JP2663880B2 - Multiple quantum well structure semiconductor laser - Google Patents

Multiple quantum well structure semiconductor laser

Info

Publication number
JP2663880B2
JP2663880B2 JP6263750A JP26375094A JP2663880B2 JP 2663880 B2 JP2663880 B2 JP 2663880B2 JP 6263750 A JP6263750 A JP 6263750A JP 26375094 A JP26375094 A JP 26375094A JP 2663880 B2 JP2663880 B2 JP 2663880B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
quantum well
barrier
well structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6263750A
Other languages
Japanese (ja)
Other versions
JPH08125263A (en
Inventor
博仁 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6263750A priority Critical patent/JP2663880B2/en
Publication of JPH08125263A publication Critical patent/JPH08125263A/en
Application granted granted Critical
Publication of JP2663880B2 publication Critical patent/JP2663880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、長波長帯の多重量子井
戸型半導体レーザに関し、特にその活性層の構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a long-wavelength band multiple quantum well semiconductor laser, and more particularly to a structure of an active layer thereof.

【0002】[0002]

【従来の技術】従来、波長1.3μmや1.55μm帯
の多重量子井戸構造(MQW)の半導体レーザには、I
nGaAsP/InP系化合物半導体材料が用いられて
いたが、これらの材料系においては、伝導帯のエネルギ
ー不連続の値が、価電子帯エネルギー不連続の値に比べ
て小さいので、MQWレーザにおいては高温時に電子が
ウエルからバリヤに溢れる問題が有った。従って、高温
時における閾値の上昇あるいは効率の低下は、GaAs
/AlGaAs系化合物半導体材料を用いる短波長系の
半導体レーザに比べて大きかった。これに対して近年B
ellcore社から発表されたAlInGaAs/I
nP系MQWレーザ(UncooledLasers
for Deployment of Fiber i
n the Loop,OPTICS&PHOTONI
CS NEWS/DECEMBER 1993)は、ウ
エルとバリヤにAlInGaAsを用いているためバン
ドラインナップが改善され、スロープ効率の温度依存性
が非常に良くなっている。
2. Description of the Related Art Conventionally, a semiconductor laser having a multiple quantum well structure (MQW) in a wavelength band of 1.3 μm or 1.55 μm has
Although nGaAsP / InP-based compound semiconductor materials have been used, in these materials, the energy discontinuity of the conduction band is smaller than the value of the valence band energy discontinuity. Sometimes there was a problem with electrons overflowing from the wells to the barrier. Therefore, an increase in the threshold value or a decrease in the efficiency at a high temperature is caused by GaAs.
/ AlGaAs-based compound semiconductor material was larger than a short-wavelength-based semiconductor laser. On the other hand, in recent years B
AlInGaAs / I announced by ellcore
nP MQW Laser (Uncooled Lasers)
for Deployment of Fiber i
n the Loop, OPTICS & PHOTONI
CS NEWS / DECEMBER 1993) uses AlInGaAs for the well and the barrier, so that the band lineup is improved and the temperature dependence of the slope efficiency is extremely improved.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、Bel
lcore発表のAlInGaAs/InP系MQW半
導体レーザは、ウエルとバリヤさらに分離閉じ込めヘテ
ロ構造(SCH)層に多くのAl組成を有するAlIn
GaAsを用いているため、埋め込み構造の作製が困難
であった。従って、リッジ導波路構造であるため発振閾
値が高く、5mW時の駆動電流で比べると、それ程良い
特性とは言えない。
SUMMARY OF THE INVENTION However, Bel
Alcore's AlInGaAs / InP based MQW semiconductor lasers have a high Al content in the well, barrier and isolation / confinement heterostructure (SCH) layers.
Since GaAs is used, it is difficult to form a buried structure. Therefore, the oscillation threshold is high because of the ridge waveguide structure, and the characteristics are not so good when compared with a drive current at 5 mW.

【0004】本発明の目的は、この様な長波長系多重量
子井戸構造半導体レーザの欠点を解消し、優れた温度特
性を有すると共に高温時においても低閾値、低駆動電流
で動作可能な1.3μmまたは1.55μm半導体レー
ザを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve such a disadvantage of a long wavelength multiple quantum well structure semiconductor laser, to have excellent temperature characteristics and to operate with a low threshold and a low driving current even at a high temperature. An object of the present invention is to provide a 3 μm or 1.55 μm semiconductor laser.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、InP基板上に多重量子井戸構造の活性
層を形成する半導体レーザにおいて、多重量子井戸構造
の活性層が、少なくとも、InGaAsあるいはInG
aAsP系の半導体材料からなるウエルと、AlInG
aAsP系の半導体材料からなるバリヤ層と、ウエルに
隣接する一部分のみがAlInGaAsPであり、残り
の部分はInGaAsP系半導体材料からなるSCH
(Separate Confinement Het
erostructure)層からなることを特徴とす
るものである。
According to the present invention, there is provided a semiconductor laser in which an active layer having a multiple quantum well structure is formed on an InP substrate. InGaAs or InG
a well made of an AsP-based semiconductor material and AlInG
A barrier layer made of an aAsP-based semiconductor material and only a portion adjacent to the well are AlInGaAsP, and the remaining portion is an SCH made of an InGaAsP-based semiconductor material.
(Separate Confinment Het
(Electrostructure) layer.

【0006】[0006]

【作用】本発明によるAlInGaAsP系半導体材料
からなるバリヤ層を用いることにより、高温特性の改善
が得られる理由について以下で説明する。上にも述べた
様に、MQWレーザの高温特性を左右する大きな要因と
しては、高温時にウエルからバリヤへ注入キャリア(こ
の場合は主に電子)が溢れることにより、MQWの利得
が低下するメカニズムが考えられる。長波長系MQWレ
ーザの場合、図3に示す様に、通常ウエル15にはIn
GaAsまたはInGaAsPが、バリヤ16にはIn
GaAsPが用いられる。このInGaAs/InGa
AsP系ヘテロ接合あるいはInGaAsP/InGa
AsP系ヘテロ接合では、伝導帯バンド・エネルギー不
連続の値ΔEc/ΔEvが大きくなる方向に改善される
ことが知られている。従って、電子に対するバリヤ障壁
が高くなるので、高温時でもウエルからバリヤへの電子
の漏れは抑制される。この結果、温度特性の良好なデバ
イスが実現できる。
The reason why the high-temperature characteristics can be improved by using the barrier layer made of the AlInGaAsP-based semiconductor material according to the present invention will be described below. As described above, a major factor affecting the high-temperature characteristics of the MQW laser is a mechanism in which the injected carriers (in this case, mainly electrons) overflow from the wells to the barrier at a high temperature, thereby lowering the gain of the MQW laser. Conceivable. In the case of a long-wavelength MQW laser, as shown in FIG.
GaAs or InGaAsP and In barrier 16
GaAsP is used. This InGaAs / InGa
AsP heterojunction or InGaAsP / InGa
It is known that, in an AsP-based heterojunction, the value ΔEc / ΔEv of the conduction band energy discontinuity is improved in a direction to increase. Accordingly, a barrier barrier against electrons is increased, so that leakage of electrons from the well to the barrier is suppressed even at a high temperature. As a result, a device having good temperature characteristics can be realized.

【0007】ところで、Alを含む半導体材料を用いる
場合、どうしても埋め込み成長の困難さが伴う。それ
は、Alが非常に酸化し易いために、表面に薄い酸化膜
を形成し、これが埋め込み成長を妨げる原因となってい
る。Bellcore社のAlInGaAs系材料の場
合も図4に示す様に、ウエル18,バリヤ19およびS
CH20層の活性層全体にAlを含むAlInGaAs
を用いているために、埋め込み成長が困難となってい
る。一方、本発明のMQW構造では、バリヤ層とSCH
層の一部分にのみAlが含まれるので、埋め込み成長が
比較的簡単に行えるメリットがある。実際、ウエルとバ
リヤの両方にAlを含む半導体からなるMQW構造と、
バリヤにはAlが含まれるがウエルにはAlを含まない
MQW構造とを、同じ条件で埋め込み成長を行うと、後
者については良好な埋め込みが行われるが、前者の場合
は埋め込み不良となる割合が非常に大きい。このこと
は、MQW活性層全体の広い面積に渡るAlの酸化膜は
安定であり、埋め込み成長を困難なものにしているが、
バリヤの部分のみの様な狭い面積のAl酸化膜は不安定
で、埋め込み成長時に容易にメルトバックされるので、
特に問題とはならない。
When a semiconductor material containing Al is used, burying growth is necessarily difficult. This is because Al is very easily oxidized, so that a thin oxide film is formed on the surface, which hinders buried growth. As shown in FIG. 4, the well 18, the barrier 19 and the S
AlInGaAs containing Al in the entire active layer of CH20 layer
, The burying growth is difficult. On the other hand, in the MQW structure of the present invention, the barrier layer and the SCH
Since Al is included only in a part of the layer, there is an advantage that the buried growth can be performed relatively easily. In fact, an MQW structure consisting of a semiconductor containing Al in both the well and the barrier;
If the MQW structure containing Al in the barrier but not Al in the well is buried and grown under the same conditions, the latter is satisfactorily buried, but in the former, the percentage of buried defects is poor. Very large. This means that the Al oxide film over a wide area of the entire MQW active layer is stable and makes the burying growth difficult.
Since an Al oxide film having a small area such as only a barrier portion is unstable and is easily melted back during burying growth,
There is no particular problem.

【0008】さらに、高温特性とは直接関係は無いが、
AlInGaAsPバリヤを用いることにより、ホール
に対するバリヤのポテンシャル障壁が小さくできるの
で、ウエル間でのホール注入不均一の問題も改善でき
る。これは特にウエル数の多い(7ウエル程度以上)M
QWにおいて問題となっていたことで、通常のInGa
As(P)/InGaAsP系のMQWレーザの場合、
ホールに対するバリヤのポテンシャル障壁が高過ぎるの
で、p−InP側から注入されたホールが各ウエルに均
一に分布せず、p側のウエルに多く分布し、極端な場合
はn側のウエルにはほとんどホールが注入されていない
状態も有り得る。従って、この様なことが起これば、ウ
エル数を多くしていっても利得の改善があまり期待でき
ないという問題が有った。これに対しても本発明の構造
は有効であると考えられ、ホールの不均一注入が緩和さ
れることにより、多層MQWにおいて大きな微分利得の
値を実現できる。
Further, although there is no direct relationship with the high temperature characteristics,
By using the AlInGaAsP barrier, the potential barrier of the barrier with respect to holes can be reduced, so that the problem of non-uniform hole injection between wells can also be improved. This means that the number of wells is particularly large (about 7 wells or more).
Because of the problem in QW, normal InGa
In the case of an As (P) / InGaAsP-based MQW laser,
Since the potential barrier of the barrier with respect to the holes is too high, holes injected from the p-InP side are not uniformly distributed in each well, but are distributed more in the p-side well, and in extreme cases, almost all the n-side wells There may be a state where holes are not injected. Therefore, if such a situation occurs, there is a problem that even if the number of wells is increased, improvement in gain cannot be expected much. On the other hand, the structure of the present invention is considered to be effective, and a large differential gain value can be realized in the multilayer MQW by alleviating the non-uniform injection of holes.

【0009】[0009]

【実施例】以下、本発明について図面を参照して説明す
る。図1は、本発明の一実施例を示す1.3μm長波長
レーザのMQW活性層構造のバンド・ダイヤグラムであ
る。作製方法は、まず最初に、n−InP(100)基
板21上に厚さ50nmの1.13μm組成n−InG
aAsPSCH層14を成長し、さらに厚さ10nmの
ノン・ドープのu−AlInGaAsPバリヤ12を成
長する。この場合、Alの組成としては、0.05〜
0.4程度が適当であり、あまり少ないとバンド・ライ
ンナップ改善の効果が少なく、逆に多過ぎると埋め込み
成長がうまく出来なくなる。また、InP基板に格子整
合する様に、他のIn,Ga,As,Pの組成は決めら
れている。さらにこの上に厚さ約5nmの1.40μm
の波長組成のu−InGaAsPウエル12と、厚さ1
0nmのu−AlInGaAsPバリヤ12を5周期成
長する。さらにその上に、厚さ50nmの1.13μm
組成u−InGaAsPSCH層14を成長し、最後に
p−InPクラッド層23を約0.6μm成長する。な
お、ウエルはInGaAsでもよい。この様にして作製
したMQWウエハを、図2に示す様な通常のDC−PB
H構造に埋め込む。すなわち、MQWウエハのp−In
Pクラッド層23の表面にフォトレジストをストライプ
上に形成し、エッチングして中央にメサ構造を形成す
る。フォトレジストを除去後、液相エピタキシャル成長
法によってp−InP電流ブロック層24,n−InP
電流ブロック層25,p−InP層26,P+ InGa
AsPキャップ層27を順次形成する。28はMQW活
性層である。この後素子長200μmに切り出して、全
面,後面に各々70%,95%程度の端面コーティング
を施す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a band diagram of an MQW active layer structure of a 1.3 μm long wavelength laser showing one embodiment of the present invention. First, the n-InP (100) substrate 21 is formed on a 50-nm-thick 1.13 μm composition n-InG
An aAsPSCH layer 14 is grown, and a non-doped u-AlInGaAsP barrier 12 having a thickness of 10 nm is further grown. In this case, the composition of Al is 0.05 to
A value of about 0.4 is appropriate. When the amount is too small, the effect of improving the band lineup is small, and when the amount is too large, burying growth cannot be performed well. Further, the composition of other In, Ga, As, and P is determined so as to lattice-match with the InP substrate. On top of this, 1.40 μm with a thickness of about 5 nm
U-InGaAsP well 12 having a wavelength composition of
A 0 nm u-AlInGaAsP barrier 12 is grown for five periods. On top of that, 1.13 μm of 50 nm thickness
A compositional u-InGaAs PSCH layer 14 is grown, and finally a p-InP cladding layer 23 is grown to about 0.6 μm. The well may be InGaAs. The MQW wafer manufactured in this manner is connected to a normal DC-PB as shown in FIG.
Embed in H structure. That is, p-In of the MQW wafer
A photoresist is formed on the surface of the P-cladding layer 23 on the stripe and etched to form a mesa structure at the center. After removing the photoresist, the p-InP current blocking layer 24, n-InP
Current blocking layer 25, p-InP layer 26, P + InGa
AsP cap layers 27 are sequentially formed. 28 is an MQW active layer. Thereafter, the device is cut out to have an element length of 200 μm, and an end face coating of about 70% and 95% is applied to the entire surface and the rear surface, respectively.

【0010】試作した素子の高温特性を評価したとこ
ろ、85℃での発振閾値は約5mAで、850℃,5m
W時の駆動電流も20mAと良好な特性が得られてい
た。なおスロープ効率の特性温度IsもAlGaAs/
GaAs系レーザ並の230Kまで改善された。
When the high-temperature characteristics of the prototype device were evaluated, the oscillation threshold at 85 ° C. was about 5 mA, and the oscillation threshold at 850 ° C., 5 m
The drive current at the time of W was as good as 20 mA. The characteristic temperature Is of the slope efficiency is also AlGaAs /
It has been improved to 230K, comparable to GaAs lasers.

【0011】[0011]

【発明の効果】以上で説明した様に本発明は、AlIn
GaAsP半導体材料をバリヤに用いることにより、高
温時に電子がバリヤへ溢れるのを防止し、温度特性の良
好な半導体レーザが得られる利点がある。さらに埋め込
み構造の作製が比較的容易であるため、閾値電流および
駆動電流の小さいレーザが得られる利点も兼ね備えてい
る。
As described above, according to the present invention, AlIn
By using a GaAsP semiconductor material for the barrier, there is an advantage that electrons can be prevented from overflowing into the barrier at a high temperature, and a semiconductor laser having good temperature characteristics can be obtained. Further, the fabrication of the buried structure is relatively easy, so that it also has an advantage that a laser having a small threshold current and a small drive current can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による半導体レーザのMQW
活性層のバンド・ダイヤグラムを示す図である。
FIG. 1 is an MQW of a semiconductor laser according to an embodiment of the present invention.
FIG. 3 is a diagram showing a band diagram of an active layer.

【図2】本発明の一実施例の半導体レーザの埋め込み構
造の断面図である。
FIG. 2 is a cross-sectional view of an embedded structure of a semiconductor laser according to one embodiment of the present invention.

【図3】従来の半導体レーザのMQW活性層のバンド・
ダイヤグラムを示す図である。
FIG. 3 shows a band of an MQW active layer of a conventional semiconductor laser;
It is a figure which shows a diagram.

【図4】従来の他の半導体レーザのMQW活性層のバン
ド・ダイヤグラムを示す図である。
FIG. 4 is a diagram showing a band diagram of an MQW active layer of another conventional semiconductor laser.

【符号の説明】[Explanation of symbols]

11 InGaAsウエル 13 AlInGaAsPバリヤ 14 InGaAsPSCH層 21 n−InP基板 22 MQW層 23 p−InPクラッド層 24 p−InP電流ブロック層 25 n−InP電流ブロック層 26 p−InP層 27 p+ −InGaAsPキャップ層 28 MQW活性層REFERENCE SIGNS LIST 11 InGaAs well 13 AlInGaAsP barrier 14 InGaAsPSCH layer 21 n-InP substrate 22 MQW layer 23 p-InP cladding layer 24 p-InP current blocking layer 25 n-InP current blocking layer 26 p-InP layer 27 p + -InGaAsP cap layer 28 MQW active layer

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 InP基板上に多重量子井戸構造の活性
層を形成する半導体レーザにおいて、多重量子井戸構造
活性層が、少なくとも、InGaAsあるいはInGa
AsP系の半導体材料からなるウエルと、Alを含む
lInGaAsP系の半導体材料からなるバリヤ層と、
ウエルに隣接する一部分のみがAlInGaAsPであ
り、残りの部分はInGaAsP系半導体材料からなる
分離閉じ込めヘテロ構造層からなることを特徴とする多
重量子井戸構造半導体レーザ。
In a semiconductor laser in which an active layer having a multiple quantum well structure is formed on an InP substrate, the active layer having a multiple quantum well structure includes at least InGaAs or InGa.
A well made of an AsP-based semiconductor material and an A containing Al
a barrier layer made of lInGaAsP-based semiconductor material;
A multiple quantum well structure semiconductor laser characterized in that only a part adjacent to the well is AlInGaAsP and the remaining part is a separated confinement heterostructure layer made of an InGaAsP-based semiconductor material.
【請求項2】 InP基板上に多重量子井戸構造の活性2. The activity of a multiple quantum well structure on an InP substrate.
層を形成する半導体レーザにおいて、多重量子井戸構造Multi-quantum well structure in semiconductor laser forming layers
活性層が、少なくとも、InGaAsあるいはInGaThe active layer is made of at least InGaAs or InGa
AsPからなるウエルと、AlInGaAsPからなるA well made of AsP and a well made of AlInGaAsP
バリヤ層と、ウエルに隣接する一部分のみがAlInGOnly the barrier layer and a portion adjacent to the well are formed of AlInG.
aAsPであり、残りの部分はInGaAsPからなるaAsP, and the rest is made of InGaAsP
分離閉じ込めヘテロ構造層からなることを特徴とする多A multi-layer structure comprising a separately confined heterostructure layer
重量子井戸構造半導体レーザ。Quantum well structure semiconductor laser.
JP6263750A 1994-10-27 1994-10-27 Multiple quantum well structure semiconductor laser Expired - Fee Related JP2663880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6263750A JP2663880B2 (en) 1994-10-27 1994-10-27 Multiple quantum well structure semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6263750A JP2663880B2 (en) 1994-10-27 1994-10-27 Multiple quantum well structure semiconductor laser

Publications (2)

Publication Number Publication Date
JPH08125263A JPH08125263A (en) 1996-05-17
JP2663880B2 true JP2663880B2 (en) 1997-10-15

Family

ID=17393775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6263750A Expired - Fee Related JP2663880B2 (en) 1994-10-27 1994-10-27 Multiple quantum well structure semiconductor laser

Country Status (1)

Country Link
JP (1) JP2663880B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW412889B (en) * 1997-09-24 2000-11-21 Nippon Oxygen Co Ltd Semiconductor laser
US6563850B1 (en) 1997-10-06 2003-05-13 Sharp Kabushiki Kaisha Light-emitting device and fabricating method thereof
WO2007096939A1 (en) 2006-02-20 2007-08-30 Fujitsu Limited Optical semiconductor device and method for manufacturing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197391A (en) * 1987-02-12 1988-08-16 Hitachi Ltd Semiconductor laser device
JPH06268314A (en) * 1993-03-11 1994-09-22 Nec Corp Semiconductor laser
JPH06283799A (en) * 1993-03-25 1994-10-07 Nec Corp Semiconductor laser

Also Published As

Publication number Publication date
JPH08125263A (en) 1996-05-17

Similar Documents

Publication Publication Date Title
JP3225942B2 (en) Semiconductor optical element, method of manufacturing the same, and semiconductor optical device
US5321712A (en) Semiconductor light-emitting device having a cladding layer composed of an InGaAlp-based compound
JP4219010B2 (en) Semiconductor laser device
JPH05283791A (en) Surface emission type semiconductor laser
US20060209914A1 (en) Semiconductor device and manufacturing method thereof
JPH0732285B2 (en) Semiconductor laser device
JP2815769B2 (en) Manufacturing method of semiconductor laser
US6298077B1 (en) GaInAsP/AIGaInP laser diodes with AIGaAs type II carrier blocking layer in the waveguide
EP0512681B1 (en) Semiconductor laser diode
JP2663880B2 (en) Multiple quantum well structure semiconductor laser
JP2778454B2 (en) Semiconductor laser
JP3024611B2 (en) Semiconductor laser and method of manufacturing the same
JP2812273B2 (en) Semiconductor laser
US6589806B2 (en) Method of fabricating semiconductor laser for preventing turn-on of pnpn thyrister
JP2000340891A (en) Semiconductor optical device
JPH0697592A (en) Semiconductor laser and manufacture thereof
JP4983791B2 (en) Optical semiconductor element
JPH06209139A (en) Semiconductor laser
JP3403915B2 (en) Semiconductor laser
JP3609446B2 (en) Semiconductor laser device
JP2723921B2 (en) Semiconductor laser device
JPH05110193A (en) Semiconductor laser
JP2007005642A (en) Semiconductor light emitting element
JP3427649B2 (en) Self-oscillation type semiconductor laser
JP2555983B2 (en) Optical semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970520

LAPS Cancellation because of no payment of annual fees