filling method in which the expanded particles are compressed and filled into a mold.

型内成形法における飽和水蒸気による加熱の方法としては、一方加熱、逆一方加熱、本加熱などの加熱方法を適宜組合せる従来公知の方法を採用することができるが、特に、予備加熱、一方加熱、逆一方加熱、本加熱の順に発泡粒子を加熱する方法が好ましい。ここで、予備加熱とは、チャンバー内などに存在する空気を排出して金型全体を加熱することを言う。一方加熱とは、雄型又は雌型のいずれか一方側から金型の内部(チャンバー)に加熱媒体を供給することによりキャビティを加熱し、次いでチャンバー内に供給した加熱媒体を雄型又は雌型(加熱媒体を供給した側の型に対し他方の型)から排出させることをいう。また、一方加熱を行った後、加熱媒体の供給、排出側を逆にして加熱、排出する場合を逆一方加熱という。なお、発泡粒子成形時の上記0.05〜0.48MPa(G)の飽和蒸気圧は、型内成形工程において、金型内に供給される水蒸気の飽和蒸気圧の最大値である。   As a method of heating with saturated steam in the in-mold molding method, a conventionally known method in which heating methods such as one heating, reverse one heating, and main heating are appropriately combined can be adopted. A method of heating the foamed particles in the order of reverse one-side heating and main heating is preferable. Here, the preheating means that the air existing in the chamber or the like is discharged and the entire mold is heated. On the other hand, heating refers to heating the cavity by supplying a heating medium from one side of the male mold or female mold to the inside of the mold (chamber), and then supplying the heating medium supplied into the chamber to the male mold or female mold. It means discharging from (the other mold with respect to the mold on the side to which the heating medium is supplied). In addition, the case where the heating medium is heated and discharged after the heating medium is supplied and discharged on the opposite side is called reverse one-side heating. The saturated vapor pressure of 0.05 to 0.48 MPa (G) at the time of foamed particle molding is the maximum value of the saturated vapor pressure of water vapor supplied into the mold in the in-mold molding step.

なお、前記発泡粒子成形体は、例えば、特開平9−104026号公報、特開平9−104027、及び特開平10−180888号公報等に記載された連続式成形方法によっても製造することができる。   The foamed particle molded body can also be produced by a continuous molding method described in, for example, JP-A-9-104026, JP-A-9-104027, and JP-A-10-180888.

実施例により本発明を具体的に説明する。   The present invention will be specifically described with reference to examples.

(i)発泡粒子の評価方法を以下に示す。 (I) The evaluation method of expanded particles is shown below.

(イ)見かけ密度
本発明における、発泡粒子の見かけ密度(A)は、得られた発泡粒子を密閉容器内に入れ、30℃で、0.1MPa の圧縮空気により48時間加圧処理した後、放圧して30℃の大気圧下で240時間放置する操作を行った後の発泡粒子について、重量を予め測定した発泡粒子群をメスシリンダー中の水中に金網を使用して沈め、その水位上昇分から求められる発泡粒子群の体積で発泡粒子群の重量を除してg/Lに単位換算することにより求めた。
(A) Apparent density In the present invention, the apparent density (A) of the expanded particles is obtained by placing the obtained expanded particles in a sealed container and pressurizing with compressed air of 0.1 MPa at 30 ° C. for 48 hours. The foamed particles after the operation of releasing the pressure and allowing to stand for 240 hours at an atmospheric pressure of 30 ° C. were used to submerge the foamed particle group whose weight had been measured in advance into the water in the graduated cylinder using a wire mesh. It calculated | required by remove | dividing the weight of a foaming particle group by the volume of the foaming particle group calculated | required, and converting it into g / L.

(ロ)発泡粒子の独立気泡率は、下記により測定した。
得られた発泡粒子を密閉容器内に入れ、30℃で、0.1MPa の圧縮空気により48時間加圧処理し、放圧して30℃の大気圧下で10日間放置した。次いで、発泡粒子を大気圧下、相対湿度50%、23℃の条件の恒温室内にて10日間放置し養生した。次に同恒温室内にて、10日間放置した嵩体積約20cmの発泡粒子を測定用サンプルとし下記の通り水没法により正確に見かけの体積値:Vaを測定した。見かけの体積値:Vaを測定した測定用サンプルを十分に乾燥させた後、ASTM−D2856−70に記載されている手順Cに準じ、東芝・ベックマン株式会社製「空気比較式比重計930」により測定される測定用サンプルの真の体積値:Vxを測定した。そして、測定した見かけの体積値:Va及び真の体積値:Vxを基に、下記の式により独立気泡率を計算し、サンプル5個(N=5)の平均値を発泡粒子の独立気泡率とした。
(B) The closed cell ratio of the expanded particles was measured as follows.
The obtained foamed particles were put in a sealed container, pressurized at 30 ° C. with compressed air of 0.1 MPa for 48 hours, released, and left at 30 ° C. under atmospheric pressure for 10 days. Next, the foamed particles were allowed to stand for 10 days in a temperature-controlled room at atmospheric pressure and a relative humidity of 50% and 23 ° C. for curing. Next, using the foamed particles having a bulk volume of about 20 cm 3 left for 10 days in the same constant temperature room as a measurement sample, the apparent volume value: Va was accurately measured by the submersion method as described below. Apparent volume value: After sufficiently drying the measurement sample for which Va was measured, according to the procedure C described in ASTM-D2856-70, "Air comparison type hydrometer 930" manufactured by Toshiba Beckman Co., Ltd. The true volume value of the measurement sample to be measured: Vx was measured. Then, based on the measured apparent volume value: Va and true volume value: Vx, the closed cell ratio is calculated by the following formula, and the average value of 5 samples (N = 5) is calculated as the closed cell ratio of the expanded particles. It was.

(数6)
独立気泡率(%)=(Vx−W/ρ)×100/(Va−W/ρ)・・・(5)
ただし、
Vx:上記方法で測定される発泡粒子の真の体積、即ち、発泡粒子を構成する樹脂の容積と、発泡粒子内の独立気泡部分の気泡全容積との和(cm
Va:発泡粒子を、水の入ったメスシリンダーに沈めて、水位上昇分から測定される発泡粒子の見かけの体積(cm
W:発泡粒子測定用サンプルの重量(g)
ρ:発泡粒子を構成する樹脂の密度(g/cm
(Equation 6)
Closed cell ratio (%) = (Vx−W / ρ) × 100 / (Va−W / ρ) (5)
However,
Vx: the sum of the true volume of the expanded particles measured by the above method, that is, the volume of the resin constituting the expanded particles and the total volume of bubbles in the closed cell portion in the expanded particles (cm 3 )
Va: The apparent volume of the expanded particles (cm 3 ) measured from the rise in the water level after the expanded particles are submerged in a graduated cylinder containing water.
W: Weight of the foam particle measurement sample (g)
ρ: Density of resin constituting expanded particles (g / cm 3 )

(ii)発泡粒子成形体の物性測定方法、評価方法を以下に具体的に説明する。 (Ii) The physical property measurement method and evaluation method of the foamed particle molded body will be specifically described below.

(ハ)発泡粒子成形体の見かけ密度
発泡粒子成形体の成形表皮を有しない部分から50mm×50mm×25mmの試験片を切り出し、その試験片の容積:V2(L)と重量:W2(g)から求めた。
(C) Apparent density of foamed particle molded body A test piece of 50 mm × 50 mm × 25 mm was cut out from a portion having no molding skin of the foamed particle molded body, and the volume of the test piece: V2 (L) and weight: W2 (g) I asked for it.

(ニ)発泡粒子成形体の発泡粒子相互の融着率
縦200mm、横250mm、厚み50mmの金型キャビティで成形した成形体の縦200mm、横250mmの表面の一方の面に、カッターナイフで該成形体の長さを2等分するように、他方向に約10mmの切り込みをいれた後、切り込み部から成形体を折り曲げて破断する破壊テストにより、破断面に存在する発泡粒子の個数(n)に対する、材料破壊した発泡粒子の個数(m)の割合(m/n×100)の値を算出した。なお、発泡粒子相互の融着率の値が大きいほど、曲げ強度や引張強度といった機械的物性が良好な発泡成形体となる。上記発泡粒子の個数(n)は発泡粒子間で剥離した発泡粒子の個数と、発泡粒子内で材料破壊した発泡粒子の個数(m)の総和である。
(D) Fusion rate between foam particles of the foamed particle molded body The length of the molded body molded with a mold cavity of 200 mm long, 250 mm wide, and 50 mm thick is placed on one surface of a surface of 200 mm long and 250 mm wide with a cutter knife. In order to divide the length of the molded body into two equal parts, an incision of about 10 mm is made in the other direction, and then the number of foamed particles (n The ratio (m / n × 100) of the number (m) of foamed particles whose material was destroyed was calculated. In addition, it becomes a foaming molding with favorable mechanical properties, such as bending strength and tensile strength, so that the value of the fusion | melting rate between expanded particles is large. The number (n) of foamed particles is the sum of the number of foamed particles peeled between the foamed particles and the number of foamed particles (m) whose material has been destroyed in the foamed particles.

(ホ)発泡粒子成形体の収縮率
横の長さ250mmの金型寸法と、成形後80℃で24時間養生した該金型寸法に対応する発泡粒子成形体の長さ(X)とを基に下記式により発泡成形体の収縮率を算出し、評価した。
(E) Shrinkage ratio of foamed particle molded body Based on the dimension of the mold having a horizontal length of 250 mm and the length (X) of the foamed particle molded body corresponding to the mold dimension cured at 80 ° C. for 24 hours after molding. The shrinkage ratio of the foamed molded product was calculated from the following formula and evaluated.

(数7)
発泡成形体の収縮率(%)=[(250−X)/250]×100・・・(6)
(Equation 7)
Shrinkage rate (%) of foamed molded product = [(250−X) / 250] × 100 (6)

(へ)発泡粒子成形体の耐熱性(加熱寸法安定性)
発泡粒子成形体の加熱寸法安定性は以下により評価した。
JIS K6767(1999年)に記載されている熱的安定性(高温時の寸法安定性・B法)に準拠して測定した。得られた発泡粒子成形体の中央部分から、成形表皮を残した長さ150mm、幅150mm、成形体厚み(厚み50mm)の試験片を切り出した。該表皮部分の縦および横方向について、それぞれ3本の線の長さを測定し、その平均値を求めて、加熱前の寸法とし、次に、100℃に保ったギアオーブン内に試験片を入れ22時間加熱を行った後取り出し、23℃、相対湿度50%の恒温恒湿室に1時間放置し、加熱前後の寸法より下式を用いて加熱後の寸法を測定し、加熱寸法変化率を求めた。
(F) Heat resistance of molded foamed body (heated dimensional stability)
The heated dimensional stability of the foamed particle molded body was evaluated as follows.
It was measured in accordance with the thermal stability (dimensional stability at high temperature, method B) described in JIS K6767 (1999). A test piece having a length of 150 mm, a width of 150 mm, and a thickness of the molded body (thickness of 50 mm) was cut out from the center portion of the obtained foamed particle molded body. Measure the length of each of the three lines in the vertical and horizontal directions of the skin, determine the average value, and set the dimensions before heating. Then, place the test piece in a gear oven maintained at 100 ° C. Put it in for 22 hours and then take it out, leave it in a constant temperature and humidity chamber at 23 ° C and 50% relative humidity for 1 hour, measure the dimensions after heating using the following formula from the dimensions before and after heating, Asked.

(数8)
加熱寸法変化率(%)
=(加熱後の寸法−加熱前の寸法)/加熱前の寸法×100・・・(7)
(Equation 8)
Heating dimensional change rate (%)
= (Dimension after heating -dimension before heating) / dimension before heating × 100 (7)

(ト)発泡粒子成形体の体積固有抵抗
体積固有抵抗値は、JIS K7194(1994年)の測定法に準拠し、発泡成形体からスキン層を排除した試験片80mm×50mm×厚み20mmを切り出し、23℃、湿度50%の雰囲気に60時間放置したサンプルについて測定した。該サンプルを用い、1分後の抵抗率を測定し、得られた測定値から体積固有抵抗値を求めた。なお、測定箇所は、JISK7194にしたがい上記試験片の5箇所を測定した。
(G) Volume specific resistance of foamed particle molded body The volume specific resistance value is based on the measurement method of JIS K7194 (1994), and cut out a test piece 80 mm × 50 mm × thickness 20 mm from which the skin layer was removed from the foamed molded body. The measurement was performed on a sample that was left in an atmosphere of 23 ° C. and 50% humidity for 60 hours. Using this sample, the resistivity after 1 minute was measured, and the volume specific resistance value was obtained from the obtained measured value. In addition, the measurement location measured 5 places of the said test piece according to JISK7194.

(チ)発泡粒子成形体の外観
成形体の外観を以下の基準により評価した。
○:表面に凹凸、収縮による皺が殆ど認められない。
×:表面全体に凹凸、収縮による皺が認められる。
(H) Appearance of foamed particle molded body The appearance of the molded body was evaluated according to the following criteria.
○: Almost no wrinkles due to unevenness and shrinkage on the surface.
X: Wrinkles due to unevenness and shrinkage are observed on the entire surface.

実施例1
(導電性樹脂組成物の作製)
表1に示すポリフッ化ビニリデン系樹脂(フッ化ビニリデン−6フッ化プロピレン共重合体;樹脂1:ソルベイスペシャリティポリマーズ社製。製品名:Solef 20808)93重量%と、表2に示す導電性カーボンブラック(CB:ライオン社製。製品名:ケッチェンブラックEC300J、DBP吸油量:360ml/100g、BET比表面積:800m/g)7重量%を二軸押出機に投入し、溶融混練して導電性樹脂組成物(組成物1)を作製した。
Example 1
(Preparation of conductive resin composition)
93% by weight of polyvinylidene fluoride resin (vinylidene fluoride-6-propylene copolymer; resin 1: Solvay Specialty Polymers, Inc., product name: Solef 20808) shown in Table 1 and conductive carbon black shown in Table 2 (CB: manufactured by Lion Co., Ltd. Product name: Ketjen Black EC300J, DBP oil absorption: 360 ml / 100 g, BET specific surface area: 800 m 2 / g) 7% by weight is charged into a twin screw extruder, melt kneaded and conductive. A resin composition (Composition 1) was produced.

(樹脂粒子の作製)
上記組成物1に、気泡調整剤としてポリテトラフルオロエチレン(PTFE)を導電性樹脂組成物100重量部に対し0.15重量部添加し、内径40mmの単軸押出機で溶融混練し、該混練物を押出機先端部に取付けられた口金の小孔からストランド状に押出し、ストランドを冷却後切断して重量約4mgの樹脂粒子を得た。
(Production of resin particles)
0.15 parts by weight of polytetrafluoroethylene (PTFE) as a cell regulator is added to the composition 1 with respect to 100 parts by weight of the conductive resin composition, and the mixture is melt-kneaded with a single-screw extruder having an inner diameter of 40 mm. The product was extruded into a strand shape from a small hole in the die attached to the tip of the extruder, and the strand was cooled and cut to obtain resin particles having a weight of about 4 mg.

(発泡粒子の作製)
前記樹脂粒子1kgを分散媒の水3リットルと共に撹拌機を備えた5リットルの耐圧密閉容器内に仕込んだ。さらに分散媒中に、樹脂粒子100重量部に対し、分散剤としてカオリン0.3重量部、界面活性剤としてアルキルベンゼンスルホン酸ナトリウム0.004重量部、および硫酸アルミニウム0.01重量部を添加した。撹拌下で、表3の発泡粒子製造条件記載の発泡温度より5℃低い温度まで昇温して、該密閉容器内に発泡剤として二酸化炭素を表3に示す密閉容器内圧力より0.2MPa(G)低い圧力となるまで圧入し、その温度で15分間保持した。次いで表3に示す発泡温度まで昇温した後、表3に示す密閉容器内圧力となるように二酸化炭素を圧入し、高温側吸熱ピーク吸熱量が得られるように表3に示す発泡温度で15分間保持した。
その後、窒素にて背圧を加えて容器内圧力が一定になるように調整しつつ、発泡剤を含浸させた発泡性樹脂粒子を分散媒体とともに、容器内から大気圧下に放出して表3に示す発泡粒子を得た。
得られた発泡粒子について、見かけ密度、収縮率、高温側吸熱ピークの吸熱量及び全融解熱量、独立気泡率、平均気泡径などの諸物性を測定、評価した結果を表3に示す。
(Production of expanded particles)
1 kg of the resin particles were charged into a 5 liter pressure-resistant airtight container equipped with a stirrer together with 3 liters of water as a dispersion medium. Furthermore, 0.3 part by weight of kaolin as a dispersant, 0.004 part by weight of sodium alkylbenzene sulfonate and 0.01 part by weight of aluminum sulfate as surfactants were added to 100 parts by weight of the resin particles. Under stirring, the temperature was raised to a temperature 5 ° C. lower than the foaming temperature described in the foamed particle production conditions in Table 3, and carbon dioxide was added as a foaming agent in the sealed container to 0.2 MPa (from the pressure in the sealed container shown in Table 3). G) Press-fit until low pressure, and hold at that temperature for 15 minutes. Next, after the temperature was raised to the foaming temperature shown in Table 3, carbon dioxide was injected so that the pressure in the sealed container shown in Table 3 was reached, and the foaming temperature shown in Table 3 was 15 so that the high-temperature side endothermic peak endotherm was obtained. Hold for a minute.
Then, while adjusting the pressure inside the container to be constant by applying a back pressure with nitrogen, the foamable resin particles impregnated with the foaming agent are discharged together with the dispersion medium from the container to atmospheric pressure, and Table 3 Expanded particles shown in the following were obtained.
Table 3 shows the results obtained by measuring and evaluating the physical properties of the obtained expanded particles, such as the apparent density, the shrinkage rate, the endothermic amount of the high-temperature endothermic peak, the total heat of fusion, the closed cell ratio, and the average cell diameter.

(発泡粒子成形体の成形)
縦200mm、横250mm、厚さ50mmの平板成形金型を取付けた汎用の発泡粒子成形機を使用し、前記で得られた発泡粒子を、表4の成形条件に示す粒子内圧を付与した後、前記平板形成用金型のキャビティ内に充填し、表4に示す成形蒸気圧のスチームによって加熱し、型内成形を行って板状の発泡粒子成形体を得た。該発泡粒子成形体を80℃のオーブン中にて12時間養生してポリフッ化ビニリデン系樹脂発泡粒子成形体を得た。得られた発泡粒子成形体の諸物性を測定した。結果を表4に示す。
(Forming foamed particle compacts)
Using a general-purpose expanded particle molding machine equipped with a flat plate mold having a length of 200 mm, a width of 250 mm, and a thickness of 50 mm, and applying the internal pressure shown in the molding conditions of Table 4 to the expanded particles obtained above, Filled into the cavity of the flat plate forming mold, heated with steam having a molding vapor pressure shown in Table 4, and performed in-mold to obtain a plate-like foamed particle molded body. The foamed particle molded body was cured in an oven at 80 ° C. for 12 hours to obtain a polyvinylidene fluoride resin expanded particle molded body. Various physical properties of the obtained foamed particle molded body were measured. The results are shown in Table 4.

実施例2〜4においても、表3に記載した以外は、実施例1と同様にして発泡粒子を得た。結果を表3に示す。また、発泡粒子成形体においても、実施例1と同様にして発泡粒子成形体を得た。結果を表4に示す。   Also in Examples 2 to 4, expanded particles were obtained in the same manner as in Example 1 except that they were described in Table 3. The results are shown in Table 3. In addition, a foamed particle molded body was obtained in the same manner as in Example 1 for the foamed particle molded body. The results are shown in Table 4.

比較例1
表1に示す樹脂1に導電性カーボンブラックを配合することなく用いた他は、実施例1と同様に樹脂粒子を作製し、得られた樹脂粒子を用いて実施例1と同様にして発泡粒子を得た。得られた発泡粒子の諸物性を表3に示す。この発泡粒子を実施例1と同様の平板成形金型内で同様にして成形し、発泡粒子成形体を得た。得られた発泡粒子成形体の諸物性を表4にあわせて示す。
Comparative Example 1
Resin particles shown in Table 1 were used in the same manner as in Example 1 except that conductive carbon black was not used in the resin 1 and foamed particles were obtained in the same manner as in Example 1 using the obtained resin particles. Got. Table 3 shows the physical properties of the obtained expanded particles. The foamed particles were molded in the same manner as in the flat plate mold as in Example 1 to obtain a foamed particle molded body. Various physical properties of the obtained foamed particle molded body are shown together in Table 4.

比較例2
表1に示す樹脂2に導電性カーボンブラックを配合することなく用いた他は、実施例1と同様に樹脂粒子を作製し、得られた樹脂粒子を用いて実施例1と同様にして発泡粒子を得た。得られた発泡粒子の諸物性を表3に示す。この発泡粒子を実施例1と同様の平板成形金型内で同様にして成形し、発泡粒子成形体を得た。得られた発泡粒子成形体の諸物性を表4にあわせて示す。
Comparative Example 2
Resin particles shown in Table 1 were used in the same manner as in Example 1 except that conductive carbon black was not blended, and the obtained resin particles were used in the same manner as in Example 1 to obtain expanded particles. Got. Table 3 shows the physical properties of the obtained expanded particles. The foamed particles were molded in the same manner as in the flat plate mold as in Example 1 to obtain a foamed particle molded body. Various physical properties of the obtained foamed particle molded body are shown together in Table 4.

Figure 2015183137
Figure 2015183137

Figure 2015183137
Figure 2015183137

Figure 2015183137
Figure 2015183137

Figure 2015183137
Figure 2015183137

α DSC曲線における樹脂の融解開始温度に相当する点
β DSC曲線における樹脂の融解終了温度に相当する点
γ DSC曲線における固有吸熱ピークと高温側吸熱ピークとの間の谷部に相当するDSC曲線上の点
δ グラフの縦軸と平行な直線と点αと点βを結ぶ直線との交点
PTmc 1回目加熱のDSC曲線における樹脂の固有吸熱ピークの頂点温度
PTmd 1回目加熱のDSC曲線における樹脂の高温側吸熱ピークの頂点温度
Pc 1回目加熱のDSC曲線における固有吸熱ピーク
Pd 1回目加熱のDSC曲線における高温側吸熱ピーク
The point corresponding to the melting start temperature of the resin in the α DSC curve The point corresponding to the melting end temperature of the resin in the β DSC curve On the DSC curve corresponding to the valley between the intrinsic endothermic peak and the high temperature side endothermic peak in the DSC curve Point δ Intersection of a straight line parallel to the vertical axis of the graph and a straight line connecting points α and β PTmc Peak temperature of the intrinsic endothermic peak of the resin in the DSC curve of the first heating PTmd High temperature of the resin in the DSC curve of the first heating Peak temperature of side endothermic peak Pc Intrinsic endothermic peak in DSC curve of first heating Pd High temperature side endothermic peak in DSC curve of first heating

Claims (8)

ポリフッ化ビニリデン系樹脂を基材樹脂とする発泡粒子であって、
該ポリフッ化ビニリデン系樹脂の曲げ弾性率が450MPa以上であり、
該ポリフッ化ビニリデン系樹脂の230℃、荷重2.16kgにおけるメルトフローレイトが1g/10分以上であり、
前記基材樹脂にカーボンブラックが配合されており、
前記ポリフッ化ビニリデン系樹脂発泡粒子の見かけ密度が25〜700g/L
であることを特徴とするポリフッ化ビニリデン系樹脂発泡粒子。
Expanded particles using a polyvinylidene fluoride resin as a base resin,
The flexural modulus of the polyvinylidene fluoride resin is 450 MPa or more,
The melt flow rate at 230 ° C. and a load of 2.16 kg of the polyvinylidene fluoride resin is 1 g / 10 min or more,
Carbon black is blended in the base resin,
The apparent density of the polyvinylidene fluoride resin expanded particles is 25 to 700 g / L.
Polyvinylidene fluoride resin expanded particles, characterized in that
前記カーボンブラックのジブチルフタレート吸油量が200〜500ml/100gである請求項1記載のポリフッ化ビニリデン系樹脂発泡粒子。   The expanded polyvinylidene fluoride resin particles according to claim 1, wherein the carbon black has a dibutyl phthalate oil absorption of 200 to 500 ml / 100 g. 前記カーボンブラックの配合量が、基材樹脂100重量部に対し3〜15重量部である請求項1または2に記載のポリフッ化ビニリデン系樹脂発泡粒子。   The polyvinylidene fluoride resin expanded particles according to claim 1 or 2, wherein the amount of the carbon black is 3 to 15 parts by weight with respect to 100 parts by weight of the base resin. 熱流束示差走査熱量測定法により、前記発泡粒子を10℃/分の昇温速度で30℃から200℃まで加熱したときに得られる、1回目加熱のDSC曲線が、ポリフッ化ビニリデン系樹脂に固有の固有吸熱ピークと、該固有吸熱ピークより高温側に1つ以上の高温側吸熱ピークとを有し、前記1回目加熱のDSC曲線において、下記式(1)の条件を満足することを特徴とする請求項1〜3のいずれかに記載のポリフッ化ビニリデン系樹脂発泡粒子。
(数1)
0.05≦Eh/Et≦0.25・・・・・・(1)
(ただし、上記式中、Etは1回目加熱のDSC曲線の吸熱ピークの全融解熱量(J/g)、Ehは前記高温側吸熱ピークの融解熱量(J/g)を示す。)
The DSC curve of the first heating obtained when the foamed particles are heated from 30 ° C. to 200 ° C. at a rate of temperature increase of 10 ° C./min by the heat flux differential scanning calorimetry is unique to the polyvinylidene fluoride resin. And one or more high temperature side endothermic peaks on the higher temperature side than the intrinsic endothermic peak, and the DSC curve of the first heating satisfies the condition of the following formula (1): The expanded polyvinylidene fluoride resin particles according to any one of claims 1 to 3.
(Equation 1)
0.05 ≦ Eh / Et ≦ 0.25 (1)
(In the above formula, Et represents the total heat of fusion (J / g) of the endothermic peak of the DSC curve of the first heating, and Eh represents the heat of fusion (J / g) of the high temperature side endothermic peak.)
前記発泡粒子の見かけ密度が40〜250g/Lである請求項1〜4のいずれかに記載のポリフッ化ビニリデン系樹脂発泡粒子。   The polyvinylidene fluoride resin expanded particles according to any one of claims 1 to 4, wherein the expanded density of the expanded particles is 40 to 250 g / L. 前記発泡粒子の独立気泡率が80%以上である請求項1〜5のいずれかに記載のポリフッ化ビニリデン系樹脂発泡粒子。   The foamed polyvinylidene fluoride resin particles according to any one of claims 1 to 5, wherein the foamed particles have a closed cell ratio of 80% or more. ポリフッ化ビニリデン系樹脂を基材樹脂とする樹脂粒子を、密閉容器内において分散媒に分散させると共に、加熱下で発泡剤を含浸させて発泡性樹脂粒子とした後、前記発泡性樹脂粒子を分散媒と共に密閉容器内から密閉容器内の圧力よりも低圧下に放出して発泡粒子を製造する方法であって、
前記ポリフッ化ビニリデン系樹脂の、曲げ弾性率が450MPa以上であり、230℃、荷重2.16kgにおけるメルトフローレイトが1g/10分以上であり、前記基材樹脂にカーボンブラックが配合されていることを特徴とするポリフッ化ビニリデン系樹脂発泡粒子の製造方法。
Resin particles containing polyvinylidene fluoride resin as a base resin are dispersed in a dispersion medium in a closed container, and after impregnation with a foaming agent under heating to form expandable resin particles, the expandable resin particles are dispersed. A method for producing foamed particles by discharging the inside of a closed container together with a medium to a pressure lower than the pressure in the closed container,
The polyvinylidene fluoride resin has a flexural modulus of 450 MPa or more, a melt flow rate at 230 ° C. and a load of 2.16 kg of 1 g / 10 min or more, and carbon black is blended in the base resin. A method for producing expanded polyvinylidene fluoride resin particles characterized by the following.
請求項1〜6のいずれかに記載の発泡粒子を型内成形してなるポリフッ化ビニリデン系樹脂発泡粒子成形体。   A molded article of polyvinylidene fluoride resin foamed particles obtained by molding the foamed particles according to any one of claims 1 to 6 in a mold.
JP2014062703A 2014-03-25 2014-03-25 Polyvinylidene fluoride-based resin expanded particles, method for producing polyvinylidene fluoride-based resin expanded particles, and molded article of polyvinylidene fluoride-based resin expanded particles Active JP6228877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014062703A JP6228877B2 (en) 2014-03-25 2014-03-25 Polyvinylidene fluoride-based resin expanded particles, method for producing polyvinylidene fluoride-based resin expanded particles, and molded article of polyvinylidene fluoride-based resin expanded particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014062703A JP6228877B2 (en) 2014-03-25 2014-03-25 Polyvinylidene fluoride-based resin expanded particles, method for producing polyvinylidene fluoride-based resin expanded particles, and molded article of polyvinylidene fluoride-based resin expanded particles

Publications (2)

Publication Number Publication Date
JP2015183137A true JP2015183137A (en) 2015-10-22
JP6228877B2 JP6228877B2 (en) 2017-11-08

Family

ID=54350052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014062703A Active JP6228877B2 (en) 2014-03-25 2014-03-25 Polyvinylidene fluoride-based resin expanded particles, method for producing polyvinylidene fluoride-based resin expanded particles, and molded article of polyvinylidene fluoride-based resin expanded particles

Country Status (1)

Country Link
JP (1) JP6228877B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155746A1 (en) * 2018-02-06 2019-08-15 株式会社クレハ Vinylidene fluoride copolymer foamed body and method for producing foamed body
US11352450B2 (en) * 2018-04-25 2022-06-07 Kawasaki Kasei Chemicals Ltd. Photopolymerization sensitizer composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209224A (en) * 2009-03-10 2010-09-24 Jsp Corp Polyvinylidene fluoride resin expanded particle and polyvinylidene fluoride resin expanded particle molding
JP2014118548A (en) * 2012-12-19 2014-06-30 Jsp Corp Polyvinylidene fluoride resin foamed particle, manufacturing method of polyvinylidene fluoride resin foamed particle and polyvinylidene fluoride resin foamed particle molded body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209224A (en) * 2009-03-10 2010-09-24 Jsp Corp Polyvinylidene fluoride resin expanded particle and polyvinylidene fluoride resin expanded particle molding
JP2014118548A (en) * 2012-12-19 2014-06-30 Jsp Corp Polyvinylidene fluoride resin foamed particle, manufacturing method of polyvinylidene fluoride resin foamed particle and polyvinylidene fluoride resin foamed particle molded body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155746A1 (en) * 2018-02-06 2019-08-15 株式会社クレハ Vinylidene fluoride copolymer foamed body and method for producing foamed body
US11352450B2 (en) * 2018-04-25 2022-06-07 Kawasaki Kasei Chemicals Ltd. Photopolymerization sensitizer composition

Also Published As

Publication number Publication date
JP6228877B2 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
JP5582586B2 (en) Polyolefin resin foamed molded body
JP5498162B2 (en) Polypropylene resin foamed particles and molded articles thereof
KR20050021912A (en) Composition for polyolefin resin foam, foam of the same, and process for producing foam
WO2013094529A1 (en) Polypropylene-based resin foamed particles having excellent flame retardancy and conductivity and polypropylene-based resin in-mold foamed molded product
JP6632699B2 (en) Styrene-based resin expandable particles and method for producing the same, expanded particles, expanded molded article, and use thereof
KR102304059B1 (en) Process for foaming polyolefin compositions using a fluororesin/azodicarbonamide mixture as a nucleating agent
TWI691534B (en) Thermoplastic resin foaming particle
JP5943826B2 (en) Polyvinylidene fluoride-based resin expanded particles, method for producing polyvinylidene fluoride-based resin expanded particles, and molded article of polyvinylidene fluoride-based resin expanded particles
JP5314411B2 (en) Method for producing polypropylene resin expanded particle molded body, and molded body
JP6228877B2 (en) Polyvinylidene fluoride-based resin expanded particles, method for producing polyvinylidene fluoride-based resin expanded particles, and molded article of polyvinylidene fluoride-based resin expanded particles
JP4157399B2 (en) Method for producing expanded polypropylene resin particles, expanded polypropylene resin particles, and expanded foam in polypropylene resin mold
JP5044589B2 (en) Polyvinylidene fluoride-based resin foamed particles, and polyvinylidene fluoride-based resin foamed particles
JP5041843B2 (en) Low thermal conductive heat resistant foam and method for producing the same
WO2018084245A1 (en) Foam particles and foam particle molded body
JP2006213877A (en) Polypropylene resin pre-expanded particle and expanded molding obtainable therefrom
JP2018100380A (en) Polystyrene-based resin foamable particle and method for producing the same, polystyrene-based resin foamed particle and method for producing the same, and polystyrene-based resin foamed molded body and method for producing the same
US20160141069A1 (en) Electroconductive polypropylene resin foamed particles and electroconductive polypropylene resin in-mold foam molded article having excellent flame retardancy and electric conductivity
JP2016121325A (en) Styrenic resin expanded molded body, manufacturing method therefor and use thereof
JP5758586B2 (en) Polyethylene resin expanded particles and polyethylene resin in-mold expanded molding
JP2005344082A (en) Method for manufacturing propylene polymer foam
JP2017132972A (en) Styrenic resin foamable particle, styrenic resin foamed particle and styrenic resin foamed molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6228877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250