JPH05110193A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH05110193A
JPH05110193A JP27254191A JP27254191A JPH05110193A JP H05110193 A JPH05110193 A JP H05110193A JP 27254191 A JP27254191 A JP 27254191A JP 27254191 A JP27254191 A JP 27254191A JP H05110193 A JPH05110193 A JP H05110193A
Authority
JP
Japan
Prior art keywords
layer
side light
light confinement
active layer
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27254191A
Other languages
Japanese (ja)
Inventor
Takayuki Yamamoto
剛之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27254191A priority Critical patent/JPH05110193A/en
Publication of JPH05110193A publication Critical patent/JPH05110193A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3213Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities asymmetric clading layers

Abstract

PURPOSE:To provide a semiconductor laser of low threshold current by reducing the recombination current in the photoconfinement layer of a semiconductor laser used as a light source for optical communication or optical interconnection. CONSTITUTION:The title semiconductor laser is a laser having an n-type clad layer 12, an n-side photoconfinement layer 14, an active layer 16, a p-side photoconfinement layer 18, and a p-type clad layer 20 formed on an n-type semiconductor substrate 10 in the order. And it is so constituted that the amount of discontinuity DELTAEcp between the p-side photoconfinement layer 18 and the lower end of the conduction band of the active layer 16 may be larger than the amount of discontinuity DELTAEcn between the n-side photoconfinement l-ayer 14 and the lower end of the conduction band of the active layer 16, and that the amount of discontinuity DELTAEvn between the n-side photoconfinement layer 14 and the upper end of the valence band of the active layer 16 may be larger than the amount of discontinuity DELTAEvp between the p-side photoconfinement layer 18 and the upper end of the valence band of the active layer 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体レーザ、特に光通
信や光インタコネクション等の光源として用いられる半
導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser, and more particularly to a semiconductor laser used as a light source for optical communication and optical interconnection.

【0002】[0002]

【従来の技術】活性層への光閉込め効果を向上させた半
導体レーザとして、従来からSCH(Separate Confinem
ent Heterostructure)構造の半導体レーザが知られてい
る。従来のSCH構造の半導体レーザの基本構造を図4
に示す。図4(a)に示すように、n型InP基板70
上にn型InPからなるn型クラッド層72が形成さ
れ、n型クラッド層72上にGaInAsP(λg=
1.3μm)からなるn側光閉込め層74が形成され、
n側光閉込め層74上にGa 0.47In0.53Asからなる
活性層76が形成され、活性層76上にGaInAsP
(λg=1.3μm)からなるp側光閉込め層78が形
成され、p側光閉込め層78上にp型InPからなるp
型クラッド層80が形成されている。
2. Description of the Related Art Semi-improved light confining effect on the active layer
Conventionally, as a conductor laser, SCH (Separate Confinem)
ent Heterostructure) semiconductor lasers are known.
It FIG. 4 shows the basic structure of a conventional SCH structure semiconductor laser.
Shown in. As shown in FIG. 4A, the n-type InP substrate 70
An n-type clad layer 72 made of n-type InP is formed on top.
On the n-type cladding layer 72, GaInAsP (λg =
An n-side light confinement layer 74 of 1.3 μm) is formed,
Ga on the n-side light confinement layer 74 0.47In0.53Consists of As
The active layer 76 is formed, and GaInAsP is formed on the active layer 76.
The p-side light confinement layer 78 made of (λg = 1.3 μm) is formed.
Formed of p-type InP on the p-side light confinement layer 78.
The mold cladding layer 80 is formed.

【0003】このSCH構造の半導体レーザは、図4
(b)に示すようなバンド構造をしている。この半導体
レーザではn側光閉込め層74、活性層76、p側光閉
込め層78のダブルへテロ構造でキャリアの活性層76
への閉込めを保ちながら、n型クラッド層72とn側光
閉込め層74、p型クラッド層80とp側光閉込め層7
8との屈折率差により光をn側光閉込め層74、活性層
76、p側光閉込め層78の領域に閉込めることによ
り、活性層76への光閉込め効果を向上させている。
This SCH semiconductor laser is shown in FIG.
It has a band structure as shown in (b). In this semiconductor laser, the n-side light confinement layer 74, the active layer 76, and the p-side light confinement layer 78 have a double heterostructure and are active layers 76 of carriers.
N-type clad layer 72 and n-side light confinement layer 74, p-type clad layer 80 and p-side light confinement layer 7
By confining light in the regions of the n-side light confinement layer 74, the active layer 76, and the p-side light confinement layer 78 due to the difference in the refractive index from that of No. 8, the light confinement effect on the active layer 76 is improved. ..

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
SCH構造の半導体レーザでは、n側光閉込め層74と
p側光閉込め層78が同一半導体材料により形成されて
いるため、図4(b)のバンド構造に示すように、n側
光閉込め層74とp側光閉込め層78の伝導体下端、価
電子帯上端がそれぞれ同一エネルギレベルになってい
る。このため、n側光閉込め層74の伝導帯における電
子が活性層76を越えてp側光閉込め層78に入り込ん
でp側光閉込め層78の価電子帯のホールと再結合して
再結合電流が流れてしまう。また、同様に、p側光閉込
め層76の価電子帯におけるホールが活性層76を越え
てn側光閉込め層74に入り込んでn側光閉込め層74
の伝導帯の電子と再結合して再結合電流が流れてしま
う。このため、この再結合電流によりレーザ発振のしき
い値電流の上昇を招くという問題があった。
However, in the conventional semiconductor laser having the SCH structure, the n-side light confining layer 74 and the p-side light confining layer 78 are formed of the same semiconductor material. ), The lower end of the conductor and the upper end of the valence band of the n-side light confinement layer 74 and the p-side light confinement layer 78 have the same energy level. Therefore, electrons in the conduction band of the n-side light confinement layer 74 cross the active layer 76, enter the p-side light confinement layer 78, and recombine with holes in the valence band of the p-side light confinement layer 78. Recombination current flows. Similarly, holes in the valence band of the p-side light confinement layer 76 cross over the active layer 76 and enter the n-side light confinement layer 74, so that the n-side light confinement layer 74.
Recombine with electrons in the conduction band of and the recombination current flows. Therefore, there is a problem in that this recombination current causes an increase in the threshold current of laser oscillation.

【0005】本発明の目的は、光閉込め層における再結
合電流を低減させて低しきい値電流の半導体レーザを提
供することにある。
An object of the present invention is to provide a semiconductor laser having a low threshold current by reducing the recombination current in the optical confinement layer.

【0006】[0006]

【課題を解決するための手段】本発明の原理を図1を用
いて説明する。図1(a)に本発明による半導体レーザ
の基本構造を示し、図1(b)にバンド構造を示す。図
1(a)に示すように、n型半導体基板10上にn型ク
ラッド層12が形成され、n型クラッド層12上にn側
光閉込め層14が形成され、n側光閉込め層14上に活
性層16が形成され、活性層16上にp側光閉込め層1
8が形成され、p側光閉込め層18上にp型クラッド層
20が形成されている。
The principle of the present invention will be described with reference to FIG. FIG. 1A shows the basic structure of the semiconductor laser according to the present invention, and FIG. 1B shows the band structure. As shown in FIG. 1A, the n-type cladding layer 12 is formed on the n-type semiconductor substrate 10, the n-side light confinement layer 14 is formed on the n-type cladding layer 12, and the n-side light confinement layer is formed. The active layer 16 is formed on the active layer 16 and the p-side optical confinement layer 1 is formed on the active layer 16.
8 is formed, and the p-type cladding layer 20 is formed on the p-side light confinement layer 18.

【0007】本発明による半導体レーザは、図1(b)
に示すように、p側光閉込め層18と活性層16の伝導
帯下端の不連続量ΔEcpが、n側光閉込め層14と活
性層16の伝導帯下端の不連続量ΔEcnより大きく、
n側光閉込め層14と活性層16の価電子帯上端の不連
続量ΔEvnが、p側光閉込め層18と活性層16の価
電子帯上端の不連続量ΔEvpより大きくなるような材
料により形成されている。
The semiconductor laser according to the present invention is shown in FIG.
As shown in, the discontinuity amount ΔEcp at the bottom of the conduction band of the p-side light confinement layer 18 and the active layer 16 is larger than the discontinuity amount ΔEcn at the bottom of the conduction band of the n-side light confinement layer 14 and the active layer 16,
A material such that the discontinuity amount ΔEvn at the upper end of the valence band between the n-side light confinement layer 14 and the active layer 16 is larger than the discontinuity amount ΔEvp at the upper end of the valence band between the p-side light confinement layer 18 and the active layer 16. It is formed by.

【0008】[0008]

【作用】本発明によれば、p側光閉込め層18と活性層
16の伝導帯下端の不連続量ΔEcpが、n側光閉込め
層14と活性層16の伝導帯下端の不連続量ΔEcnよ
り大きくなるように形成されているので、p側光閉込め
層18が電子に対する障壁となって、n側光閉込め層1
4の伝導帯における電子が活性層16を越えてp側光閉
込め層18に入り込むことがない。また、n側光閉込め
層14と活性層16の価電子帯上端の不連続量ΔEvn
が、p側光閉込め層18と活性層16の価電子帯上端の
不連続量ΔEvpより大きくなるように形成されている
ので、n側光閉込め層16がホールに対する障壁となっ
て、p側光閉込め層16の価電子帯におけるホールが活
性層16を越えてn側光閉込め層14に入り込むことが
ない。このため、n側光閉込め層14及びp側光閉込め
層18において再結合電流が発生せず、低しきい値電流
の半導体レーザを実現できる。
According to the present invention, the discontinuity amount ΔEcp at the bottom of the conduction band of the p-side light confinement layer 18 and the active layer 16 is the discontinuity amount at the bottom of the conduction band of the n-side light confinement layer 14 and the active layer 16. Since it is formed so as to be larger than ΔEcn, the p-side light confinement layer 18 serves as a barrier for electrons, and the n-side light confinement layer 1 is formed.
Electrons in the conduction band of 4 do not cross the active layer 16 and enter the p-side optical confinement layer 18. In addition, the discontinuity ΔEvn at the upper end of the valence band of the n-side light confinement layer 14 and the active layer 16
Is formed so as to be larger than the discontinuity amount ΔEvp at the upper end of the valence band of the p-side light confinement layer 18 and the active layer 16, the n-side light confinement layer 16 becomes a barrier against holes, and p Holes in the valence band of the side light confinement layer 16 do not cross the active layer 16 and enter the n side light confinement layer 14. Therefore, a recombination current does not occur in the n-side light confinement layer 14 and the p-side light confinement layer 18, and a semiconductor laser having a low threshold current can be realized.

【0009】[0009]

【実施例】本発明の一実施例による半導体レーザを図2
を用いて説明する。本実施例はInP系半導体レーザで
ある。n型InP基板30上にn型InPからなる約2
μm厚のn型クラッド層32が形成され、n型クラッド
層32上にn型Ga0.29In0.71As0.620.38(λg
=1.3μm)からなる約0.1μm厚のn側光閉込め
層34が形成され、n側光閉込め層34上にi型Ga
0.42In0.58As0.9 0.1 (λg=1.55μm)か
らなる約0.05μm厚の活性層36が形成され、活性
層36上にp型Al0.22Ga0.26In0.52As(λg=
1.2μm)からなる約0.1μm厚のp側光閉込め層
38が形成され、p側光閉込め層38上にp型InPか
らなる約2μm厚のp型クラッド層40が形成されてい
る。
FIG. 2 shows a semiconductor laser according to an embodiment of the present invention.
Will be explained. The present embodiment is an InP semiconductor laser. About 2 made of n-type InP on the n-type InP substrate 30
An n-type cladding layer 32 having a thickness of μm is formed, and n-type Ga 0.29 In 0.71 As 0.62 P 0.38 (λg
= 1.3 μm) and an n-side light confinement layer 34 having a thickness of about 0.1 μm is formed, and i-type Ga is formed on the n-side light confinement layer 34.
An active layer 36 of 0.42 In 0.58 As 0.9 P 0.1 (λg = 1.55 μm) having a thickness of about 0.05 μm is formed, and p-type Al 0.22 Ga 0.26 In 0.52 As (λg =
1.2 μm) is formed on the p-side light confinement layer 38 having a thickness of about 0.1 μm, and a p-type cladding layer 40 made of p-type InP is formed on the p-side light confinement layer 38 with a thickness of about 2 μm. There is.

【0010】p型クラッド層40上にはp+ 型GaIn
AsP(λg=1.3μm)からなるコンタクト層42
が形成されている。p型クラッド層40及びコンタクト
層42上部はリッジ構造となっており、コンタクト層4
2上がストライプ状に開口したSiO2 層44が形成さ
れ、コンタクト層42及びSiO2 層44上にはTiP
t/Auからなるp側電極46が形成されている。ま
た、n型InP基板30下面にはAuGeNi/Auか
らなるn側電極48が形成されている。
On the p-type cladding layer 40, p + -type GaIn is formed.
Contact layer 42 made of AsP (λg = 1.3 μm)
Are formed. The upper portion of the p-type cladding layer 40 and the contact layer 42 has a ridge structure.
SiO 2 layer 44 on 2 is opened in a stripe shape is formed, TiP is on the contact layer 42 and the SiO 2 layer 44
A p-side electrode 46 made of t / Au is formed. An n-side electrode 48 made of AuGeNi / Au is formed on the lower surface of the n-type InP substrate 30.

【0011】本実施例の半導体レーザは、n側光閉込め
層34がn型Ga0.29In0.71As 0.620.38(λg=
1.3μm)により形成され、p側光閉込め層38がp
型Al0.22Ga0.26In0.52As(λg=1.2μm)
により形成されているので、図1(b)に示すように、
p側光閉込め層38と活性層36の伝導帯下端の不連続
量ΔEcpが、n側光閉込め層34と活性層36の伝導
帯下端の不連続量ΔEcnより大きくなり、p側光閉込
め層38が電子に対する障壁として機能し、n側光閉込
め層34と活性層36の価電子帯上端の不連続量ΔEv
nが、p側光閉込め層38と活性層36の価電子帯上端
の不連続量ΔEvpより大きくなり、n側光閉込め層3
6がホールに対する障壁として機能する。このため、n
側光閉込め層34及びp側光閉込め層38における再結
合電流を抑制することができ、従来のSCH構造の半導
体レーザに比べてしきい値電流を約2割程度小さくする
ことができる。
The semiconductor laser of this embodiment has an n-side optical confinement.
Layer 34 is n-type Ga0.29In0.71As 0.62P0.38(Λg =
1.3 μm), and the p-side light confinement layer 38 is p
Type Al0.22Ga0.26In0.52As (λg = 1.2 μm)
Since it is formed of, as shown in FIG.
Discontinuity at the bottom of the conduction band of the p-side light confinement layer 38 and the active layer 36
The amount ΔEcp is the conduction of the n-side light confinement layer 34 and the active layer 36.
It becomes larger than the discontinuity amount ΔEcn at the bottom of the band, and p-side light confinement
Layer 38 functions as a barrier against electrons, and n-side light confinement
Amount of discontinuity ΔEv at the upper end of the valence band between the first layer 34 and the active layer 36
n is the upper end of the valence band of the p-side light confinement layer 38 and the active layer 36.
Is larger than the discontinuity ΔEvp of the n-side optical confinement layer 3
6 functions as a barrier against holes. Therefore, n
Reconnection in the side light confinement layer 34 and the p side light confinement layer 38
Combined current can be suppressed and the semiconductivity of the conventional SCH structure
Threshold current is about 20% smaller than body laser
be able to.

【0012】また、InPに格子整合をとった場合、p
型Al0.22Ga0.26In0.52As(λg=1.2μm)
のp側光閉込め層38が、n型Ga0.29In0.71As
0.62 0.38(λg=1.3μm)のn側光閉込め層34
に比べ、屈折率は同じであるがバンドギャップエネルギ
が大きいので、p側光閉込め層34に入り込み再結合電
流を引き起こしやすい電子に対して有効な障壁を形成で
きる。
When lattice matching is achieved with InP, p
Type Al0.22Ga0.26In0.52As (λg = 1.2 μm)
Of the p-side light confinement layer 38 of n-type Ga0.29In0.71As
0.62P 0.38(Λg = 1.3 μm) n-side light confinement layer 34
Compared to, the refractive index is the same, but the bandgap energy is
Is large, it enters the p-side light confinement layer 34 and recombines.
To form an effective barrier to electrons that easily cause current
Wear.

【0013】なお、上記実施例において、活性層36を
量子効果がでる約10nm厚以下のGa1-x Inx As
(0.3≦x≦0.7)により形成してもよい。活性層
を量子井戸構造にすることで利得の向上及び活性層の薄
膜化等の効果により厚膜の活性層の半導体レーザに比べ
てしきい値電流が低減できるが、このときしきい値キャ
リア密度は大きくなるので、電子又はホールの光閉込め
層への入り込みは逆に起こりやすくなり、光閉込め層で
の再結合電流は増える傾向にある。このため従来の半導
体レーザの構造では活性層を量子井戸構造にしたことの
効果を減少させている。しかし、本実施例の構造を用い
て光閉込め層での再結合電流を抑制するようにすれば、
活性層を量子井戸構造にしたことの効果を有効に利用す
ることができ、更に低しきい値の半導体レーザを実現で
きる。
In the above embodiment, the active layer 36 is formed of Ga 1 -x In x As having a thickness of about 10 nm or less at which the quantum effect can be obtained.
It may be formed by (0.3 ≦ x ≦ 0.7). By making the active layer a quantum well structure, the threshold current can be reduced compared to a semiconductor laser with a thick active layer due to the effect of improving the gain and thinning the active layer. As a result, since electrons or holes easily enter the light confinement layer, the recombination current in the light confinement layer tends to increase. Therefore, in the structure of the conventional semiconductor laser, the effect of forming the quantum well structure in the active layer is reduced. However, if the recombination current in the optical confinement layer is suppressed by using the structure of this embodiment,
The effect of the active layer having the quantum well structure can be effectively utilized, and a semiconductor laser having a lower threshold can be realized.

【0014】本発明の他の実施例による半導体レーザを
図3を用いて説明する。本実施例はGaAs系半導体レ
ーザである。n型GaAs基板50上にn型Al0.45
0.55Asからなる約1μm厚のn型クラッド層52が
形成され、n型クラッド層52上にn型Ga0.73In
0.27As0.450.55からなる約0.08μm厚のn側光
閉込め層54が形成され、n側光閉込め層54上にi型
GaAsからなる約0.05μm厚の活性層56が形成
され、活性層56上にp型Al0.2 Ga0.8 Asからな
る約0.08μm厚のp側光閉込め層58が形成され、
p側光閉込め層58上にp型Al0.45Ga0.55Asから
なる約1μm厚のp型クラッド層60が形成されてい
る。
A semiconductor laser according to another embodiment of the present invention will be described with reference to FIG. This embodiment is a GaAs semiconductor laser. n-type Al 0.45 G on n-type GaAs substrate 50
An n-type clad layer 52 made of a 0.55 As and having a thickness of about 1 μm is formed, and n-type Ga 0.73 In is formed on the n-type clad layer 52.
An n-side optical confinement layer 54 of 0.27 As 0.45 P 0.55 with a thickness of about 0.08 μm is formed, and an active layer 56 of i-type GaAs with a thickness of about 0.05 μm is formed on the n-side optical confinement layer 54. A p-side light confinement layer 58 of p-type Al 0.2 Ga 0.8 As having a thickness of about 0.08 μm is formed on the active layer 56.
A p-type cladding layer 60 of p-type Al 0.45 Ga 0.55 As having a thickness of about 1 μm is formed on the p-side light confinement layer 58.

【0015】p型クラッド層60上にはp+ 型GaAs
からなる約0.2μm厚のコンタクト層62が形成され
ている。p型クラッド層60及びコンタクト層62上部
はリッジ構造となっており、コンタクト層62上がスト
ライプ状に開口したSiO2 層64が形成され、コンタ
クト層62及びSiO2 層64上にはAuZn/Auか
らなるp側電極66が形成されている。また、n型Ga
As基板50下面にはAuGe/Auからなるn側電極
68が形成されている。
On the p-type cladding layer 60, p + -type GaAs
And a contact layer 62 of about 0.2 μm thick is formed. The upper portion of the p-type clad layer 60 and the contact layer 62 has a ridge structure, and a SiO 2 layer 64 having a stripe-shaped opening on the contact layer 62 is formed. AuZn / Au is formed on the contact layer 62 and the SiO 2 layer 64. The p-side electrode 66 is formed. In addition, n-type Ga
An n-side electrode 68 made of AuGe / Au is formed on the lower surface of the As substrate 50.

【0016】本実施例の半導体レーザは、n側光閉込め
層54がn型Ga0.73In0.27As 0.450.55により形
成され、p側光閉込め層58がp型Al0.2 Ga0.8
sにより形成されているので、図1(b)に示すよう
に、p側光閉込め層58と活性層56の伝導帯下端の不
連続量ΔEcpが、n側光閉込め層54と活性層56の
伝導帯下端の不連続量ΔEcnより大きくなり、p側光
閉込め層58が電子に対する障壁として機能し、n側光
閉込め層54と活性層56の価電子帯上端の不連続量Δ
Evnが、p側光閉込め層58と活性層56の価電子帯
上端の不連続量ΔEvpより大きくなり、n側光閉込め
層56がホールに対する障壁として機能する。このた
め、n側光閉込め層54及びp側光閉込め層58におい
て再結合電流を抑制することができる。
The semiconductor laser of this embodiment has an n-side optical confinement.
Layer 54 is n-type Ga0.73In0.27As 0.45P0.55Shaped by
And the p-side light confinement layer 58 is made of p-type Al.0.2Ga0.8A
Since it is formed of s, as shown in FIG.
At the bottom of the conduction band of the p-side light confinement layer 58 and the active layer 56,
The continuous amount ΔEcp of the n-side light confinement layer 54 and the active layer 56 is
It becomes larger than the discontinuity ΔEcn at the bottom of the conduction band, and the p-side light
The confinement layer 58 functions as a barrier against electrons,
Discontinuity Δ at the upper end of the valence band of the confinement layer 54 and the active layer 56
Evn is the valence band of the p-side light confinement layer 58 and the active layer 56.
It becomes larger than the discontinuity amount ΔEvp at the upper end, and n-side light confinement
Layer 56 acts as a barrier to holes. others
Therefore, in the n-side light confinement layer 54 and the p-side light confinement layer 58,
Therefore, the recombination current can be suppressed.

【0017】なお、上記実施例において、活性層56を
量子効果がでる約10nm厚以下のGa1-x Inx As
(0≦x≦0.2)により形成してもよい。厚膜の活性
層の半導体レーザに比べてしきい値キャリア密度が非常
に大きくなるため、量子井戸構造をとることにより電子
又はホールの光閉込め層への入り込みを一層抑制するこ
とができる。
In the above embodiment, the active layer 56 is formed of Ga 1 -x In x As having a thickness of about 10 nm or less at which the quantum effect can be obtained.
It may be formed by (0 ≦ x ≦ 0.2). Since the threshold carrier density is much higher than that of a semiconductor laser having a thick active layer, the quantum well structure can further prevent electrons or holes from entering the optical confinement layer.

【0018】本発明は上記実施例に限らず種々の変形が
可能である。例えば、p側光閉込め層と活性層の伝導帯
下端の不連続量が、n側光閉込め層と活性層の伝導帯下
端の不連続量より大きく、n側光閉込め層と活性層の価
電子帯上端の不連続量が、p側光閉込め層と活性層の価
電子帯上端の不連続量より大きければ、上記実施例以外
の半導体材料を用いてもよい。
The present invention is not limited to the above embodiment, but various modifications can be made. For example, the amount of discontinuity at the bottom of the conduction band between the p-side light confinement layer and the active layer is larger than the amount of discontinuity at the bottom of the conduction band between the n-side light confinement layer and the active layer, If the discontinuity amount at the upper end of the valence band of is larger than the discontinuity amount at the upper end of the valence band of the p-side light confinement layer and the active layer, a semiconductor material other than the above-mentioned examples may be used.

【0019】また、p側光閉込め層と活性層の伝導帯下
端の不連続量が、n側光閉込め層と活性層の伝導帯下端
の不連続量より大きければ、n側光閉込め層と活性層の
価電子帯上端の不連続量がp側光閉込め層と活性層の価
電子帯上端の不連続量とほぼ同等である半導体材料を用
いてもよい。電子に比べてホールの光閉じ込め層への入
り込みは起きにくいからである。
If the amount of discontinuity at the bottom of the conduction band between the p-side light confinement layer and the active layer is larger than the amount of discontinuity at the bottom of the conduction band between the n-side light confinement layer and the active layer, the n-side light confinement is achieved. A semiconductor material may be used in which the discontinuity amount at the upper end of the valence band between the layer and the active layer is substantially equal to the discontinuity amount at the upper end of the valence band between the p-side light confinement layer and the active layer. This is because holes are less likely to enter the optical confinement layer than electrons.

【0020】さらに、上記実施例ではn型半導体基板上
に半導体レーザを形成したが、p型半導体基板上にp型
とn型を反対にして形成してもよい。また、上記実施例
ではn側光閉込め層をn型半導体材料により形成し、p
側光閉込め層をp型半導体材料により形成したが、n側
光閉込め層もp側光閉込め層も共にi型半導体材料によ
り形成してもよい。
Further, although the semiconductor laser is formed on the n-type semiconductor substrate in the above embodiment, it may be formed on the p-type semiconductor substrate with the p-type and the n-type being reversed. Further, in the above embodiment, the n-side light confining layer is formed of an n-type semiconductor material, and p
Although the side light confinement layer is formed of the p-type semiconductor material, both the n-side light confinement layer and the p-side light confinement layer may be formed of the i-type semiconductor material.

【0021】[0021]

【発明の効果】以上の通り、本発明によれば、p側光閉
込め層と活性層の伝導帯下端の不連続量が、n側光閉込
め層と活性層の伝導帯下端の不連続量より大きくなるよ
うに形成されているので、p側光閉込め層が電子に対す
る障壁となって、n側光閉込め層の伝導帯における電子
が活性層を越えてp側光閉込め層に入り込むことを抑制
することができ、p側光閉込め層における再結合電流が
発生せず、低しきい値電流の半導体レーザを実現でき
る。
As described above, according to the present invention, the discontinuity amount at the bottom of the conduction band between the p-side light confinement layer and the active layer is determined by the discontinuity at the bottom of the conduction band between the n-side light confinement layer and the active layer. Since the p-side light confinement layer serves as a barrier against electrons, the electrons in the conduction band of the n-side light confinement layer pass through the active layer to the p-side light confinement layer. Intrusion can be suppressed, recombination current does not occur in the p-side optical confinement layer, and a semiconductor laser having a low threshold current can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理図である。FIG. 1 is a principle diagram of the present invention.

【図2】本発明の一実施例による半導体レーザを示す断
面図である。
FIG. 2 is a sectional view showing a semiconductor laser according to an embodiment of the present invention.

【図3】本発明の他の実施例による半導体レーザを示す
断面図である。
FIG. 3 is a sectional view showing a semiconductor laser according to another embodiment of the present invention.

【図4】従来の半導体レーザの基本構造を示す図であ
る。
FIG. 4 is a diagram showing a basic structure of a conventional semiconductor laser.

【符号の説明】[Explanation of symbols]

10…n型半導体基板 12…n型クラッド層 14…n側光閉込め層 16…活性層 18…p側光閉込め層 20…p型クラッド層 30…n型InP基板 32…n型クラッド層(n型InP) 34…n側光閉込め層(n型Ga0.29In0.71As0.62
0.38) 36…活性層(i型Ga0.42In0.58As0.90.1 ) 38…p側光閉込め層(p型Al0.22Ga0.26In0.52
As) 40…p型クラッド層(p型InP) 42…コンタクト層(p+ 型GaInAsP) 44…SiO2 層 46…p側電極(TiPt/Au) 48…n側電極(AuGeNi/Au) 50…n型GaAs基板 52…n型クラッド層(n型Al0.45Ga0.55As) 54…n側光閉込め層(n型Ga0.73In0.27As0.45
0.55) 56…活性層(i型GaAs) 58…p側光閉込め層(p型Al0.2 Ga0.8 As) 60…p型クラッド層(p型Al0.45Ga0.55As) 62…コンタクト層(p+ 型GaAs) 64…SiO2 層 66…p側電極(AuZn/Au) 68…n側電極(AuGe/Au) 70…n型InP基板 72…n型クラッド層(n型InP) 74…n側光閉込め層(GaInAsP) 76…活性層(Ga0.47In0.53As) 78…p側光閉込め層(GaInAsP) 80…p型クラッド層(p型InP)
DESCRIPTION OF SYMBOLS 10 ... n-type semiconductor substrate 12 ... n-type clad layer 14 ... n side optical confinement layer 16 ... active layer 18 ... p side optical confinement layer 20 ... p type clad layer 30 ... n type InP substrate 32 ... n type clad layer (N-type InP) 34 ... n-side optical confinement layer (n-type Ga 0.29 In 0.71 As 0.62
P 0.38 ) 36 ... Active layer (i-type Ga 0.42 In 0.58 As 0.9 P 0.1 ) 38 ... P-side optical confinement layer (p-type Al 0.22 Ga 0.26 In 0.52)
As) 40 ... p-type clad layer (p-type InP) 42 ... contact layer (p + -type GaInAsP) 44 ... SiO 2 layer 46 ... p-side electrode (TiPt / Au) 48 ... n-side electrode (AuGeNi / Au) 50 ... n-type GaAs substrate 52 ... n-type cladding layer (n-type Al 0.45 Ga 0.55 As) 54 ... n-side optical confinement layer (n-type Ga 0.73 In 0.27 As 0.45
P 0.55 ) 56 ... Active layer (i-type GaAs) 58 ... P-side optical confinement layer (p-type Al 0.2 Ga 0.8 As) 60 ... P-type clad layer (p-type Al 0.45 Ga 0.55 As) 62 ... Contact layer (p + Type GaAs) 64 ... SiO 2 layer 66 ... p-side electrode (AuZn / Au) 68 ... n-side electrode (AuGe / Au) 70 ... n-type InP substrate 72 ... n-type clad layer (n-type InP) 74 ... n-side Light confinement layer (GaInAsP) 76 ... Active layer (Ga 0.47 In 0.53 As) 78 ... P-side light confinement layer (GaInAsP) 80 ... P-type cladding layer (p-type InP)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 n型クラッド層と、前記n型クラッド層
上に設けられたn側光閉込め層と、前記n側光閉込め層
上に形成された活性層と、前記活性層上に形成されたp
側光閉込め層と、前記p側光閉込め層上に形成されたp
型クラッド層とを有する半導体レーザにおいて、 前記p側光閉込め層と前記活性層の伝導帯下端の不連続
量が、前記n側光閉込め層と前記活性層の伝導帯下端の
不連続量より大きいことを特徴とする半導体レーザ。
1. An n-type cladding layer, an n-side light confinement layer provided on the n-type cladding layer, an active layer formed on the n-side light confinement layer, and an active layer on the active layer. P formed
A side light confinement layer and a p formed on the p side light confinement layer
In a semiconductor laser having a type clad layer, a discontinuity amount at a conduction band lower end of the p-side light confinement layer and the active layer is a discontinuity amount at a conduction band lower end of the n-side light confinement layer and the active layer. A semiconductor laser characterized by being larger.
【請求項2】 請求項1記載の半導体レーザにおいて、 前記n側光閉込め層と前記活性層の価電子帯上端の不連
続量が、前記p側光閉込め層と前記活性層の価電子帯上
端の不連続量より大きいことを特徴とする半導体レー
ザ。
2. The semiconductor laser according to claim 1, wherein the amount of discontinuity at the upper end of the valence band between the n-side light confinement layer and the active layer is a valence electron between the p-side light confinement layer and the active layer. A semiconductor laser characterized by being larger than the discontinuity amount at the upper end of the band.
【請求項3】 請求項1又は2記載の半導体レーザにお
いて、 前記活性層が量子井戸構造であることを特徴とする半導
体レーザ。
3. The semiconductor laser according to claim 1, wherein the active layer has a quantum well structure.
JP27254191A 1991-10-21 1991-10-21 Semiconductor laser Withdrawn JPH05110193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27254191A JPH05110193A (en) 1991-10-21 1991-10-21 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27254191A JPH05110193A (en) 1991-10-21 1991-10-21 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH05110193A true JPH05110193A (en) 1993-04-30

Family

ID=17515340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27254191A Withdrawn JPH05110193A (en) 1991-10-21 1991-10-21 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH05110193A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0794601A1 (en) * 1996-03-07 1997-09-10 AT&T Corp. Heterostructure laser
US5923688A (en) * 1996-09-02 1999-07-13 Nec Corporation Semiconductor laser
DE19927008A1 (en) * 1999-06-07 2000-12-21 Forschungsverbund Berlin Ev Semiconductor laser component has inner boundary layers made of two different mixed crystal systems whose band distances are smaller than those of the outer boundary layers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0794601A1 (en) * 1996-03-07 1997-09-10 AT&T Corp. Heterostructure laser
US5923688A (en) * 1996-09-02 1999-07-13 Nec Corporation Semiconductor laser
DE19927008A1 (en) * 1999-06-07 2000-12-21 Forschungsverbund Berlin Ev Semiconductor laser component has inner boundary layers made of two different mixed crystal systems whose band distances are smaller than those of the outer boundary layers
DE19927008B4 (en) * 1999-06-07 2006-07-20 Forschungsverbund Berlin E.V. III-V semiconductor laser device

Similar Documents

Publication Publication Date Title
JP3242967B2 (en) Semiconductor light emitting device
US6287884B1 (en) Buried hetero-structure InP-based opto-electronic device with native oxidized current blocking layer
JP2543551B2 (en) Semiconductor laser
JPH0732285B2 (en) Semiconductor laser device
JPH0834330B2 (en) Semiconductor laser device
US20060209914A1 (en) Semiconductor device and manufacturing method thereof
US6603138B2 (en) Quantum-confinement stark effect optical modulator
US6333946B1 (en) Semiconductor laser device and process for manufacturing the same
US6400743B1 (en) High-power semiconductor laser device having current confinement structure and index-guided structure
US4602371A (en) High output semiconductor laser device utilizing a mesa-stripe optical confinement region
JP2882335B2 (en) Optical semiconductor device and method for manufacturing the same
JPH05110193A (en) Semiconductor laser
US6670203B2 (en) Method for manufacturing semiconductor laser having recombination layer stripes in current blocking structure
JPH07245447A (en) Semiconductor laser
JP3658048B2 (en) Semiconductor laser element
JPH06209139A (en) Semiconductor laser
JPH0697592A (en) Semiconductor laser and manufacture thereof
JPH09129969A (en) Semiconductor laser
US20040136427A1 (en) Semiconductor optical device
JP2663880B2 (en) Multiple quantum well structure semiconductor laser
JP3991409B2 (en) Semiconductor laser
JP2748570B2 (en) Semiconductor laser device
JPH07115251A (en) Semiconductor laser
JP3609446B2 (en) Semiconductor laser device
JP3403915B2 (en) Semiconductor laser

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107