JPH05107563A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH05107563A
JPH05107563A JP27238291A JP27238291A JPH05107563A JP H05107563 A JPH05107563 A JP H05107563A JP 27238291 A JP27238291 A JP 27238291A JP 27238291 A JP27238291 A JP 27238291A JP H05107563 A JPH05107563 A JP H05107563A
Authority
JP
Japan
Prior art keywords
liquid crystal
fine particles
liquid
state
scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27238291A
Other languages
Japanese (ja)
Inventor
Hitoshi Hado
仁 羽藤
Yoshihiro Kinoshita
喜宏 木下
Yuzo Hisatake
雄三 久武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27238291A priority Critical patent/JPH05107563A/en
Publication of JPH05107563A publication Critical patent/JPH05107563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain the element which has high transmittance and small dependency on visual sensation, is low in driving voltage and has a high response speed by putting the arrangement of a liquid crystal compsn. into a scattering state in microregions with the fine particles of liquid exclusive of the liquid crystal compsn. as nuclei and enabling controlling of this state. CONSTITUTION:The liquid exclusive of the liquid crystal is dispersed in the form of the fine particles 1 in a colloidal state into the liquid crystal 2. The cause for the perpendicular arrangement of the liquid crystal molecules 3 of the liquid crystal 2 on the surface of the fine particles 1 of the liquid lies in the boundary tension by the unbalance of the Van del Waals attraction force at the fine particle-liquid boundary. The shape of the particles is in principle perfectly speroidal and the liquid crystal molecules are arranged the boundary. The light scattering state by the disturbance of the liquid crystal molecule arrangement is, therefore, obtd. Namely, the fine particles exclusive of the liquid crystal compsn. are dispersed into the liquid crystal compsn. and liquid crystal molecules are perpendicularly adsorbed on the surfaces of the fine particles. The arrangement of the liquid crystal compsn. is put into the scattering state in the microregions with such fine particles as the nuclei. The display element having the high scattering characteristic, the low driving voltage and the highly bright contrast ratio is obtd. in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,液晶表示素子に係わ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device.

【0002】[0002]

【従来の技術】近年,液晶表示素子(以下LCDと略
称)はワードプロセッサ,パーソナルコン ピュータ
ー,投影形TV,小型TVなどに広く利用されている。
2. Description of the Related Art In recent years, liquid crystal display devices (hereinafter abbreviated as LCD) have been widely used in word processors, personal computers, projection TVs, small TVs, and the like.

【0003】これらのLCDを光制御の観点から分類す
ると、明暗の変化を液晶分子の偏光効果と偏光子を組み
合わせにより生じさせるものと、液晶の相転移を利用
し、光の散乱と透過により生じさせるもの、及び染料を
添加し、染料の可視光吸収量を制御し、色の濃淡変化に
より生じさせるるもの等に分けられる。
When these LCDs are classified from the viewpoint of light control, light and dark changes are caused by a combination of a polarization effect of liquid crystal molecules and a polarizer, and a phase transition of liquid crystals is used to cause light scattering and transmission. And a dye that is added to control the amount of visible light absorption of the dye to generate a color shade.

【0004】前者の偏光効果と偏光子を組み合わせたL
CDは、例えば90゜捻れた分子配列をもつツイステッ
ドネマティック(TN)型液晶であり、原理的に低電圧
で偏光制御できることから、早い応答速度、低消費電力
にて、高いコントラスト比を示し、時計や電卓、単純マ
トリクス駆動や、スイッチング素子を各画素ごとに具備
したアクティブマトリクス駆動で、また、カラーフィル
ターと組み合わせて、フルカラーの表示の液晶TVなど
に応用されている。
L, which is a combination of the former polarization effect and a polarizer
CD is a twisted nematic (TN) type liquid crystal having, for example, a 90 ° twisted molecular arrangement. In principle, polarization control can be performed at a low voltage, so that a high response ratio, low power consumption, and high contrast ratio It has been applied to a full color display liquid crystal TV and the like by using a calculator, a simple matrix drive, an active matrix drive having a switching element for each pixel, and a color filter in combination.

【0005】しかし、これら偏光効果と偏光子を組み合
わせたLCDは、原理上偏光板を用いることから素子の
透過率が著しく低く、また分子配列の方位性により見る
角度・方位によって表示色やコントラスト比が大きく変
化するといった視角依存性を持ち陰極線管(CRT)の
表示性能を完全に越えるまでにはいたらない。
However, an LCD combining these polarization effects and a polarizer has a remarkably low transmittance of the element since a polarizing plate is used in principle, and the display color and the contrast ratio depend on the viewing angle / direction depending on the orientation of the molecular arrangement. Has a viewing angle dependency such as a large change in the display angle, and cannot completely exceed the display performance of a cathode ray tube (CRT).

【0006】一方、後者の液晶の相転移を利用したも
の、及び染料の可視光吸収量を制御したLCDは、例え
ば、ヘリカル構造の分子配列をもつコレステリック相か
らホメオトロピック分子配列のネマティック相への相転
移を電場印加で生じさせる相転移(PC)型液晶及びこ
れに染料を添加してなるホワイト−テイラー型ゲストホ
スト(GH)液晶であり、偏光子を用いず、原理的に偏
光効果を用いないことから、明るく、広い視認角を示
し、自動車機器や、投影型表示器などに応用されてい
る。
On the other hand, the latter one utilizing the phase transition of liquid crystal and the LCD in which the visible light absorption amount of the dye is controlled, for example, from a cholesteric phase having a helical molecular arrangement to a homeotropic molecular nematic phase. A phase transition (PC) type liquid crystal that causes a phase transition by applying an electric field and a white-Taylor type guest host (GH) liquid crystal obtained by adding a dye to the phase transition (PC) type liquid crystal. In principle, a polarization effect is used without using a polarizer. Since it is not available, it is bright and has a wide viewing angle, and is applied to automobile equipment and projection-type displays.

【0007】しかし、充分な光の散乱を得るには、液晶
相厚を充分厚くしたり、散乱を生じさせるヘリカル強度
を強めたりする必要があり、高い駆動電圧を要し、応答
速度も極めて遅いといった問題点をもっているため表示
量(画素数)の多い表示素子への応用は困難とされてい
た。また、印加電圧の増加に伴い、透過率が急激に変化
するために階調性をもたらすことも困難とされていた。
さらに、その印加電圧−透過率特性にヒステリシスがあ
り、マルチプレクス駆動することが困難など実用的に問
題があった。
However, in order to obtain sufficient light scattering, it is necessary to sufficiently thicken the liquid crystal phase and to increase the helical strength that causes scattering, which requires a high driving voltage and extremely slow response speed. Therefore, it is difficult to apply it to a display device having a large display amount (number of pixels). Further, it has been considered difficult to bring about gradation because the transmittance changes abruptly as the applied voltage increases.
Further, the applied voltage-transmittance characteristic has a hysteresis, and there is a practical problem that it is difficult to perform multiplex driving.

【0008】また、図3に示す様に有機高分子15中に
液晶16を球状に保持したマイクロカプセル(NCA
P)形LCDは散乱モードの液晶表示素子であり、偏光
板をもちいないため、明るく、広い視認角を示し、自動
車機器や、投影型表示器などに応用されている。しかし
ながら、外部から印加した電圧は有機高分子15と液晶
16とに分圧され、液晶には印加電圧の一部しか印加さ
れず、実用的には動作電圧が高まり問題であった。ま
た、充分な光の散乱を得るには、液晶厚を充分厚くする
必要があり、応答速度も極めて遅いといった問題点をも
っているため表示量(画素数)の多い表示素子への応用
は困難とされていた。さらに、その印加電圧−透過率特
性にヒステリシスがあり、マルチプレクス駆動すること
が困難など実用的に問題があった。これと同様の動作原
理で動作する網目状有機高分子中に液晶を保持した高分
子分散形LCDにおいても、同様の問題があった。
Further, as shown in FIG. 3, a microcapsule (NCA) in which a liquid crystal 16 is spherically held in an organic polymer 15 is used.
The P) -type LCD is a liquid crystal display element in a scattering mode and has no polarizing plate, so it is bright and has a wide viewing angle, and is applied to automobile devices, projection-type displays and the like. However, the voltage applied from the outside is divided into the organic polymer 15 and the liquid crystal 16, and only a part of the applied voltage is applied to the liquid crystal, which causes a problem that the operating voltage is increased practically. Further, in order to obtain sufficient light scattering, it is necessary to make the liquid crystal thickness sufficiently thick, and there is a problem that the response speed is extremely slow, so it is difficult to apply it to a display element with a large display amount (pixel number). Was there. Further, the applied voltage-transmittance characteristic has a hysteresis, and there is a practical problem that it is difficult to perform multiplex driving. The polymer-dispersed LCD in which liquid crystal is held in a network organic polymer that operates according to the same operation principle has the same problem.

【0009】[0009]

【発明が解決しようとする課題】上述したように、現
在、液晶表示素子は透過率が低く、視角依存性を持つ
か、高い駆動電圧を要し、応答速度も遅いといった問題
点をもっていた。
As described above, at present, liquid crystal display elements have the problems of low transmittance, viewing angle dependency, high driving voltage, and slow response speed.

【0010】本発明は上記不都合を解決するものであ
り、透過率が高く、視角依存性の小さい、駆動作電圧の
低く、応答速度が早い液晶表示素子を提供することを目
的としている。
The present invention has been made to solve the above-mentioned inconvenience, and an object of the present invention is to provide a liquid crystal display element having a high transmittance, a small viewing angle dependency, a low driving voltage, and a fast response speed.

【0011】[0011]

【課題を解決するための手段】本発明は、液晶組成物中
に液晶組成物以外の液体を微粒子として分散させ、前記
微粒子を核とし液晶組成物の配列を微小な領域で散乱状
態とさせこの状態が制御可能とされた液晶表示素子を得
るものである。
According to the present invention, a liquid other than a liquid crystal composition is dispersed as fine particles in a liquid crystal composition, and the fine particles serve as nuclei to arrange the liquid crystal composition in a scattering state in a minute region. A liquid crystal display element whose state is controllable.

【0012】[0012]

【作用】すなわち、液晶組成物中に液晶組成物以外の液
体を微小な大きさの微粒子として分散させ、前記微粒子
を核とし液晶組成物の配列を微小な領域で散乱状態とさ
せた第1の状態形成し、また、前記液晶組成物に電圧や
熱光学効果による外力を与え前記液晶組成物の液晶分子
を一定方向に配列させた第2の状態を形成し、これら第
1、第2の状態間での光学的性質の変化を利用したこと
を特徴としている。
In other words, a liquid other than the liquid crystal composition is dispersed in the liquid crystal composition as fine particles having a minute size, and the fine particles serve as nuclei to cause the liquid crystal composition to be scattered in a minute region. A state is formed, and an external force is applied to the liquid crystal composition by a voltage or a thermo-optical effect to form a second state in which liquid crystal molecules of the liquid crystal composition are arranged in a certain direction. It is characterized by utilizing the change in optical properties between the two.

【0013】その達成原理及び手法について説明する。
前述したように、液晶表示素子は、偏光効果と偏光子を
用いた場合、原理上透過率が低くなり、視角依存性を生
じさせる。すなわち、少なくとも1枚の偏光板を用いる
為、透過光量は少なくとも50%以下となり、また、製
造上及び配向の安定化のためプレティルト角を有し、そ
れが視角特性に影響する。特に透過率が低いといった問
題は、原理上の問題で、偏光子を用いた場合、避けられ
ない問題である。
The achievement principle and method will be described.
As described above, in the liquid crystal display element, when the polarization effect and the polarizer are used, the transmittance is lowered in principle, and the viewing angle dependency is caused. That is, since at least one polarizing plate is used, the amount of transmitted light is at least 50% or less, and a pretilt angle is provided for manufacturing and stabilization of orientation, which affects the viewing angle characteristics. In particular, the problem of low transmittance is a problem in principle, and is an unavoidable problem when a polarizer is used.

【0014】また、液晶の相転移を利用した場合、これ
ら低い透過率、視角依存といった問題は生じないが、充
分に光を散乱させるためには、液晶相厚を充分に厚く
し、ヘリカル強度を強くしたりする必要がある。これ
は、光の散乱を種々の液晶分子配列に因っているからで
ある。つまり、充分に光を散乱させるためには、例え
ば、図3に示すようにヘリカル構造の分子配列をもつコ
レステリック相の場合、入射光方向に対し、あらゆる方
位にヘリカル軸を持つ必要性が生じる。このように、多
数の方位のヘリカル軸をもたせるためには、液晶相厚を
厚くしなくてはならない。
Further, when utilizing the phase transition of the liquid crystal, these problems such as low transmittance and viewing angle dependency do not occur, but in order to sufficiently scatter light, the liquid crystal phase thickness is made sufficiently thick and the helical strength is increased. You need to be strong. This is because the scattering of light is due to various liquid crystal molecule arrangements. That is, in order to sufficiently scatter light, for example, in the case of a cholesteric phase having a helical molecular arrangement as shown in FIG. 3, it is necessary to have a helical axis in every direction with respect to the incident light direction. As described above, in order to have the helical axes in many directions, the liquid crystal phase thickness must be increased.

【0015】また、有機電解質などの導電性物質を溶解
したNn液晶を用い、低周波で高電圧を印加することに
より散乱性を得る手段(一般にDS効果という)が提案
されているが、これも充分な散乱性を得るためには、前
記問題点を伴わねばなしえない。もちろん、相転移を熱
光学効果により制御する場合も同様である。また、図
3、4に示すように、NCAP型や高分子分散型LCD
は、カプセル状、及び繊維状のポリマーを用いて散乱性
を高める試みが提案されているが、充分に低い駆動電
圧、必要な特性を得るには至っていない。これは、その
ポリマーの形成に制約があり、すなわち製法上、及び原
理から、ポリマーと液晶層を混合して固めるがその混合
比に制約があり、要求される駆動特性を満足しようとす
ると、充分な散乱性を得れないためである。
Further, a means (generally referred to as a DS effect) for obtaining a scattering property by applying a high voltage at a low frequency using Nn liquid crystal in which a conductive substance such as an organic electrolyte is dissolved has been proposed. In order to obtain a sufficient scattering property, the above problems must be accompanied. Of course, the same applies when the phase transition is controlled by the thermo-optical effect. Further, as shown in FIGS. 3 and 4, an NCAP type or polymer dispersed type LCD
Has proposed an attempt to enhance the scattering property by using a capsule-shaped or fibrous polymer, but has not yet achieved a sufficiently low driving voltage and required characteristics. This is because there is a restriction on the formation of the polymer, that is, from the manufacturing method and the principle, the polymer and the liquid crystal layer are mixed and solidified, but there is a restriction on the mixing ratio, and it is sufficient to satisfy the required driving characteristics. This is because it is not possible to obtain excellent scattering properties.

【0016】したがって、光を散乱させる手段として製
法上制約がなく、なおかつ液晶層に対する量的比率が低
くても充分な光散乱効果が得られる物質、及び方式、構
造を用いれば、前記問題点が生じることなく、偏光板を
用いず、高い透過率で広い視角、なおかつ液晶相厚を薄
くできることから低電圧駆動が可能で、早い応答速度を
得る液晶表示素子が可能となる。
Therefore, if a substance, a method and a structure which have no limitation in the manufacturing method as a means for scattering light and can obtain a sufficient light scattering effect even if the quantitative ratio to the liquid crystal layer is low, the above-mentioned problems are caused. Without causing a polarizing plate, a wide viewing angle with a high transmittance and a thin liquid crystal phase thickness can be achieved, and thus a low voltage drive is possible, and a liquid crystal display element with a fast response speed can be obtained.

【0017】このような液晶表示素子は、液晶組成物中
に液晶組成物以外の微粒子を分散させ、この微粒子表面
に液晶分子を垂直に吸着させ、これを核として液晶組成
物の配列を微小な領域で散乱状態とさせる構造により容
易に達成できる。
In such a liquid crystal display device, fine particles other than the liquid crystal composition are dispersed in the liquid crystal composition, liquid crystal molecules are vertically adsorbed on the surfaces of the fine particles, and the alignment of the liquid crystal composition is made minute by using this as a core. This can be easily achieved by a structure in which the region is in a scattering state.

【0018】このような手段は、例えば特開昭63−9
6629号公報に提案されているように微粒子として、
透明な、固体粒子を液晶組成物中に混入することによっ
て達成されることが示されている。
Such means is disclosed in, for example, Japanese Patent Laid-Open No. 63-9.
As fine particles as proposed in Japanese Patent No. 6629,
It has been shown to be achieved by incorporating transparent, solid particles into the liquid crystal composition.

【0019】しかしながら、固体粒子を用いた場合、表
面における液晶分子の吸着させるために疎水処理を施す
必要があり、これらが液晶材料特性に影響を与える等、
実用上の困難性が考えられる。
However, when solid particles are used, it is necessary to perform a hydrophobic treatment in order to adsorb liquid crystal molecules on the surface, and these affect the characteristics of the liquid crystal material.
Practical difficulty is considered.

【0020】しかるに本発明では、図1に示すように、
液晶2中に液晶以外の液体をコロイド状に微粒子1とし
て分散させる構造によって前述した問題を解決する手段
を提供するのである。ここで、液体微粒子1の表面に液
晶2の液晶分子3が垂直に配列するのは、微粒子−液晶
界面におけるファンデルワ−ルス引力の不釣合による界
面張力によるからで原理的に粒子の形状は完全な球体と
なり、界面において、液晶分子は垂直に配列する。した
がって、本発明では、実用上において、図1に示すよう
な液晶分子配列の乱れによる光の散乱状態が得られ、前
述した問題を解決し得るわけである。
However, in the present invention, as shown in FIG.
The structure for dispersing a liquid other than the liquid crystal in the liquid crystal 2 as the fine particles 1 provides a means for solving the above-mentioned problems. Here, the reason why the liquid crystal molecules 3 of the liquid crystal 2 are vertically aligned on the surface of the liquid fine particles 1 is due to the interfacial tension due to the imbalance of the van der Waals attraction at the fine particle-liquid crystal interface, and in principle the shape of the particles is a perfect sphere. Therefore, the liquid crystal molecules are aligned vertically at the interface. Therefore, in the present invention, the light scattering state due to the disorder of the liquid crystal molecule alignment as shown in FIG. 1 can be obtained in practical use, and the above-mentioned problem can be solved.

【0021】また、微粒子は充分に小さいことから、そ
れ自身は肉眼では判別はできないが、その周囲での液晶
分子の配列みだれは十分に表示に用いることができる。
この微粒子の径は約0.5μm乃至2.5μmである。
Further, since the fine particles are sufficiently small, they cannot be discerned by the naked eye, but the arrangement of liquid crystal molecules around the fine particles can be sufficiently used for display.
The diameter of the fine particles is about 0.5 μm to 2.5 μm.

【0022】また、微粒子を液晶相内に数多く混入させ
ることにより光学上、極めて乱雑な分子配列が容易に得
られ、薄い液晶相厚にて、充分な光散乱が得られるわけ
である。この様にして第1の状態が得られる。
Further, by mixing a large number of fine particles in the liquid crystal phase, a very optically disordered molecular arrangement can be easily obtained, and sufficient light scattering can be obtained with a thin liquid crystal phase thickness. In this way, the first state is obtained.

【0023】また、液晶材料として、たとえば正の誘電
異方性を持つ材料を用い、かつ外力として電圧を用いて
電極間の液晶に電圧を印加すれば、液晶分子3は電圧印
加方向に配列するので、その方向に入射した光は散乱せ
ず、透過する。この様子を図2に示す。また、たとえば
負の誘電異方性を持つ材料を用い場合も、液晶分子は電
圧印加時に電圧印加と直交した方向に再配列するので、
この時の光学的性質の違いを表示に用いることができ
る。この時、電圧印加方向と直交方向に何等かの配向規
制力を付与しておくと液晶分子の配向方向が一定方向と
なるので、より効果的である。この様にして第2の状態
がえられ、第1の状態と第2の状態の間の光学的性質の
変化を表示に利用することにができる。この様にするこ
とにより、透過率が高く、視角依存性の小さい、駆動電
圧の低く、応答速度が早い液晶表示素子が提供できる。
When a voltage having a positive dielectric anisotropy is used as the liquid crystal material and a voltage is applied as an external force to the liquid crystal between the electrodes, the liquid crystal molecules 3 are aligned in the voltage applying direction. Therefore, the light incident in that direction is not scattered but is transmitted. This state is shown in FIG. Also, for example, when a material having a negative dielectric anisotropy is used, the liquid crystal molecules are rearranged in a direction orthogonal to the voltage application when a voltage is applied,
The difference in optical property at this time can be used for display. At this time, if some alignment regulating force is applied in the direction orthogonal to the voltage application direction, the alignment direction of the liquid crystal molecules becomes constant, which is more effective. In this way, the second state is obtained, and the change in the optical property between the first state and the second state can be used for display. By doing so, it is possible to provide a liquid crystal display device having a high transmittance, a small viewing angle dependency, a low driving voltage, and a high response speed.

【0024】また、光を透過させる手段として、熱光学
効果を利用した場合も分子が等方性液体になることによ
り達成される。このように、光散乱効果を利用した液晶
表示素子において本発明は、薄い液晶層厚、低駆動電圧
にて、光散乱、及び透過が得られ、前記問題点を容易に
解決できる手段を提供するものである。
Further, when the thermo-optical effect is used as a means for transmitting light, the molecule can be an isotropic liquid. As described above, in the liquid crystal display device utilizing the light scattering effect, the present invention provides means for obtaining light scattering and transmission with a thin liquid crystal layer thickness and a low driving voltage and easily solving the above problems. It is a thing.

【0025】また、微粒子の大きさの異なるものを2種
類以上混入したり、材料の異なる微粒子を2種類以上混
入することにより、分子規制力を故意に不均一にし、光
の散乱透過は、その変化を与える外力(例えば電位)の
強弱に対し直線的に対応するため、容易に良好な階調表
示性を示す。また、印加電圧−透過率特性ヒステリシス
も実質的になくすことができる。
Further, by mixing two or more kinds of fine particles having different sizes or by mixing two or more kinds of fine particles of different materials, the molecular regulation force is intentionally made non-uniform, and the light scattering / transmission is reduced. Since it directly responds to the strength of the external force (for example, the potential) that gives a change, a good gradation display property is easily exhibited. Further, the applied voltage-transmittance characteristic hysteresis can be substantially eliminated.

【0026】一般に、油相と水相とを接触させるとミセ
ルコロイド状態、エマルジョンが生成されある条件で乳
化がおこることが知られている。液晶中にある種の液体
を混合し、必要に応じて機械的、あるいは超音波振動な
どの外力をくわえることにより、その液体は液晶中にコ
ロイド状態に近い状態で微粒子状態で分散し、これを核
として液晶の分子配列は微小領域で乱されたいわゆる散
乱状態が得られる。
It is generally known that when an oil phase and an aqueous phase are brought into contact with each other, a micellar colloid state and an emulsion are produced, and emulsification occurs under certain conditions. By mixing a certain liquid in the liquid crystal and adding an external force such as mechanical or ultrasonic vibration as necessary, the liquid is dispersed in the liquid crystal in the state of fine particles in a state close to the colloidal state. As a nucleus, a so-called scattering state in which the molecular alignment of liquid crystal is disturbed in a minute region is obtained.

【0027】この時、液晶組成物と液体との屈折率の値
が近い方が、第2の状態で液晶と液体の界面で反射がお
こらず、透明度が向上し望ましい。また、液晶組成物の
屈折率異方性は大きい法が第1の状態の散乱が大きくな
り望ましい。
At this time, it is desirable that the liquid crystal composition and the liquid have similar refractive index values because the liquid crystal does not reflect at the interface between the liquid crystal and the liquid in the second state and the transparency is improved. Moreover, a method in which the liquid crystal composition has a large refractive index anisotropy is preferable because the scattering in the first state becomes large.

【0028】また、液晶組成物が螺旋構造をもつと第1
の状態の散乱性が向上し、より大きい効果を得ることが
できる。
In addition, when the liquid crystal composition has a spiral structure,
In this state, the scattering property is improved, and a larger effect can be obtained.

【0029】また、本発明では分子が散乱状態をなって
いる第1の状態と一定配列をとっている第2の状態間で
の光学特性の違いを表示に用いるものであり、最も単純
なモードの散乱−透明間の切り替え動作させるものの
他、例えば2色性染料を液晶に混合したゲストホスト形
や偏光板を1枚や2枚組み合わせた複屈折効果を利用し
た表示モードにも応用できる。
Further, in the present invention, the difference in optical characteristics between the first state in which the molecules are in the scattering state and the second state in which the molecules are in a constant array is used for display, and the simplest mode is used. In addition to the switching operation between scattering and transparency, the present invention can be applied to, for example, a guest-host type in which a dichroic dye is mixed with liquid crystal, or a display mode utilizing a birefringence effect in which one or two polarizing plates are combined.

【0030】また、用いる電極基板として、視認方向か
らみて背面の基板を例えば黒色の染料などで着色すると
白地に黒の良好に表示が得られる。また、赤、青、緑の
モザイク状カラーフィルタと組み合わせることによるカ
ラー表示にも応用できる。
Further, as the electrode substrate to be used, when the substrate on the back side viewed from the viewing direction is colored with, for example, a black dye, a good display of black on a white background can be obtained. It can also be applied to color display by combining with a red, blue, and green mosaic color filter.

【0031】また、これら液晶表示素子を駆動する手段
として、スタティック駆動の他、単純マルチプレクス駆
動、アクティブマトリクス駆動が応用できる。背面に光
源を配置した透過形、反射板を配置した反射形、あるい
はその中間的な表示も可能である。或いは、投射レンズ
やズーム機構を供えたシステムに応用する事ができ、投
射形の表示に用いることが出来、この場合、高透過率と
いう本発明の特長が活用でき効果的である。
As means for driving these liquid crystal display elements, simple multiplex drive and active matrix drive can be applied in addition to static drive. A transmissive type in which a light source is arranged on the back surface, a reflective type in which a reflection plate is arranged, or an intermediate display is also possible. Alternatively, it can be applied to a system provided with a projection lens and a zoom mechanism, and can be used for a projection type display. In this case, the advantage of the present invention of high transmittance can be effectively used.

【0032】[0032]

【実施例】以下本発明の液晶表示素子の実施例を詳細に
説明する。
EXAMPLES Examples of the liquid crystal display device of the present invention will be described in detail below.

【0033】(実施例1)まず1に示すように、一面に
インジウム錫酸化物のような透明電極11を被着したガ
ラス基板12を2枚、それぞれの電極11を対向させて
一定の間隔を置いて配置したものを用意する。
(Example 1) First, as shown in 1, two glass substrates 12 each having a transparent electrode 11 such as indium tin oxide coated on one surface thereof were made to face each other at regular intervals. Prepare what has been placed.

【0034】一方、正の誘電異方性を持つネマティック
液晶として屈折率異方性の大きなネマティック液晶ZL
I−3926(メルクジャパン製、Δn=0.2030)に、液
晶に不溶な液体として水を含む界面活性剤エキストラン
(メルクジャパン製)を1.2%混合し、50℃で20
分間スターラーで攪拌することにより、界面活性剤に覆
われた微小な大きさの液状微粒子1を液晶2中に分散さ
せた。この様に作成した液晶組成物を前記透明電極付き
基板12の間に封入し、基板の周囲をエポキシ接着剤の
封止剤13で封止することにより、液晶表示素子10を
作成した。3は液晶分子を示し、微粒子2表面に垂直配
向していることを示す。
On the other hand, a nematic liquid crystal ZL having a large refractive index anisotropy is used as a nematic liquid crystal having a positive dielectric anisotropy.
I-3926 (manufactured by Merck Japan, Δn = 0.2030) was mixed with 1.2% of a surfactant Extran (manufactured by Merck Japan) containing water as a liquid insoluble in liquid crystal, and the mixture was mixed at 20 ° C. at 20 ° C.
By stirring with a stirrer for a minute, the fine liquid fine particles 1 covered with the surfactant were dispersed in the liquid crystal 2. The liquid crystal composition thus prepared was sealed between the transparent electrode-attached substrates 12 and the periphery of the substrate was sealed with an epoxy adhesive sealant 13 to prepare a liquid crystal display element 10. Reference numeral 3 denotes liquid crystal molecules, which are vertically aligned on the surface of the fine particles 2.

【0035】透過率−印加電圧曲線を求めるために、液
晶表示素子にHe-Ne レーザー光を入射させ、透過率を測
定した。光のスポット径は2mmで、透過したレーザー光
は液晶表示素子から距離20cmのところにあるフォトダ
イオードにより検出した。試作した素子は電源14から
電圧を印加しない状態では透過率約0.5%と良好な散
乱状態を示していた。図4に0Vから徐々に印加電圧
(交流70Hz)を10Vまで増加、10Vから徐々に
0Vまで減少させていったときの透過率−印加電圧曲線
を示す。10Vの電圧を印加した状態では透過率約80
%(最大透過率)を示し、高コントラスト比160:1
で高透過率の良好な表示を得ることができた。また、電
圧を徐々に増加させていくと、透過率も徐々に増加して
いった。これは液晶の相状態が、図1に示すような散乱
状態から図2に示す様な徐々にホメオトロピック状態に
変化していくためである。
In order to obtain the transmittance-applied voltage curve, He-Ne laser light was made incident on the liquid crystal display element and the transmittance was measured. The spot diameter of the light was 2 mm, and the transmitted laser light was detected by a photodiode located at a distance of 20 cm from the liquid crystal display device. The prototype device showed a good scattering state with a transmittance of about 0.5% when no voltage was applied from the power supply 14. FIG. 4 shows a transmittance-applied voltage curve when the applied voltage (AC 70 Hz) is gradually increased from 0 V to 10 V and gradually decreased from 10 V to 0 V. When a voltage of 10 V is applied, the transmittance is about 80
% (Maximum transmittance), high contrast ratio 160: 1
It was possible to obtain a good display with high transmittance. Further, as the voltage was gradually increased, the transmittance also gradually increased. This is because the phase state of the liquid crystal gradually changes from the scattering state shown in FIG. 1 to the homeotropic state as shown in FIG.

【0036】すなわち、液晶分子3は液状微粒子1の拘
束から解除されて電極11方向に整列する。
That is, the liquid crystal molecules 3 are released from the constraint of the liquid fine particles 1 and aligned in the direction of the electrodes 11.

【0037】(実施例2)実施例1と同様の構成におい
て、液晶組成物として、屈折率異方性の小さいZLI−
1565(メルクジャパン製品)に2色性黒色系染料
(三井東圧化学(株)製s-304 )を1.3wt%混入した
ものを用い、実施例1と同様に液晶表示素子を作成し
た。試作した素子は電圧を印加しない状態では透過率約
0.3%と良好な黒散乱状態を示していた。
(Example 2) In the same constitution as in Example 1, as a liquid crystal composition, ZLI- having a small refractive index anisotropy was used.
A liquid crystal display device was prepared in the same manner as in Example 1 using 1565 (Merck Japan product) mixed with 1.3 wt% of a dichroic black dye (s-304 manufactured by Mitsui Toatsu Chemicals, Inc.). The prototype device showed a favorable black scattering state with a transmittance of about 0.3% when no voltage was applied.

【0038】また、10Vの電圧を印加した状態では透
過率約67%(最大透過率)を示し、高コントラスト比
223:1で高透過率の良好な表示を得ることができ
た。
Further, when a voltage of 10 V was applied, a transmittance of about 67% (maximum transmittance) was exhibited, and a good display of high transmittance could be obtained with a high contrast ratio of 223: 1.

【0039】[0039]

【発明の効果】本発明によれば、散乱特性が高く、駆動
電圧の低い、明るくコントラスト比の高い諧調性に優れ
た液晶表示素子が得られる。
According to the present invention, it is possible to obtain a liquid crystal display device having a high scattering characteristic, a low driving voltage, a high brightness, a high contrast ratio and excellent gradation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の液晶表示素子の電圧無印加時の液晶分
子の配列を示す図。
FIG. 1 is a diagram showing an arrangement of liquid crystal molecules in a liquid crystal display element of the present invention when no voltage is applied.

【図2】本発明の液晶表示素子の電圧印加時の液晶分子
の配列の一例を示す図。
FIG. 2 is a diagram showing an example of an arrangement of liquid crystal molecules when a voltage is applied to the liquid crystal display element of the present invention.

【図3】従来技術のカプセル型高分子分散型液晶表示素
子の表示原理を示す図。
FIG. 3 is a diagram showing a display principle of a conventional capsule-type polymer-dispersed liquid crystal display device.

【図4】本発明の実施例1の素子の透過率−印加電圧曲
線を示す図。
FIG. 4 is a diagram showing a transmittance-applied voltage curve of the device of Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

1…微粒子、 2…液晶値、 3…液晶分子 10…液晶表示素子、 11…透明電極 12…ガラス
基板 13…封止剤、 14…電源
DESCRIPTION OF SYMBOLS 1 ... Fine particles, 2 ... Liquid crystal value, 3 ... Liquid crystal molecule 10 ... Liquid crystal display element, 11 ... Transparent electrode 12 ... Glass substrate 13 ... Sealant, 14 ... Power supply

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 液晶組成物中に液晶組成物以外の液体を
微粒子として分散させ、前記微粒子を核とし液晶組成物
の配列を微小な領域で散乱状態とさせこの状態を制御可
能とした液晶表示素子。
1. A liquid crystal display in which a liquid other than the liquid crystal composition is dispersed as fine particles in the liquid crystal composition, and the fine particles serve as nuclei to cause the alignment of the liquid crystal composition in a scattered state in a minute region to control this state. element.
JP27238291A 1991-10-21 1991-10-21 Liquid crystal display element Pending JPH05107563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27238291A JPH05107563A (en) 1991-10-21 1991-10-21 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27238291A JPH05107563A (en) 1991-10-21 1991-10-21 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH05107563A true JPH05107563A (en) 1993-04-30

Family

ID=17513109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27238291A Pending JPH05107563A (en) 1991-10-21 1991-10-21 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH05107563A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267514A (en) * 2005-03-23 2006-10-05 Sharp Corp Liquid crystal display device
US7639332B2 (en) 2003-12-18 2009-12-29 Sharp Kabushiki Kaisha Display element and display device, driving method of display element, and program
KR101388355B1 (en) * 2005-11-10 2014-04-22 후지필름 가부시키가이샤 Composition, film and liquid crystal display

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7639332B2 (en) 2003-12-18 2009-12-29 Sharp Kabushiki Kaisha Display element and display device, driving method of display element, and program
JP2006267514A (en) * 2005-03-23 2006-10-05 Sharp Corp Liquid crystal display device
JP4610387B2 (en) * 2005-03-23 2011-01-12 シャープ株式会社 Liquid crystal display device
KR101388355B1 (en) * 2005-11-10 2014-04-22 후지필름 가부시키가이샤 Composition, film and liquid crystal display

Similar Documents

Publication Publication Date Title
JP4142019B2 (en) Display element and display device
JP4027941B2 (en) Display element and display device
JP4451299B2 (en) Display element and display device
JP4176722B2 (en) Display element and display device
JP4246175B2 (en) Display element and display device
WO2009157271A1 (en) Liquid crystal display device
JP3183633B2 (en) Liquid crystal display device and manufacturing method thereof
JPH02176625A (en) Liquid crystal display device
JP4147217B2 (en) Display element and display device
US6737126B2 (en) Liquid crystal mixture and liquid crystal cell for LCDs and use of a dye with a dipole for a liquid crystal mixture
JP3679869B2 (en) Liquid crystal microcapsule and liquid crystal display device using the same
JPH0829812A (en) Liquid crystal display device
JPH05107563A (en) Liquid crystal display element
JPH1195195A (en) High polymer dispersion type liquid crystal display device and its production
JPH08136941A (en) Liquid crystal display element
JP4938044B2 (en) Display element and display device
JPH07199205A (en) Liquid crystal display element
JPH0667185A (en) Liquid crystal display element
JPH06110068A (en) Liquid crystal display device
JPH0792458A (en) Liquid crystal display element
JP3356561B2 (en) Liquid crystal display
JP2000214443A (en) Liquid crystal display element and its manufacture
JP3148561B2 (en) Liquid crystal display
JP2950736B2 (en) Liquid crystal display device, liquid crystal display using the same, and method of manufacturing and driving the same
KR980010512A (en) Reflective Liquid Crystal Display