JPH05114852A - Low-noise output driving circuit - Google Patents

Low-noise output driving circuit

Info

Publication number
JPH05114852A
JPH05114852A JP3274225A JP27422591A JPH05114852A JP H05114852 A JPH05114852 A JP H05114852A JP 3274225 A JP3274225 A JP 3274225A JP 27422591 A JP27422591 A JP 27422591A JP H05114852 A JPH05114852 A JP H05114852A
Authority
JP
Japan
Prior art keywords
circuit
type mosfet
output
drive circuit
driving circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3274225A
Other languages
Japanese (ja)
Other versions
JP3271269B2 (en
Inventor
Masami Hashimoto
正美 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP27422591A priority Critical patent/JP3271269B2/en
Publication of JPH05114852A publication Critical patent/JPH05114852A/en
Application granted granted Critical
Publication of JP3271269B2 publication Critical patent/JP3271269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the low-noise output driving circuit. CONSTITUTION:A 1st driving circuit 10 which has an MOSFET, which has its gate and drain connected to each other to decrease the threshold voltage, on a power source side and a 2nd driving circuit 11 of normal CMOS inverter constitution are prepared and a delay control circuit 12 performs control so that the 1st driving circuit 10 operates first and the 2nd driving circuit 11 operates next. In this constitution, the 1st driving circuit NO leaves a voltage drop as large as the threshold voltage, so the potential does not rise up to a power supply potential and then reaches the power supply potential by the 2nd driving circuit. This method suppresses an excessive transient current at the time of output variation and eliminates overshooting and undershooting. Consequently, the transient current is made small and a noise is reduced. Further, the output level varies in two stages, so the power consumption by the charging and discharging of a capacitive load is reducible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体集積回路における
出力駆動回路の低雑音化に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to noise reduction of an output drive circuit in a semiconductor integrated circuit.

【0002】[0002]

【従来の技術】従来の絶縁ゲート電界効果型トランジス
タ(以下MOSFETと略す)を用いた相補型の出力駆
動回路は図4に示すように正極の電源端子+VDDにP型
のMOSFETのソース電極を接続し、負極の電源端子
−VSSにN型のMOSFETのソース電極を接続し、前
記P型、N型のMOSFETのそれぞれのドレイン電
極、及びゲート電極をそれぞれ互いに接続する構成とな
っていた。
2. Description of the Related Art A complementary output drive circuit using a conventional insulated gate field effect transistor (hereinafter abbreviated as MOSFET) connects a source electrode of a P-type MOSFET to a positive power supply terminal + VDD as shown in FIG. The source electrode of the N-type MOSFET is connected to the negative power supply terminal -VSS, and the drain electrodes and the gate electrodes of the P-type and N-type MOSFETs are connected to each other.

【0003】[0003]

【発明が解決しようとする課題】さて、前述した従来回
路では出力電位は図5に示すように+VDDから−VSSま
での電源いっぱいに振れる、更には過渡的に電源電位を
越えて、オーバーシュート、アンダーシュートを引き起
こすので駆動能力を大きくするとともに出力電位が変化
する際の過渡電流による雑音が過大となって他の回路に
悪影響を与えるという問題点があった。
In the above-mentioned conventional circuit, the output potential swings from + VDD to -VSS to the full power source as shown in FIG. Since undershoot is caused, there is a problem that the driving capability is increased and the noise due to the transient current when the output potential changes becomes excessive and adversely affects other circuits.

【0004】そこで本発明はこのような問題点を解決す
るもので、その目的とするところは出力電位が変化する
際の過渡電流による雑音発生の少ない出力駆動回路を提
供することにある。
Therefore, the present invention solves such a problem, and an object of the present invention is to provide an output drive circuit in which noise is less generated due to a transient current when the output potential changes.

【0005】[0005]

【課題を解決するための手段】本発明の低雑音駆動回路
はa)絶縁ゲート電界効果型トランジスタを用いた半導
体集積回路において、b)正極の電源端子にソース電極
を接続し、かつゲート電極とドレイン電極を互いに接続
した第1のP型MOSFETと、ソース電極を前記第1
のP型MOSFETのドレイン電極に接続した第2のP
型MOSFETと、負極の電源端子にソース電極を接続
し、かつゲート電極とドレイン電極を互いに接続した第
1のN型MOSFETと、ソース電極を前記第1のN型
MOSFETのドレイン電極に接続した第2のN型MO
SFETを具備し、かつ前記第2のP型MOSFETと
前記第2のN型MOSFETのそれぞれのゲート電極を
接続して入力端子とし、またそれぞれのドレイン電極を
接続して出力端子とした第1の駆動回路と、c)正極の
電源端子にソース電極を接続した第3のP型MOSFE
Tと、負極の電源端子にソース電極を接続した第3のN
型MOSFETを具備し、かつ前記第3のP型MOSF
ETと前記第3のN型MOSFETのそれぞれのドレイ
ン電極を互いに接続して出力端子とした第2の駆動回路
と、d)遅延素子と信号制御素子からなる遅延制御回路
からなり、e)前記第1の駆動回路の入力端子は前記遅
延制御回路の入力信号端子に接続され、前記遅延制御回
路の第1出力信号端子及び第2出力信号端子は前記第2
の駆動回路の第3のP型MOSFET及び第3のN型M
OSFETのゲート電極にそれぞれ接続され、前記第1
の駆動回路と第2の駆動回路の出力端子はそれぞれ互い
に接続されたことを特徴とする。
A low noise drive circuit according to the present invention comprises: a) a semiconductor integrated circuit using an insulated gate field effect transistor, and b) a source electrode connected to a positive power supply terminal and a gate electrode. A first P-type MOSFET in which drain electrodes are connected to each other and a source electrode in the first
Second P connected to the drain electrode of the P-type MOSFET of
-Type MOSFET, a first N-type MOSFET in which a source electrode is connected to a negative power supply terminal, and a gate electrode and a drain electrode are connected to each other, and a source electrode is connected to a drain electrode in the first N-type MOSFET 2 N-type MO
A first FET including an SFET and having gate electrodes of the second P-type MOSFET and the second N-type MOSFET connected to each other as input terminals, and drain electrodes thereof connected to each other as output terminals; A driving circuit and c) a third P-type MOSFE in which a source electrode is connected to a positive power supply terminal.
T and a third N in which the source electrode is connected to the negative power supply terminal
Type MOSFET, and the third P-type MOSF
ET and a second drive circuit that connects the respective drain electrodes of the third N-type MOSFETs to each other as an output terminal, d) a delay control circuit including a delay element and a signal control element, and e) the second The input terminal of the first drive circuit is connected to the input signal terminal of the delay control circuit, and the first output signal terminal and the second output signal terminal of the delay control circuit are the second output signal terminal.
Third P-type MOSFET and third N-type M of the driving circuit of
The gate electrodes of the OSFETs are respectively connected to the first
The output terminals of the drive circuit and the second drive circuit are connected to each other.

【0006】[0006]

【作用】本発明の上記の構成によれば+VDD側にN型M
OSFET、−VSS側にP型MOSFETを用いた第1
の駆動回路によって初め出力電位が変化するのでこの初
期の段階では出力電位が電源電位いっぱいに振りきれる
ことがなく、出力電位が変化する際の過渡電流を抑える
ことが出来、またオーバーシュートやアンダーシュート
もなく雑音の発生の少ない出力駆動回路となる。
According to the above configuration of the present invention, the N type M is provided on the + VDD side.
OSFET, first using P-type MOSFET on -VSS side
Since the output potential changes at first by the drive circuit of, the output potential does not swing to the full power supply potential at this initial stage, transient current when the output potential changes can be suppressed, and overshoot and undershoot. The output drive circuit has less noise.

【0007】[0007]

【実施例】図1は本発明の第1の実施例を示す回路図で
ある。図1において破線10で囲まれた回路が第1の駆
動回路であり、破線11で囲まれた回路が第2の駆動回
路であり、破線12で囲まれた回路が遅延制御回路であ
る。第1の駆動回路10においてP型MOSFET15
のソース電極は正極の電源電極+VDDに接続され、かつ
ゲート電極とドレイン電極は互いに接続されている。P
型MOSFET16のソース電極は前記P型MOSFE
T15のドレイン電極に接続されている。N型MOSF
ET17のソース電極は負極の電源電極−VSSに接続さ
れ、かつゲート電極とドレイン電極は互いに接続されて
いる。N型MOSFET18のソース電極は前記N型M
OSFET17のドレイン電極に接続されている。P型
MOSFET16とN型MOSFET18のそれぞれの
ゲート電極は互いに接続され、かつ入力端子13に接続
されており、またそれぞれのドレイン電極は互いに接続
され、かつ出力端子14に接続されている。第2の駆動
回路11においてP型MOSFET19のソース電極は
+VDDに接続され、N型MOSFET20のソース電極
は−VSSに接続され、P型MOSFET19とN型MO
SFET18のそれぞれのドレイン電極は互いに接続さ
れており、かつ出力端子14に接続されている。遅延制
御回路12は遅延素子の役目をする2個のインバータ回
路23、24とOR回路21とAND回路22によって
構成されている。入力端子13はインバータ回路23の
入力端子に接続され、インバータ回路23の出力信号端
子はインバータ回路24の入力信号端子に接続されてい
る。OR回路21とAND回路22のそれぞれの第1ゲ
ートにインバータ回路25の出力信号端子が接続され、
それぞれ第2ゲートに入力端子13が接続されている。
OR回路21の出力信号端子は第2の駆動回路11の中
のP型MOSFET19のゲート電極に接続され、AN
D回路22の出力信号端子は第2の駆動回路11の中の
N型MOSFET20のゲート電極に接続されている。
1 is a circuit diagram showing a first embodiment of the present invention. In FIG. 1, a circuit surrounded by a broken line 10 is a first drive circuit, a circuit surrounded by a broken line 11 is a second drive circuit, and a circuit surrounded by a broken line 12 is a delay control circuit. In the first drive circuit 10, the P-type MOSFET 15
Has a source electrode connected to the positive power supply electrode + VDD, and a gate electrode and a drain electrode connected to each other. P
The source electrode of the MOSFET 16 is the P-type MOSFET.
It is connected to the drain electrode of T15. N-type MOSF
The source electrode of ET17 is connected to the negative power supply electrode -VSS, and the gate electrode and drain electrode are connected to each other. The source electrode of the N-type MOSFET 18 is the N-type M
It is connected to the drain electrode of the OSFET 17. The gate electrodes of the P-type MOSFET 16 and the N-type MOSFET 18 are connected to each other and to the input terminal 13, and their drain electrodes are connected to each other and to the output terminal 14. In the second drive circuit 11, the source electrode of the P-type MOSFET 19 is connected to + VDD, the source electrode of the N-type MOSFET 20 is connected to -VSS, and the P-type MOSFET 19 and the N-type MO are connected.
The drain electrodes of the SFET 18 are connected to each other and to the output terminal 14. The delay control circuit 12 is composed of two inverter circuits 23 and 24, which function as delay elements, an OR circuit 21 and an AND circuit 22. The input terminal 13 is connected to the input terminal of the inverter circuit 23, and the output signal terminal of the inverter circuit 23 is connected to the input signal terminal of the inverter circuit 24. The output signal terminal of the inverter circuit 25 is connected to the first gates of the OR circuit 21 and the AND circuit 22, respectively.
An input terminal 13 is connected to each second gate.
The output signal terminal of the OR circuit 21 is connected to the gate electrode of the P-type MOSFET 19 in the second drive circuit 11, and AN
The output signal terminal of the D circuit 22 is connected to the gate electrode of the N-type MOSFET 20 in the second drive circuit 11.

【0008】さて入力端子13に低電位の信号が入ると
N型MOSFET18は直ちにオフ(OFF)し、また
N型MOSFET20もOR回路22を通じて直ちにオ
フする。また第1の駆動回路10の中のP型MOSFE
T16は直ちにオン(ON)する。しかし第2の駆動回
路11の中のP型MOSFET19は入力端子13の信
号が遅延素子の役目をするインバータ回路23、24を
経てOR回路21の出力が低電位となるまでにオンしな
い。P型MOSFETのスレッショルド電圧をVTPとす
ればP型MOSFET15はゲート電極とドレイン電極
を互いに接続しているので、ドレイン電極の電位はソー
ス電極の電位VDDとの間で少なくともスレッショルド電
圧VTP分だけの電位差が残る。したがってP型MOSF
ET16がオンした後、出力端子14の電位が(VDD−
VTP)に達すると、もはやP型MOSFET15、16
を通して+VDDの電源から出力端子14へ電流を流しこ
む能力は無くなる。一方、インバータ回路23、24を
経て遅れてきた信号がOR回路21を通して第2の駆動
回路11の中のP型MOSFET19が次にオンし、出
力端子14は+VDDのレベルにまで達する。以上の様子
を描いたのが図2の立ち上がり時の波形である。また入
力端子13に高電位の信号が入るとP型M0SFET1
6は直ちにオフし、またP型MOSFET19もOR回
路21を通して直ちにオフする。また第1の駆動回路1
0の中のN型MOSFETは18は直ちにオンするが第
2の駆動回路11の中のN型MOSFET20は入力端
子13の信号が遅延素子の役目をするインバータ回路2
3、24を経てAND回路22の出力が高電位となるま
ではオンしない。N型MOSFETのスレッショルド電
圧をVTNとすればN型MOSFET17はゲート電極と
ドレイン電極を互いに接続しているのでドレイン電極の
電位はソース電極の電位0(−VSS)との間で少なくと
もスレッショルド電圧VTN分だけの電位差が残る。した
がってN型MOSFET18がオンした後、出力端子1
4の電位がVTNに達すると、もはやN型MOSFET1
7、18を通して0(−VSS)の電源から出力端子14
へ電流を流しこむ能力は無くなる。一方、インバータ回
路23、24を経て遅れてきた信号がAND回路22を
通して第2の駆動回路11の中のN型MOSFET20
が次にオンし、出力端子14は−VSSの0レベルにまで
達する。以上の様子を描いたものが図2の立ち下がり時
の波形である。
When a low potential signal is input to the input terminal 13, the N-type MOSFET 18 is immediately turned off (OFF), and the N-type MOSFET 20 is immediately turned off through the OR circuit 22. In addition, the P-type MOSFE in the first drive circuit 10
T16 turns on immediately (ON). However, the P-type MOSFET 19 in the second drive circuit 11 does not turn on until the output of the OR circuit 21 becomes a low potential via the inverter circuits 23 and 24 in which the signal at the input terminal 13 functions as a delay element. If the threshold voltage of the P-type MOSFET is VTP, the gate electrode and the drain electrode of the P-type MOSFET 15 are connected to each other. Therefore, the potential of the drain electrode differs from the potential VDD of the source electrode by a potential difference of at least the threshold voltage VTP. Remains. Therefore, P-type MOSF
After the ET16 is turned on, the potential of the output terminal 14 becomes (VDD-
When VTP) is reached, it is no longer P-type MOSFETs 15 and 16
There is no ability to pass current from the + VDD power supply to the output terminal 14 through. On the other hand, the signal delayed through the inverter circuits 23 and 24 passes through the OR circuit 21, the P-type MOSFET 19 in the second drive circuit 11 is turned on next, and the output terminal 14 reaches the level of + VDD. The above waveform is the waveform at the time of rising in FIG. When a high potential signal is input to the input terminal 13, the P-type M0SFET1
6 turns off immediately, and the P-type MOSFET 19 also turns off immediately through the OR circuit 21. In addition, the first drive circuit 1
The N-type MOSFET 0 in 0 immediately turns on 18, but the N-type MOSFET 20 in the second drive circuit 11 uses the inverter circuit 2 in which the signal at the input terminal 13 functions as a delay element.
It does not turn on until the output of the AND circuit 22 becomes a high potential via 3 and 24. If the threshold voltage of the N-type MOSFET is VTN, the gate electrode and the drain electrode of the N-type MOSFET 17 are connected to each other. Only the potential difference remains. Therefore, after the N-type MOSFET 18 turns on, the output terminal 1
When the potential of 4 reaches VTN, it is no longer N-type MOSFET1
Output terminal 14 from 0 (-VSS) power supply through 7 and 18.
It loses the ability to draw current into. On the other hand, the signal delayed after passing through the inverter circuits 23 and 24 passes through the AND circuit 22 and the N-type MOSFET 20 in the second drive circuit 11.
Next turns on, and the output terminal 14 reaches the 0 level of -VSS. The above waveform is the waveform at the time of falling in FIG.

【0009】以上、立ち上がりの場合は第1の駆動回路
のよって、まず(VDD−VTP)まで出力電位が上昇した
後、第2の駆動回路によって+VDDに達し、立ち下がり
の場合は第1の駆動回路によってまずVTNまで出力電位
が低下した後、第2の駆動回路によって−VSS(0電
位)に達する動作をする。したがって最終的には出力端
子の電位は電源の間を振り切れるのであるが出力変化の
初期の段階では第1の駆動回路のみが動作し、電源電圧
間より狭い間しか変化しないので過渡電流も低く抑えら
れ、オーバーシュートやアンダーシュートも起こらず、
低雑音の出力駆動回路となっていることがわかる。
As described above, in the case of rising, the first driving circuit first raises the output potential to (VDD-VTP), then the second driving circuit reaches + VDD, and in the case of falling, the first driving. The circuit first reduces the output potential to VTN, and then the second drive circuit operates to reach -VSS (0 potential). Therefore, the potential of the output terminal eventually swings between the power supplies, but at the initial stage of output change, only the first drive circuit operates and changes only within a narrower range than the power supply voltage, so the transient current is low. It is suppressed, overshoot and undershoot do not occur,
It can be seen that the output drive circuit has low noise.

【0010】なお、次に出力端子に静電容量性の負荷が
ついた場合の充放電による消費電力について説明する。
出力信号の周波数をf、電源電圧をVDD、負荷の静電容
量をCLとすれば図4の様な従来の回路の様に直接、電
源電圧VDD間で充放電を繰り返すと、その時の消費電力
POは P0=f・CL・VDD2 (101) となる。一方、本発明の第1の実施例である図1の回路
の様に立ち上がり時は、まず出力端子を(VDD−VTP)
として、次にVDDとし、立ち下がり時は、まずVTNとし
て次に0とする場合において簡単の為、VTH=VTP=V
TNとすれば消費電力は 第1段階で f・CL・(VDD−VTH)2 第2段階で f・CL・VTH2 となるので、トータルの消費電力PNは PN=f・CL・(VDD−VTH)2+f・CL・VTH2 (102) となる。したがって従来の方式の消費電力P0と本発明
の方式の消費電流PNとの差△Pは(101)式と(1
02)式より △P=P0−PN=f・CL・2(VDD−VTH)VTH (103) となる。通常は VDD>VTH,VTH>0であるので△P
>0 つまり P0>PN ・・・(104) となる。したがって(104)式より、本発明の回路方
式は従来の回路方式より静電容量性負荷の充放電の消費
電力を低減していることがわかる。
The power consumption due to charging / discharging when a capacitive load is applied to the output terminal will be described below.
If the frequency of the output signal is f, the power supply voltage is VDD, and the capacitance of the load is CL, the power consumption at that time is repeated directly between the power supply voltages VDD as in the conventional circuit as shown in FIG. PO becomes P0 = f · CL · VDD 2 (101). On the other hand, at the time of rising as in the circuit of FIG. 1 which is the first embodiment of the present invention, first, the output terminal is (VDD-VTP).
For the sake of simplicity, VTH = VTP = V for the following reason.
If TN, the power consumption is f · CL · (VDD-VTH) 2 in the first stage and f · CL · VTH 2 in the second stage, so the total power consumption PN is PN = f · CL · (VDD- VTH) 2 + f · CL · VTH 2 (102). Therefore, the difference ΔP between the power consumption P0 of the conventional method and the current consumption PN of the method of the present invention is expressed by equations (101) and (1).
From equation (02), ΔP = P0-PN = f.CL.2 (VDD-VTH) VTH (103). Normally VDD> VTH and VTH> 0, so ΔP
> 0, that is, P0> PN (104). Therefore, it can be seen from the equation (104) that the circuit system of the present invention has lower power consumption for charging and discharging the capacitive load than the conventional circuit system.

【0011】以上、図1の回路で本発明の一実施例を説
明したが、図1の回路のみに本発明は限らない。例えば
インバータ回路23、24は遅延素子の役目をしている
ので抵抗でも良く、またインバータ回路の個数も偶数個
であれば何個でも同様の役目をする。
Although the embodiment of the present invention has been described with reference to the circuit of FIG. 1, the present invention is not limited to the circuit of FIG. For example, since the inverter circuits 23 and 24 function as delay elements, the inverter circuits 23 and 24 may be resistors, and the same number of inverter circuits may be used as long as the number is even.

【0012】また第2の駆動回路11を制御する遅延制
御回路12の中のOR回路21、またAND回路22も
遅延素子の役目のインバータ回路の段数を奇数個にした
場合や、第2の駆動回路の中にMOSFET17、18
等を駆動するインバータ回路を設けた場合には、それに
応じた論理回路に変更することになる。
Further, the OR circuit 21 and the AND circuit 22 in the delay control circuit 12 for controlling the second drive circuit 11 are also used when the number of stages of the inverter circuit which functions as a delay element is odd. MOSFET 17 and 18 in the circuit
When an inverter circuit for driving the above is provided, the logic circuit is changed accordingly.

【0013】また第1、第2の駆動回路の各MOSFE
Tの駆動能力や遅延制御回路12の中の遅延素子の遅延
時間は本発明の低雑音出力駆動回路としての駆動能力や
スルーレートや許容雑音限度に応じ最適値に調整するこ
とになる。
Further, each MOSFE of the first and second drive circuits
The drive capability of T and the delay time of the delay element in the delay control circuit 12 are adjusted to optimum values according to the drive capability, the slew rate and the allowable noise limit as the low noise output drive circuit of the present invention.

【0014】また図3は出力電位の供給の仕方を3段階
に拡張したもので、立ち上がり時において第1段階は
(VDD−2VTP)とし、第2段階で(VDD−VTP)、第
3段階でVDDとしている。また立ち下がり時は第1段階
で2VTN、第2段階でVTN、第3段階で0とし、更に低
雑音、低消費電力化を図るように駆動回路を3組用意
し、かつそれに応じて遅延制御回路が変更されている。
同様に4段階以上の回路も構成できる。
FIG. 3 is a diagram in which the method of supplying the output potential is expanded to three stages. The first stage is (VDD-2VTP) at the time of rising, the second stage is (VDD-VTP), and the third stage is It is VDD. At the time of falling, 2 VTN at the first stage, VTN at the second stage, and 0 at the third stage, three sets of drive circuits are prepared to further reduce noise and power consumption, and delay control is performed accordingly. The circuit has been changed.
Similarly, a circuit having four or more stages can be configured.

【0015】また以上の例は+VDD側も、−VSS側も雑
音が出ないように構成したものを示したが、どちらか側
の雑音は問題にならない場合には片側のみ対策した回路
であっても良い。
In the above example, the noise is not generated on either the + VDD side or the -VSS side. However, if the noise on either side does not cause a problem, it is a circuit in which only one side is dealt with. Is also good.

【0016】[0016]

【発明の効果】以上述べたように本発明によれば出力電
位が切り替わる際に電源電圧まで振り切れることのない
第1の駆動回路がまず動作し、その後、第2の駆動回路
によって電源電位に出力電位が達するという2段階の動
作をするので過渡電流も低く抑えられ、オーバーシュー
トやアンダーシュートも起こらないので高駆動能力を持
ちながら低雑音の出力駆動回路を提供するという効果が
ある。
As described above, according to the present invention, when the output potential is switched, the first drive circuit that does not swing up to the power supply voltage operates first, and then the second drive circuit changes the power supply potential to the power supply potential. Since the two-stage operation of reaching the output potential is performed, the transient current can be suppressed to a low level, and neither overshoot nor undershoot occurs, so that there is an effect of providing an output drive circuit having high drive capability and low noise.

【0017】また出力レベルが異なる第1の駆動回路と
第2の駆動回路によって2段階で負荷を充放電すること
になるので充放電電力を減らすという効果がある。
Further, since the load is charged / discharged in two stages by the first drive circuit and the second drive circuit having different output levels, there is an effect of reducing charge / discharge power.

【0018】また消費電力が減るので発熱を抑えられ、
かつ電気特性の変化の防止や、品質保証の向上が期待で
きるという効果がある。
Since the power consumption is reduced, heat generation can be suppressed,
In addition, it is possible to prevent changes in electrical characteristics and improve quality assurance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す回路図。FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】図1の回路の動作を示す出力波形図。FIG. 2 is an output waveform diagram showing the operation of the circuit of FIG.

【図3】本発明の第2の実施例を示す回路図。FIG. 3 is a circuit diagram showing a second embodiment of the present invention.

【図4】従来の出力駆動回路の回路図。FIG. 4 is a circuit diagram of a conventional output drive circuit.

【図5】図4の回路の動作を示す出力波形図。FIG. 5 is an output waveform diagram showing the operation of the circuit of FIG.

【符号の説明】[Explanation of symbols]

10・・・第1の駆動回路 11・・・第2の駆動回路 12・・・遅延制御回路 13・・・入力端子 14・・・出力端子 15、16、19・・・P型MOSFET 17、18、20・・・N型MOSFET 23、24・・・インバータ回路 21・・・OR回路 22・・・AND回路 10 ... 1st drive circuit 11 ... 2nd drive circuit 12 ... Delay control circuit 13 ... Input terminal 14 ... Output terminal 15, 16, 19 ... P-type MOSFET 17, 18, 20 ... N-type MOSFET 23, 24 ... Inverter circuit 21 ... OR circuit 22 ... AND circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H03K 19/003 Z 8941−5J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H03K 19/003 Z 8941-5J

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】a)絶縁ゲート電界効果型トランジスタ
(以下MOSFETと略す)を用いた半導体集積回路に
おいて、 b)正極の電源端子にソース電極を接続し、かつゲート
電極とドレイン電極を互いに接続した第1のP型MOS
FETと、ソース電極を前記第1のP型MOSFETの
ドレイン電極に接続した第2のP型MOSFETと、負
極の電源端子にソース電極を接続し、かつゲート電極と
ドレイン電極を互いに接続した第1のN型MOSFET
と、ソース電極を前記第1のN型MOSFETのドレイ
ン電極に接続した第2のN型MOSFETを具備し、か
つ前記第2のP型MOSFETと前記第2のN型MOS
FETのそれぞれのゲート電極を接続して入力端子と
し、またそれぞれのドレイン電極を接続して出力端子と
した第1の駆動回路と、 c)正極の電源端子にソース電極を接続した第3のP型
MOSFETと、負極の電源端子にソース電極を接続し
た第3のN型MOSFETを具備し、かつ前記第3のP
型MOSFETと前記第3のN型MOSFETのそれぞ
れのドレイン電極を互いに接続して出力端子とした第2
の駆動回路と、 d)遅延素子と信号制御素子からなる遅延制御回路から
なり、 e)前記第1の駆動回路の入力端子は前記遅延制御回路
の入力信号端子に接続され、前記遅延制御回路の第1出
力信号端子及び第2出力信号端子は前記第2の駆動回路
の第3のP型MOSFET及び第3のN型MOSFET
のゲート電極にそれぞれ接続され、前記第1の駆動回路
と第2の駆動回路の出力端子はそれぞれ互いに接続され
たことを特徴とする低雑音出力駆動回路。
1. A semiconductor integrated circuit using an insulated gate field effect transistor (hereinafter abbreviated as MOSFET), b) a source electrode connected to a positive power supply terminal, and a gate electrode and a drain electrode connected to each other. First P-type MOS
An FET, a second P-type MOSFET having a source electrode connected to the drain electrode of the first P-type MOSFET, a source electrode connected to a negative power supply terminal, and a gate electrode and a drain electrode connected to each other N-type MOSFET
And a second N-type MOSFET having a source electrode connected to the drain electrode of the first N-type MOSFET, and the second P-type MOSFET and the second N-type MOS.
A first drive circuit in which each gate electrode of the FET is connected to serve as an input terminal and each drain electrode is connected to serve as an output terminal; and c) A third P circuit in which a source electrode is connected to a positive power supply terminal. -Type MOSFET and a third N-type MOSFET in which a source electrode is connected to a negative power source terminal, and the third P-type MOSFET is provided.
Second drain of the third MOSFET and the third N-type MOSFET are connected to each other as an output terminal
D) a delay control circuit including a delay element and a signal control element, e) an input terminal of the first drive circuit is connected to an input signal terminal of the delay control circuit, and The first output signal terminal and the second output signal terminal are the third P-type MOSFET and the third N-type MOSFET of the second drive circuit.
A low-noise output drive circuit connected to respective gate electrodes of the first drive circuit and output terminals of the first drive circuit and the second drive circuit.
JP27422591A 1991-10-22 1991-10-22 Output drive circuit Expired - Fee Related JP3271269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27422591A JP3271269B2 (en) 1991-10-22 1991-10-22 Output drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27422591A JP3271269B2 (en) 1991-10-22 1991-10-22 Output drive circuit

Publications (2)

Publication Number Publication Date
JPH05114852A true JPH05114852A (en) 1993-05-07
JP3271269B2 JP3271269B2 (en) 2002-04-02

Family

ID=17538766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27422591A Expired - Fee Related JP3271269B2 (en) 1991-10-22 1991-10-22 Output drive circuit

Country Status (1)

Country Link
JP (1) JP3271269B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225844B1 (en) 1998-04-20 2001-05-01 Nec Corporation Output buffer circuit that can be stably operated at low slew rate
JP2019134622A (en) * 2018-02-01 2019-08-08 ローム株式会社 Driver circuit and switching regulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225844B1 (en) 1998-04-20 2001-05-01 Nec Corporation Output buffer circuit that can be stably operated at low slew rate
JP2019134622A (en) * 2018-02-01 2019-08-08 ローム株式会社 Driver circuit and switching regulator

Also Published As

Publication number Publication date
JP3271269B2 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
US4779014A (en) BiCMOS logic circuit with additional drive to the pull-down bipolar output transistor
JP2996301B2 (en) Load and time adaptive current supply drive circuit
JPH0720060B2 (en) Output circuit device
US5151620A (en) CMOS input buffer with low power consumption
JPH0158896B2 (en)
US6696858B2 (en) Level-shifting circuit
US4920287A (en) Output buffer having reduced electric field degradation
KR900000487B1 (en) Logic gate circuit
JP2002208849A (en) Circuit for driving inductive load
US6236195B1 (en) Voltage variation correction circuit
US4468576A (en) Inverter circuit having transistors operable in a shallow saturation region for avoiding fluctuation of electrical characteristics
JPH05114852A (en) Low-noise output driving circuit
EP0328168B1 (en) Push-pull output circuit which is free from hot carrier stress
JPH05114853A (en) Low-noise output driving circuit
JPH10285011A (en) Output driver circuit
JPH06152374A (en) Output circuit
JPH05114851A (en) Low-noise output driving circuit
JP2758735B2 (en) Logic circuit
JPH0353715A (en) Output buffer circuit
JP3516569B2 (en) Output circuit
JPH0766711A (en) Output circuit
JP2531834B2 (en) Low impedance output circuit
JP2002135066A (en) Source follower circuit
JPH0212867A (en) Semiconductor integrated circuit
JPS63119323A (en) Insulated gate type output buffer circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees