JPH05107579A - Production of optical wavelength conversion element - Google Patents

Production of optical wavelength conversion element

Info

Publication number
JPH05107579A
JPH05107579A JP3255161A JP25516191A JPH05107579A JP H05107579 A JPH05107579 A JP H05107579A JP 3255161 A JP3255161 A JP 3255161A JP 25516191 A JP25516191 A JP 25516191A JP H05107579 A JPH05107579 A JP H05107579A
Authority
JP
Japan
Prior art keywords
polarization inversion
inversion layer
wavelength conversion
proton exchange
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3255161A
Other languages
Japanese (ja)
Other versions
JP3006217B2 (en
Inventor
Kazuhisa Yamamoto
和久 山本
Kiminori Mizuuchi
公典 水内
Tetsuo Yanai
哲夫 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3255161A priority Critical patent/JP3006217B2/en
Publication of JPH05107579A publication Critical patent/JPH05107579A/en
Application granted granted Critical
Publication of JP3006217B2 publication Critical patent/JP3006217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To form deep periodic polarization inversion layers by utilizing slab- shaped polarization inversion layers. CONSTITUTION:After a proton exchange layer 5 is formed by a proton exchange on an LiTaO3 substrate 1, the proton exchange layer is subjected to a heat treatment for 15 seconds at 550 deg.C to form the slab-shaped polarization inversion layers 7 within the LiTaO3 substrate 1. The thick proton exchange layers 8 are then formed right under the slits on the LiTaO3 substrate 1 formed with patterns consisting of Ta6 by executing the proton exchange for 30 minutes at 260 deg.C and thereafter, the exchange layers are heat treated for one minute at 550 deg.C. The polarization inversion layers 3 are formed in such a manner. These layers connect to the slab-shaped polarization inversion layers 7. The polarization inversion layers 3 are subjected to the proton exchange to form optical waveguides 2. The wavelength conversion element formed with the polarization inversion layers 3 and the optical waveguides 2 in the nonlinear optical crystal is obtd. in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コヒ−レント光を利用
する光情報処理分野、あるいは光応用計測制御分野に使
用する光波長変換素子の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an optical wavelength conversion element used in the field of optical information processing utilizing coherent light or in the field of optical measurement and control.

【0002】[0002]

【従来の技術】図4に従来の光導波路を基本とした光波
長変換素子の構成図を示す。以下0.84μmの波長の基本
波に対する高調波発生(波長0.42μm)について図を用
いて詳しく述べる。(K.Mizuuchi, K.Yamamoto and T.T
aniuchi, Applied Physics Letters, Vol 58, 2732ペー
ジ, 1991年6月号、参照).図4に示されるようにLiTa
O3基板1に光導波路2が形成され、さらに光導波路2に
は周期的に分極の反転した層3(分極反転層)が形成さ
れている。基本波P1と発生する高調波P2の伝搬定数
の不整合を分極反転層3および非分極反転層4の周期構
造で補償することにより高効率に高調波P2を出すこと
ができる。光導波路2の入射面10に基本波P1を入射
すると、光導波路2から高調波P2が効率良く発生さ
れ、光波長変換素子として動作する。
2. Description of the Related Art FIG. 4 shows a block diagram of a conventional optical wavelength conversion element based on an optical waveguide. The harmonic generation (wavelength 0.42 μm) with respect to the fundamental wave having a wavelength of 0.84 μm will be described in detail below with reference to the drawings. (K.Mizuuchi, K.Yamamoto and TT
aniuchi, Applied Physics Letters, Vol 58, page 2732, June 1991 issue). As shown in Figure 4, LiTa
An optical waveguide 2 is formed on an O 3 substrate 1, and a layer 3 (polarization inversion layer) whose polarization is periodically inverted is further formed on the optical waveguide 2. By compensating for the mismatch between the propagation constants of the fundamental wave P1 and the generated harmonic wave P2 by the periodic structure of the polarization inversion layer 3 and the non-polarization inversion layer 4, the harmonic wave P2 can be generated with high efficiency. When the fundamental wave P1 is incident on the incident surface 10 of the optical waveguide 2, the harmonic P2 is efficiently generated from the optical waveguide 2 and operates as an optical wavelength conversion element.

【0003】このような従来の光波長変換素子はプロト
ン交換法により作製された光導波路2を基本構成要素と
していた。この素子の製造方法について図を用いて説明
する。図5は従来の光波長変換素子の製造工程図であ
る。まず同図(a)でLiTaO3基板1に通常のフォトプロ
セスとドライエッチングを用いてTa6を周期状にパタ
ーニングする。次に同図(b)でTa6パターンが形成
されたLiTaO3基板1に260℃、30分間プロトン交換
を行いTa6で覆われていないスリット直下に厚み0.
8μmのプロトン交換層8を形成する。次にHF:HN
3の1:1混合液にて2分間エッチングしTaを除去
する。次に同図(c)で550℃の温度で1分間熱処理
する。熱処理の上昇レートは50℃/秒、冷却レートは
10℃/秒である。これにより分極反転層3が形成され
る。プロトン交換層8はLiが減少しておりキュリー温
度が低下するため部分的に分極反転を行うことができ
る。さらに同図(d)で上記分極反転層3中にプロトン
交換を用いて光導波路2を形成する。光導波路用マスク
としてTaをストライプ状にパターニングを行うことで
Taマスクに幅4μm、長さ12mmのスリットを形成
する。このTaマスクで覆われた基板に260℃、16
分間プロトン交換を行い0.5μmの高屈折率層を形成
する。Taマスクを除去した後420℃で30秒間熱処
理を行う。プロトン交換された保護マスクのスリット直
下の領域は屈折率が0.03程度上昇した光導波路2と
なる。分極反転層3の周期は10.8μmであり3次の
擬似位相整合構造となっていた。この従来の方法により
作製される光波長変換素子は波長0.84μmの基本波P1
に対して、光導波路2の長さを9mm、基本波P1のパ
ワーを27mWにしたとき高調波P2のパワー0.13
mW、変換効率0.5%が得られていた。
Such a conventional optical wavelength conversion element has an optical waveguide 2 manufactured by a proton exchange method as a basic constituent element. A method of manufacturing this element will be described with reference to the drawings. FIG. 5 is a manufacturing process diagram of a conventional light wavelength conversion element. First, in FIG. (A) the LiTaO 3 substrate 1 by using the ordinary photo process and dry etching to pattern the Ta6 to periodic. Next, in FIG. 3B, the LiTaO 3 substrate 1 on which the Ta6 pattern was formed was subjected to proton exchange at 260 ° C. for 30 minutes, and a thickness of 0.
An 8 μm proton exchange layer 8 is formed. Then HF: HN
Ta is removed by etching with a 1: 1 mixed solution of F 3 for 2 minutes. Next, as shown in FIG. 3C, heat treatment is performed at a temperature of 550 ° C. for 1 minute. The rising rate of the heat treatment is 50 ° C./sec, and the cooling rate is 10 ° C./sec. Thereby, the domain inversion layer 3 is formed. Since the Li content of the proton exchange layer 8 is reduced and the Curie temperature is lowered, polarization reversal can be partially performed. Further, in FIG. 3D, the optical waveguide 2 is formed in the polarization inversion layer 3 by using proton exchange. By patterning Ta as an optical waveguide mask in a stripe shape, a slit having a width of 4 μm and a length of 12 mm is formed in the Ta mask. The substrate covered with this Ta mask is 260 ° C.
Proton exchange is performed for a minute to form a 0.5 μm high refractive index layer. After removing the Ta mask, heat treatment is performed at 420 ° C. for 30 seconds. The region directly under the slit of the proton-exchanged protective mask becomes the optical waveguide 2 having a refractive index increased by about 0.03. The period of the domain inversion layer 3 was 10.8 μm, and the structure was a third-order quasi phase matching structure. The optical wavelength conversion element manufactured by this conventional method has a fundamental wave P1 with a wavelength of 0.84 μm.
On the other hand, when the length of the optical waveguide 2 is 9 mm and the power of the fundamental wave P1 is 27 mW, the power of the harmonic wave P2 is 0.13.
mW and conversion efficiency of 0.5% were obtained.

【0004】また、1次の擬似位相整合構造の場合周期
は3.6μmと小さく、そのため分極反転層の厚みは
1.5μmとなる。この場合基本波P1が27mWで
0.3mWの高調波P2が得られていた。変換効率は1
%であった。
Further, in the case of the first-order quasi phase matching structure, the period is as small as 3.6 μm, and therefore the thickness of the domain inversion layer is 1.5 μm. In this case, the fundamental wave P1 was 27 mW and the harmonic wave P2 of 0.3 mW was obtained. Conversion efficiency is 1
%Met.

【0005】[0005]

【発明が解決しようとする課題】上記のような光導波路
を基本とした光波長変換素子では高効率変換が可能な1
次の擬似位相整合の場合、分極反転層の厚みが光導波路
に比べて小さく、そのため光導波路を伝搬する光と分極
反転層のオーバーラップも小さくなっていた。この従来
の作製方法では分極反転層は半円形状となるため分極反
転層幅と厚みが比例しこれ以上深くすることができなか
った。そのため変換効率が理論にたいして1/4程度に
低下してしまうといった問題があった。
The optical wavelength conversion element based on the above-mentioned optical waveguide is capable of high efficiency conversion.
In the case of the following quasi-phase matching, the thickness of the polarization inversion layer was smaller than that of the optical waveguide, and therefore the overlap between the light propagating through the optical waveguide and the polarization inversion layer was also small. In this conventional manufacturing method, since the domain-inverted layer has a semicircular shape, the domain-inverted layer width is proportional to the thickness, and it cannot be made deeper than this. Therefore, there is a problem that the conversion efficiency is reduced to about 1/4 of the theory.

【0006】[0006]

【課題を解決するための手段】本発明は、上記問題点を
解決するため光波長変換素子の製造方法に新たな工夫を
加えることにより高効率変換可能な光波長変換素子の製
造方法を提供するものである。つまり、非線形光学結晶
内部にスラブ状に分極反転層を形成する工程と、前記非
線形光学結晶表面に周期状に分極反転層を形成する工程
と、前記非線形光学結晶表面に光導波路を形成する工程
とを有するものである。
The present invention provides a method of manufacturing an optical wavelength conversion element capable of highly efficient conversion by adding a new device to the method of manufacturing an optical wavelength conversion element in order to solve the above problems. It is a thing. That is, a step of forming a polarization inversion layer in a slab shape inside the nonlinear optical crystal, a step of forming periodically a polarization inversion layer on the surface of the nonlinear optical crystal, and a step of forming an optical waveguide on the surface of the nonlinear optical crystal. Is to have.

【0007】[0007]

【作用】本発明の光波長変換素子の製造方法によれば、
非線形光学結晶であるLiTaO3内部に形成されたスラブ状
の分極反転層を利用することで、分極反転層の形状を縦
長にし、LiTaO3基板中に深い周期状の分極反転層を形成
できる。これにより光導波路とのオーバーラップが増し
変換効率が大幅に向上する。
According to the method of manufacturing the optical wavelength conversion element of the present invention,
By using the slab-shaped polarization inversion layer formed inside LiTaO 3 which is a nonlinear optical crystal, the polarization inversion layer can be made vertically long and deep periodic polarization inversion layers can be formed in the LiTaO 3 substrate. As a result, the overlap with the optical waveguide is increased and the conversion efficiency is significantly improved.

【0008】[0008]

【実施例】第1の実施例として本発明の光波長変換素子
の製造方法について図を使って説明する。図1はその製
造工程図である。同図(a)でまずLiTaO3基板1にピロ
燐酸中でのプロトン交換により厚み2.5μmのプロト
ン交換層5を形成する。次に同図(b)で赤外線加熱装
置を用いて550℃、15秒間熱処理を行いLiTaO3基板
1の内部にスラブ状の分極反転層7を形成する。プロト
ン交換層5はLiが減少しておりキュリー温度が低下す
るため部分的に分極反転ができる。また、分極反転層は
プロトン交換層と基板の境界1aから発生しまわりに広
がる。そのため、この分極反転層7は表面から2.2μ
mのところから2.8μmまでの深さまで形成された。
次に同図(c)で通常のフォトプロセスとドライエッチ
ングを用いてTa6を周期状にパターニングした後、T
a6によるパターンが形成されたLiTaO3基板1に260
℃、30分間プロトン交換を行いスリット直下に厚み
0.8μmのプロトン交換層8を形成する。その後H
F:HNF3の1:1混合液にて2分間エッチングしT
aを除去する。次に同図(d)で赤外線加熱装置を用い
て550℃の温度で1分間熱処理する。熱処理の上昇レ
ートは50℃/秒、冷却レートは10℃/秒である。こ
れにより分極反転層3が形成される。これは分極反転層
3が近傍の分極反転層7と結合しようとする作用によ
る。この分極反転層3はスラブ状の分極反転層7と接続
された形となる。そのため分極反転層3の深さは2.2
μmとなる。次に上記分極反転層3に対してプロトン交
換を用いて光導波路2を形成する。同図(e)で光導波
路用マスクとしてTaをストライプ状にパターニングを
行った後、Taマスクに幅4μm、長さ12mmのスリ
ットが形成されたものに260℃、16分間ピロ燐酸中
でプロトン交換を行った後、赤外線加熱装置を用いて4
20℃で30秒熱処理を行った。これにより屈折率が
0.03程度上昇した光導波路2が形成される。最後に
Taを除去した後、蒸着によりSiO2を3000A付加し
た。
EXAMPLE As a first example, a method for manufacturing an optical wavelength conversion device of the present invention will be described with reference to the drawings. FIG. 1 is a manufacturing process diagram thereof. In FIG. 3A, first, a proton exchange layer 5 having a thickness of 2.5 μm is formed on the LiTaO 3 substrate 1 by proton exchange in pyrophosphoric acid. Next, as shown in FIG. 2B, a slab-shaped polarization inversion layer 7 is formed inside the LiTaO 3 substrate 1 by heat treatment at 550 ° C. for 15 seconds using an infrared heating device. In the proton exchange layer 5, Li is reduced and the Curie temperature is lowered, so that the polarization can be partially inverted. The polarization inversion layer is generated from the boundary 1a between the proton exchange layer and the substrate and spreads around. Therefore, the domain-inverted layer 7 is 2.2 μm from the surface.
It was formed up to a depth of 2.8 μm from m.
Next, in the same figure (c), after Ta6 is patterned in a periodic shape by using a normal photo process and dry etching,
260 on the LiTaO 3 substrate 1 on which the pattern of a6 is formed
Proton exchange is performed at 30 ° C. for 30 minutes to form a proton exchange layer 8 having a thickness of 0.8 μm just below the slit. Then H
Etching for 2 minutes with a 1: 1 mixture of F: HNF 3 and T
a is removed. Next, as shown in FIG. 3D, heat treatment is performed for 1 minute at a temperature of 550 ° C. using an infrared heating device. The rising rate of the heat treatment is 50 ° C./sec, and the cooling rate is 10 ° C./sec. Thereby, the domain inversion layer 3 is formed. This is due to the action of the domain-inverted layer 3 attempting to combine with the domain-inverted layer 7 in the vicinity. The domain-inverted layer 3 is connected to the slab-shaped domain-inverted layer 7. Therefore, the depth of the domain inversion layer 3 is 2.2.
μm. Next, the optical waveguide 2 is formed on the polarization inversion layer 3 by using proton exchange. In the same figure (e), after Ta was patterned into a stripe shape as an optical waveguide mask, a Ta mask with slits of 4 μm in width and 12 mm in length was formed, and proton exchange was performed in pyrophosphoric acid for 16 minutes at 260 ° C. After performing the
Heat treatment was performed at 20 ° C. for 30 seconds. As a result, the optical waveguide 2 having a refractive index increased by about 0.03 is formed. Finally, after removing Ta, 3000 A of SiO 2 was added by vapor deposition.

【0009】上記のような工程により分極反転層3およ
び光導波路2が製造された。この分極反転層3の厚み
2.2μmは光導波路2の厚みdは1.8μmに比べ大
きく完全にオーバーラップされておりこのため有効に波
長変換が行われる。分極反転層3の周期は3.6μmで
あり波長0.84nmに対して動作する。また、この光
導波路2の非分極反転層4と分極反転層3の屈折率変化
はなく、光が導波する場合の伝搬損失は小さい。光導波
路2に垂直な面を光学研磨し入射部および出射部を形成
した。このようにして光波長変換素子が製造できる。
The polarization inversion layer 3 and the optical waveguide 2 are manufactured by the above steps. The thickness 2.2 μm of the domain inversion layer 3 is larger than the thickness d of the optical waveguide 2 which is 1.8 μm and completely overlaps each other, so that wavelength conversion is effectively performed. The period of the domain inversion layer 3 is 3.6 μm and operates for a wavelength of 0.84 nm. Further, there is no change in the refractive index of the non-polarization inversion layer 4 and the polarization inversion layer 3 of the optical waveguide 2, and the propagation loss when light is guided is small. A plane perpendicular to the optical waveguide 2 was optically polished to form an incident portion and an emission portion. In this way, the light wavelength conversion element can be manufactured.

【0010】また、この素子の長さは9mmである。基
本波P1として半導体レーザ光(波長0.84μm)を
入射部より導波させたところシングルモード伝搬し、波
長0.42μmの高調波P2が出射部より基板外部に取
り出された。光導波路2の伝搬損失は1dB/cmと小さく高
調波P2が有効に取り出された。低損失化の原因の1つ
として燐酸により均一な光導波路が形成されたことがあ
る。基本波27mWの入力で1.2mWの高調波(波長
0.42μm)を得た。この場合の変換効率は4.5%
であり従来のものにくらべて4倍の高効率化が図られて
いる。図2に分極反転層幅と分極反転層厚みの関係を示
す。本発明の光波長変換素子の製造方法によれば従来の
方法にくらべ1次の擬次位相整合周期に必要な幅1.8
μmのところで分極反転層の厚みが1.4倍も深くなっ
ている。
The length of this element is 9 mm. When semiconductor laser light (wavelength 0.84 μm) was guided as the fundamental wave P1 from the incident portion, it propagated in a single mode, and a harmonic wave P2 having a wavelength of 0.42 μm was extracted from the emitting portion to the outside of the substrate. The propagation loss of the optical waveguide 2 was as small as 1 dB / cm, and the harmonic P2 was effectively extracted. One of the causes of low loss is that phosphoric acid forms a uniform optical waveguide. A 1.2 mW harmonic (wavelength 0.42 μm) was obtained with a fundamental wave input of 27 mW. The conversion efficiency in this case is 4.5%
The efficiency is four times higher than the conventional one. FIG. 2 shows the relationship between the polarization inversion layer width and the polarization inversion layer thickness. According to the method of manufacturing an optical wavelength conversion element of the present invention, the width required for the first-order pseudo-order phase matching period is 1.8 as compared with the conventional method.
At μm, the thickness of the domain inversion layer is 1.4 times as deep.

【0011】なおこのような短時間処理を行うには急速
加熱が可能な赤外線加熱装置が適している。
An infrared heating device capable of rapid heating is suitable for performing such a short-time treatment.

【0012】次に本発明の光波長変換素子の製造方法を
用いた第2の実施例について説明する。図3はその製造
工程図である。同図(a)でまずLiTaO3基板1にピロ燐
酸中でのプロトン交換により厚み1μmのプロトン交換
層5を形成する。次に同図(b)で550℃、2分熱処
理を行いLiTaO3基板1の表面にスラブ状の分極反転層7
を形成する。プロトン交換層はLiが減少しておりキュ
リー温度が低下するため部分的に分極反転ができる。こ
の分極反転層7は表面から厚み2.2μmのところまで
形成された。次に同図(c)で通常のフォトプロセスと
ドライエッチングを用いてTa6を周期状にパターニン
グする。次にTa6によるパターンが形成されたLiTaO3
基板1に260℃、20分間プロトン交換を行いスリッ
ト直下に厚み0.5μmのプロトン交換層8を形成す
る。次にHF:HNF3の1:1混合液にて2分間エッ
チングしTa6を除去する。次に同図(d)で赤外線加
熱装置により550℃の温度で1分間熱処理する。熱処
理の上昇レートは50℃/秒、冷却レートは10℃/秒
である。これにより分極反転層7中に再反転層9が形成
される。この再反転層9は分極反転層7を越え反転され
てない領域に達したところで停止する。次に上記再反転
層9の残りの部分である分極反転層3に対してプロトン
交換を用いて光導波路2を形成する。同図(e)で光導
波路用マスクとしてTaをストライプ状にパターニング
を行った後、Taマスクに幅4μm、長さ12mmのス
リットが形成されたものに260℃、16分間ピロ燐酸
中でプロトン交換を行った後、Taマスクを除去する。
次に、赤外線加熱装置を用いて420℃で30秒熱処理
を行い屈折率が0.03程度上昇した光導波路2が形成
される。最後に蒸着によりSiO2を3000A付加した。
Next, a second embodiment using the method of manufacturing an optical wavelength conversion device of the present invention will be described. FIG. 3 is a manufacturing process drawing thereof. In FIG. 3A, first, a proton exchange layer 5 having a thickness of 1 μm is formed on a LiTaO 3 substrate 1 by proton exchange in pyrophosphoric acid. Next, as shown in FIG. 3B, heat treatment is performed at 550 ° C. for 2 minutes, and a slab-shaped polarization inversion layer 7 is formed on the surface of the LiTaO 3 substrate 1.
To form. Since the Li content of the proton exchange layer is reduced and the Curie temperature is lowered, polarization inversion can be partially performed. The domain-inverted layer 7 was formed to a thickness of 2.2 μm from the surface. Next, in FIG. 6C, Ta6 is patterned in a periodic shape by using a normal photo process and dry etching. Next, a LiTaO 3 pattern formed of Ta6 was formed.
Proton exchange is performed on the substrate 1 at 260 ° C. for 20 minutes to form a 0.5 μm-thick proton exchange layer 8 immediately below the slit. Next, Ta6 is removed by etching with a 1: 1 mixture of HF: HNF 3 for 2 minutes. Next, as shown in FIG. 3D, heat treatment is performed for 1 minute at a temperature of 550 ° C. by an infrared heating device. The rising rate of the heat treatment is 50 ° C./sec, and the cooling rate is 10 ° C./sec. As a result, the re-inversion layer 9 is formed in the polarization inversion layer 7. This re-inversion layer 9 stops when it reaches the region which has not been inverted, beyond the domain inversion layer 7. Next, the optical waveguide 2 is formed on the polarization inversion layer 3 which is the remaining part of the re-inversion layer 9 by using proton exchange. In the same figure (e), after Ta was patterned into a stripe shape as an optical waveguide mask, a Ta mask with slits of 4 μm in width and 12 mm in length was formed, and proton exchange was performed in pyrophosphoric acid for 16 minutes at 260 ° C. After that, the Ta mask is removed.
Next, an infrared heating device is used to perform heat treatment at 420 ° C. for 30 seconds to form the optical waveguide 2 having a refractive index increased by about 0.03. Finally, 3000 A of SiO 2 was added by vapor deposition.

【0013】上記のような工程により分極反転層3およ
び光導波路2が製造された。この光導波路2の厚みdは
1.8μmであり分極反転層3の厚み2.2μmに比べ
小さく有効に波長変換される。分極反転層3の周期は
3.6μmであり波長0.84nmに対して動作する。
また、この光導波路2の非分極反転層4と分極反転層3
の屈折率変化はなく、光が導波する場合の伝搬損失は小
さい。光導波路2に垂直な面を光学研磨し入射部および
出射部を形成した。このようにして光波長変換素子が製
造できる。また、この素子の長さは9mmである。基本
波P1として半導体レーザ光(波長0.84μm)を入
射部より導波させたところ、波長0.42μmの高調波
P2が出射部より基板外部に取り出された。基本波80
mWの入力で10mWの高調波(波長0.42μm)を
得た。この場合の変換効率は12%る。光損傷はなく高
調波出力は非常に安定していた。
The polarization inversion layer 3 and the optical waveguide 2 are manufactured by the above-mentioned steps. The thickness d of the optical waveguide 2 is 1.8 μm, which is smaller than the thickness 2.2 μm of the domain inversion layer 3 and the wavelength is effectively converted. The period of the domain inversion layer 3 is 3.6 μm and operates for a wavelength of 0.84 nm.
Further, the non-polarization inversion layer 4 and the polarization inversion layer 3 of this optical waveguide 2
There is no change in the refractive index and the propagation loss when light is guided is small. A plane perpendicular to the optical waveguide 2 was optically polished to form an incident portion and an emission portion. In this way, the light wavelength conversion element can be manufactured. The length of this element is 9 mm. When semiconductor laser light (wavelength 0.84 μm) was guided as the fundamental wave P1 from the incident portion, a harmonic wave P2 having a wavelength of 0.42 μm was taken out of the substrate from the emitting portion. Fundamental wave 80
A harmonic of 10 mW (wavelength 0.42 μm) was obtained with an input of mW. The conversion efficiency in this case is 12%. There was no optical damage and the harmonic output was very stable.

【0014】なお実施例では非線形光学結晶としてLiTa
O3を用いたがLiNbO3、KNbO3、KTP等の強誘電体にも
適用可能である。
In the embodiment, LiTa is used as the nonlinear optical crystal.
Although O 3 is used, it is also applicable to ferroelectrics such as LiNbO 3 , KNbO 3 and KTP.

【0015】[0015]

【発明の効果】以上説明したように本発明の光波長変換
素子の製造方法によれば、スラブ状の分極反転層を作製
しこのスラブ状の分極反転層に対して後から形成される
周期状の分極反転層の結合を利用することで、従来の方
法に比べて深い分極反転層を形成することができ光波長
変換素子の変換効率を大幅に向上させることができる。
As described above, according to the method of manufacturing an optical wavelength conversion element of the present invention, a slab-shaped domain-inverted layer is formed and a periodic pattern formed later is formed on the slab-shaped domain-inverted layer. By utilizing the coupling of the polarization inversion layer, the deep polarization inversion layer can be formed and the conversion efficiency of the optical wavelength conversion element can be significantly improved as compared with the conventional method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の光波長変換素子の製造
方法の工程断面図
FIG. 1 is a process sectional view of a method for manufacturing an optical wavelength conversion device according to a first embodiment of the present invention.

【図2】分極反転層幅と分極反転層厚みとの関係を示す
FIG. 2 is a diagram showing the relationship between the width of the domain inversion layer and the thickness of the domain inversion layer.

【図3】本発明の第2の実施例の光波長変換素子の製造
方法の工程断面図
FIG. 3 is a process sectional view of a method for manufacturing an optical wavelength conversion device according to a second embodiment of the present invention.

【図4】従来の光波長変換素子の構成図FIG. 4 is a configuration diagram of a conventional optical wavelength conversion element.

【図5】従来の方法による光波長変換素子の製造方法の
工程断面図
FIG. 5 is a process sectional view of a method for manufacturing an optical wavelength conversion element by a conventional method.

【符号の説明】[Explanation of symbols]

1 LiTaO3基板 2 光導波路 3 分極反転層 5 高屈折率層 7 スラブ状の分極反転層 P1 基本波 P2 高調波1 LiTaO 3 substrate 2 optical waveguide 3 polarization inversion layer 5 high refractive index layer 7 slab polarization inversion layer P1 fundamental wave P2 harmonic

【手続補正書】[Procedure amendment]

【提出日】平成4年11月16日[Submission date] November 16, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0015】[0015]

【発明の効果】以上説明したように本発明の光波長変換
素子の製造方法によれば、スラブ状の分極反転層を作製
しこのスラブ状の分極反転層に対して後から形成される
周期状の分極反転層の結合を利用することで、従来の方
法に比べて深い分極反転層を形成することができ光波長
変換素子の変換効率を大幅に向上させることができる。
As described above, according to the method of manufacturing an optical wavelength conversion element of the present invention, a slab-shaped domain-inverted layer is formed and a periodic pattern formed later is formed on the slab-shaped domain-inverted layer. By utilizing the coupling of the polarization inversion layer, the deep polarization inversion layer can be formed and the conversion efficiency of the optical wavelength conversion element can be significantly improved as compared with the conventional method.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の光波長変換素子の製造
方法の工程断面図
FIG. 1 is a process sectional view of a method for manufacturing an optical wavelength conversion device according to a first embodiment of the present invention.

【図2】分極反転層幅と分極反転層厚みとの関係を示す
FIG. 2 is a diagram showing the relationship between the width of the domain inversion layer and the thickness of the domain inversion layer.

【図3】本発明の第2の実施例の光波長変換素子の製造
方法の工程断面図
FIG. 3 is a process sectional view of a method for manufacturing an optical wavelength conversion device according to a second embodiment of the present invention.

【図4】従来の光波長変換素子の構成図FIG. 4 is a configuration diagram of a conventional optical wavelength conversion element.

【図5】従来の方法による光波長変換素子の製造方法の
工程断面図
FIG. 5 is a process sectional view of a method for manufacturing an optical wavelength conversion element by a conventional method.

【符号の説明】 1 LiTaO3基板 2 光導波路 3 分極反転層 5 高屈折率層 7 スラブ状の分極反転層 P1 基本波 P2 高調波[Explanation of Codes] 1 LiTaO 3 substrate 2 optical waveguide 3 polarization inversion layer 5 high refractive index layer 7 slab polarization inversion layer P1 fundamental wave P2 harmonic

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】非線形光学結晶内部にスラブ状に分極反転
層を形成する工程と、前記非線形光学結晶表面に周期状
に分極反転層を形成する工程と、前記非線形光学結晶表
面に光導波路を形成する工程とを含むことを特徴とする
光波長変換素子の製造方法。
1. A step of forming a polarization inversion layer in a slab shape inside a nonlinear optical crystal, a step of periodically forming a polarization inversion layer on the surface of the nonlinear optical crystal, and an optical waveguide formed on the surface of the nonlinear optical crystal. The manufacturing method of the optical wavelength conversion element characterized by including the process of performing.
【請求項2】非線形光学結晶表面にスラブ状の分極反転
層を形成する工程と、前記スラブ状の分極反転層にプロ
トン交換法により周期状の高屈折率層を形成する工程
と、前記高屈折率層を熱処理し周期状の再反転層を形成
する工程と、前記非線形光学結晶表面に光導波路を形成
する工程とを含むことを特徴とする光波長変換素子の製
造方法。
2. A step of forming a slab-shaped polarization inversion layer on a surface of a nonlinear optical crystal, a step of forming a periodic high refractive index layer on the slab-shaped polarization inversion layer by a proton exchange method, and the high refractive index. A method of manufacturing an optical wavelength conversion element, comprising: a step of heat-treating the index layer to form a periodic re-inversion layer; and a step of forming an optical waveguide on the surface of the nonlinear optical crystal.
【請求項3】非線形光学結晶がLiNbxTa1-x
3(0≦X≦1)基板である請求項1または同2記載の
光波長変換素子の製造方法。
3. The nonlinear optical crystal is LiNb x Ta 1-x O.
3. The method for manufacturing an optical wavelength conversion element according to claim 1, wherein the substrate is a 3 (0 ≦ X ≦ 1) substrate.
【請求項4】赤外線加熱装置を用いて熱処理することを
特徴とする請求項1または同2記載の光波長変換素子の
製造方法。
4. The method of manufacturing an optical wavelength conversion element according to claim 1, wherein the heat treatment is carried out by using an infrared heating device.
JP3255161A 1991-10-02 1991-10-02 Optical wavelength conversion element and method of manufacturing the same Expired - Fee Related JP3006217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3255161A JP3006217B2 (en) 1991-10-02 1991-10-02 Optical wavelength conversion element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3255161A JP3006217B2 (en) 1991-10-02 1991-10-02 Optical wavelength conversion element and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05107579A true JPH05107579A (en) 1993-04-30
JP3006217B2 JP3006217B2 (en) 2000-02-07

Family

ID=17274913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3255161A Expired - Fee Related JP3006217B2 (en) 1991-10-02 1991-10-02 Optical wavelength conversion element and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3006217B2 (en)

Also Published As

Publication number Publication date
JP3006217B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
US5249191A (en) Waveguide type second-harmonic generation element and method of producing the same
US20060044644A1 (en) High efficiency wavelength converters
US5205904A (en) Method to fabricate frequency doubler devices
JP2502818B2 (en) Optical wavelength conversion element
JPH05107579A (en) Production of optical wavelength conversion element
JP2718259B2 (en) Short wavelength laser light source
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JPH04254835A (en) Light wavelength conversion element and laser beam source utilizing the element
JP2962024B2 (en) Method for manufacturing optical waveguide and method for manufacturing optical wavelength conversion element
JPH05232538A (en) Wavelength converting element and its production
JPH0566440A (en) Laser light source
JP2973642B2 (en) Manufacturing method of optical wavelength conversion element
WO2024100865A1 (en) Optical waveguide element and method for manufacturing same
JP2765112B2 (en) Optical waveguide device, optical wavelength conversion element, and short wavelength laser light source
WO2004027512A1 (en) Wavelength conversion element
JP3052654B2 (en) Optical wavelength conversion element
JP2921209B2 (en) Manufacturing method of wavelength conversion element
JP2921207B2 (en) Optical wavelength conversion element and method of manufacturing the same
JP3036243B2 (en) Optical wavelength conversion element
JPH04296731A (en) Short-wavelength laser beam source
JPH06102554A (en) Optical element and production of optical element and production of optical waveguide
JPH05127207A (en) Production of wavelength conversion element
JP2014211538A (en) Wavelength conversion element
JPH06230445A (en) Production of periodic polarization inversion structure and production of wavelength conversion element
JP2010107822A (en) Wavelength conversion element and method for manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees