JP3148561B2 - Liquid crystal display - Google Patents

Liquid crystal display

Info

Publication number
JP3148561B2
JP3148561B2 JP09715195A JP9715195A JP3148561B2 JP 3148561 B2 JP3148561 B2 JP 3148561B2 JP 09715195 A JP09715195 A JP 09715195A JP 9715195 A JP9715195 A JP 9715195A JP 3148561 B2 JP3148561 B2 JP 3148561B2
Authority
JP
Japan
Prior art keywords
liquid crystal
pixel
cell
polarizing plates
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09715195A
Other languages
Japanese (ja)
Other versions
JPH08292437A (en
Inventor
亘 堀江
信明 山田
修一 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP09715195A priority Critical patent/JP3148561B2/en
Publication of JPH08292437A publication Critical patent/JPH08292437A/en
Application granted granted Critical
Publication of JP3148561B2 publication Critical patent/JP3148561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、一対の電極基板間に液
晶層が挟持され、表示画面に複数の画素が配列された液
晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device in which a liquid crystal layer is sandwiched between a pair of electrode substrates and a plurality of pixels are arranged on a display screen.

【0002】[0002]

【従来の技術】従来、液晶表示装置として、ツイストネ
マティック(TN)型の表示装置が多く用いられてい
る。このTN型の表示原理について以下に説明する。
2. Description of the Related Art Conventionally, twisted nematic (TN) type display devices have been widely used as liquid crystal display devices. The display principle of the TN type will be described below.

【0003】このTN型の液晶表示装置は、液晶が上下
基板で互いに直交するように配向処理されている。これ
により、液晶は、上下基板の間で90°捩れている。さ
らに、2枚の偏光板の偏光軸を配向方向に合わせ、互い
に直交するように、上下基板を挟むと、液晶の旋光性に
よって、光は透過状態となるため、明表示状態となる。
一方、電圧オン状態にすると、液晶分子が基板に対して
立ち上がり、捩れが解けるために、光は遮断され、暗表
示状態になる。ところが、この液晶分子は基板に対し
て、一方向に配向処理されているため、電圧印加によっ
て一方向に立ち上がる。その結果、視角によっては、コ
ントラストが大きく変化し、白黒反転が起きる。
In this TN type liquid crystal display device, the liquid crystal is aligned so that the liquid crystal is orthogonal to the upper and lower substrates. Thus, the liquid crystal is twisted by 90 ° between the upper and lower substrates. Furthermore, when the polarizing axes of the two polarizing plates are aligned with the alignment direction and the upper and lower substrates are sandwiched so as to be orthogonal to each other, light is in a transmissive state due to the optical rotation of the liquid crystal, so that a bright display state is obtained.
On the other hand, when the voltage is turned on, the liquid crystal molecules rise with respect to the substrate and the twist is released, so that the light is shut off and a dark display state is set. However, since the liquid crystal molecules are oriented in one direction with respect to the substrate, they rise in one direction by applying a voltage. As a result, the contrast changes greatly depending on the viewing angle, and black-and-white inversion occurs.

【0004】また、上記TN型の液晶表示装置は、2枚
の偏光板の偏光軸を直交させて用いているために、原理
上、偏光板の偏光軸と45°方向は、見掛け上、偏光軸
が直交していないために、入射光は、楕円偏光となっ
て、目に入ってくるので、光漏れになって、コントラス
トは低く、さらに、視角依存性が大きい。
In the TN type liquid crystal display device, since the polarizing axes of two polarizing plates are used at right angles, in principle, the polarizing axis of the polarizing plate and the 45 ° direction are apparently polarized. Since the axes are not orthogonal, the incident light becomes elliptically polarized light and enters the eyes, resulting in light leakage, low contrast, and large viewing angle dependence.

【0005】このようなTN型の液晶表示装置に対し
て、以下に示すような、コントラストの視角依存性を改
善する方法が提案されている。
For such a TN type liquid crystal display device, there has been proposed a method for improving the viewing angle dependency of contrast as described below.

【0006】例えば、文献(SID'93 Digest24(1993)62
2)において、等方膜を形成した基板にラビング処理を
行わずセルを作成し、液晶分子が90°捩れになるよう
に液晶材料にカイラル剤を添加し、液晶分子をランダム
配向させた液晶表示装置が記載されている。この液晶分
子はランダム配向しているため、コントラストの視角依
存性は小さいが、光線透過効率は良くなく暗い。セルの
外側に設置される偏光板の偏光軸の向きは液晶分子の配
向方向がランダムなため、画素の方向と偏光板の偏光軸
の向きに法則性は無く、偏光板の向きを変えても、明る
さは、変化しない。
For example, in the literature (SID'93 Digest24 (1993) 62
In 2), a cell is formed on the substrate on which the isotropic film is formed without performing rubbing treatment, and a chiral agent is added to the liquid crystal material so that the liquid crystal molecules are twisted by 90 °, and the liquid crystal molecules are randomly aligned. An apparatus is described. Since the liquid crystal molecules are randomly aligned, the viewing angle dependence of the contrast is small, but the light transmission efficiency is not good and the liquid crystal is dark. The direction of the polarization axis of the polarizing plate installed outside the cell is random because the orientation direction of the liquid crystal molecules is random, so there is no law in the direction of the pixel and the direction of the polarization axis of the polarizing plate, and even if the direction of the polarizing plate is changed. , The brightness does not change.

【0007】また、文献(US Patent No.5309264)にお
いて、次のような方法も提案されている。即ち、一方の
基板に複数の画素電極を持ち、他方の基板には共通電極
に対応する画素の部分に切れ目を作ってマルチドメイン
セルを作製する。この切れ目に沿って偏光板の偏光軸を
配置することで、ディスクリネーションラインを見えに
くくしている。
[0007] In the literature (US Patent No. 5309264), the following method is also proposed. That is, a plurality of pixel electrodes are provided on one substrate, and a cut is made in a pixel portion corresponding to the common electrode on the other substrate to manufacture a multi-domain cell. By arranging the polarization axis of the polarizing plate along the cut, the disclination line is made difficult to see.

【0008】[0008]

【発明が解決しようとする課題】ところが、上記方法で
は、マルチドメイン内にもディスクリネーションライン
が発生するため、偏光板の設置方向によって、ディスク
リネーションラインを完全に見えにくくすることができ
ず、ディスクリネーションラインによる光漏れによっ
て、黒レベルが浮いてしまう。また、ラビング処理をす
る場合としない場合があるが、ラビング処理をする場合
には、全てのドメインで液晶の配向が1軸のため、視角
に対する改善効果は無い。この場合、偏光板の方向はラ
ビング方向に一意的に決ってしまう。また、ラビング処
理をしない場合は、ドメイン内の液晶の配向はランダム
であるために、偏光板の方向によらず、明表示状態は、
暗くなって、十分なコントラストは得られない。
However, in the above method, since the disclination line is generated in the multi-domain, the disclination line cannot be completely difficult to see depending on the installation direction of the polarizing plate. The black level floats due to light leakage due to the disclination line. Although rubbing may or may not be performed, when rubbing is performed, there is no effect of improving the viewing angle because the orientation of liquid crystal is uniaxial in all domains. In this case, the direction of the polarizing plate is uniquely determined by the rubbing direction. When the rubbing treatment is not performed, the orientation of the liquid crystal in the domain is random, so that the bright display state is independent of the direction of the polarizing plate.
It becomes dark, and sufficient contrast cannot be obtained.

【0009】一方、偏光板を要さずに液晶の散乱を利用
したものとしては、動的散乱(DS)効果および相転移
(PC)効果がある。最近、偏光板を要さず、しかも配
向処理を不要とするものとして、液晶の複屈折率を利用
し、透明または白濁状態を電気的にコントロールする方
法が提案されている。この方法は、基本的には液晶分子
の常光屈折率と支持媒体の屈折率とを一致させ、電圧を
印加して液晶の配向が揃うときには、透明状態を表示
し、電圧無印加時には、液晶分子の配向の乱れによる光
散乱状態を表示するものである。
On the other hand, those utilizing scattering of liquid crystal without using a polarizing plate include a dynamic scattering (DS) effect and a phase transition (PC) effect. Recently, a method of electrically controlling the transparent or cloudy state by using the birefringence of liquid crystal has been proposed as a method that does not require a polarizing plate and does not require an alignment treatment. This method basically matches the ordinary light refractive index of liquid crystal molecules with the refractive index of the supporting medium, displays a transparent state when a voltage is applied, and aligns the liquid crystal, and displays a transparent state when no voltage is applied. The light scattering state due to the disorder of the orientation of the image is displayed.

【0010】提案されている方法としては、特表昭58
−501631号公報に液晶をポリマーカプセルに包含
する方法が開示されており、また、特表昭61−502
128号公報に液晶と光又は熱硬化性樹脂とを混合し樹
脂を硬化することにより液晶を析出させて樹脂中に液晶
滴を形成させる方法が開示されている。
[0010] As a proposed method, Japanese Patent Publication No.
Japanese Patent Application No. 501631 discloses a method of enclosing a liquid crystal in a polymer capsule.
No. 128 discloses a method in which liquid crystal is mixed with a light or thermosetting resin and the resin is cured to precipitate liquid crystal to form liquid crystal droplets in the resin.

【0011】偏光板を用いる素子で視野角を改善する素
子としては、特開平4−338923号公報や、特開平
4−212928号公報に上記高分子分散型液晶素子を
直交偏光板間に挟む素子が開示されている。
Japanese Patent Application Laid-Open No. 4-338923 and Japanese Patent Application Laid-Open No. 4-212928 disclose a device in which the above-mentioned polymer-dispersed liquid crystal device is sandwiched between orthogonal polarizing plates. Is disclosed.

【0012】このような素子は、視野角特性を改善する
効果は大きいが、原理的に散乱による脱偏光を利用して
いるために、明るさがTNモードに比べて1/2と低く
利用価値が低い。さらに、液晶の配向状態を高分子の
壁、突起物により乱し、ランダムドメインを作製して、
視野角を改善する方法が特開平5−27242号公報に
開示されている。しかし、この方法では、ドメインがラ
ンダムで且つ絵素部分にも高分子材料が入り込み、か
つ、液晶ドメイン間のディスクリネーションラインがラ
ンダムに発生し、電圧印加時においても消滅することが
ない。これらの理由により、この液晶表示素子は、コン
トラストが低い、即ち、電圧無印加時の光線透過率が低
く、また、電圧印加時に黒レベルが低い。
Although such an element has a great effect of improving the viewing angle characteristics, it has a low brightness of 1/2 as compared with the TN mode because of the use of depolarization due to scattering in principle. Is low. Furthermore, the alignment state of the liquid crystal is disturbed by polymer walls and protrusions, and random domains are created.
A method for improving the viewing angle is disclosed in JP-A-5-27242. However, in this method, the domain is random, the polymer material enters the picture element portion, and the disclination lines between the liquid crystal domains are randomly generated and do not disappear even when voltage is applied. For these reasons, this liquid crystal display device has low contrast, that is, low light transmittance when no voltage is applied, and low black level when a voltage is applied.

【0013】さらに、本発明者らは、高分子壁中で、液
晶分子を軸対称状に配列させることにより、視角特性を
著しく改善した液晶素子を見い出している。
Further, the present inventors have found a liquid crystal element in which the viewing angle characteristics are remarkably improved by arranging liquid crystal molecules in a polymer wall in an axially symmetric manner.

【0014】本発明は、上記従来の問題を解決するもの
で、表示画面の縦横方向のコントラストの視角依存性が
少なく、高輝度かつ高コントラストな液晶表示装置を提
供することを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a high-brightness and high-contrast liquid crystal display device in which the contrast in the vertical and horizontal directions of the display screen is less dependent on the viewing angle.

【0015】[0015]

【課題を解決するための手段】本発明の液晶表示装置
は、一対の偏光板間に、液晶層を間に有する一対の電極
基板が挾持され、表示画面に複数の画素部が配列され、
各画素部にそれぞれ対応して該液晶層の配向が該電極基
板の法線方向の対称軸をもつ軸対称配向をしている液晶
表示装置において、該画素部の一辺と一方の偏光板の偏
光軸とのなす角を30°以上60°以下の範囲内に設定
し、前記表示画面の一辺に対して、前記画素部の一辺方
向が30°以上60°以下の範囲内になるように各画素
部が配置されるものであり、そのことにより上記目的が
達成される。特に、画素部の一辺と一方の偏光板の偏光
軸とのなす角を45°に設定し、表示画面の一辺に対し
て画素部の一辺方向を45°に設定すれば、表示画面の
縦横方向に一対の偏光板の偏光軸が設置されることにな
る。
According to the liquid crystal display device of the present invention, a pair of electrode substrates having a liquid crystal layer between them are sandwiched between a pair of polarizing plates, and a plurality of pixel portions are arranged on a display screen.
In a liquid crystal display device in which the orientation of the liquid crystal layer has an axis-symmetric orientation having a symmetry axis in the normal direction of the electrode substrate corresponding to each pixel portion, one side of the pixel portion and the polarization of one polarizing plate Set the angle to the axis within the range of 30 ° or more and 60 ° or less
And one side of the pixel portion with respect to one side of the display screen.
Each pixel so that the direction is within the range of 30 ° or more and 60 ° or less
Parts are arranged , whereby the object is achieved. In particular, the polarization of one side of the pixel part and one of the polarizing plates
Set the angle between the axis and the axis at 45 °
If one side direction of the pixel part is set to 45 °, the display screen
The polarization axes of a pair of polarizing plates will be set up in the vertical and horizontal directions.
You.

【0016】[0016]

【0017】さらに、好ましくは、本発明の液晶表示装
置における液晶層のリターデーション(液晶層の厚みと
液晶の異常光屈折率と常光屈折率の差の積)が300以
上650nm以下である。
More preferably, the retardation of the liquid crystal layer (the product of the thickness of the liquid crystal layer and the difference between the extraordinary light refractive index and the ordinary light refractive index of the liquid crystal) in the liquid crystal display device of the present invention is 300 to 650 nm.

【0018】さらに、好ましくは、本発明の液晶表示装
置における電極基板の各画素電極毎にアクティブ素子が
設けられている。
Preferably, an active element is provided for each pixel electrode of the electrode substrate in the liquid crystal display device of the present invention.

【0019】[0019]

【作用】本発明においては、画素部の一辺と一方の偏光
板の偏光軸とのなす角を30°以上60°以下の範囲内
に設定しているので、透過率がよく良好な透過光強度が
得られ、明るい表示が得られる。また、軸対称配向とす
ることによって、コントラストの視角依存性が少なくな
る。
In the present invention, the angle between one side of the pixel portion and the polarization axis of one of the polarizing plates is set within the range of 30 ° to 60 °, so that the transmittance is good and the transmitted light intensity is good. And a bright display is obtained. In addition, the viewing angle dependence of the contrast is reduced by the axially symmetric orientation.

【0020】また、表示画面の一辺に対して、画素部の
一辺の方向を30°以上60°以下になるように構成し
て、偏光板の偏光軸を表示画面の縦横方向に合わせるこ
とによって、画素部の消光模様が縦横方向となり、この
縦横方向に対して視角特性が良くなり、偏光軸と45°
方向においても白黒反転のない明るい液晶表示装置が得
られる。
Further, by configuring the direction of one side of the pixel portion with respect to one side of the display screen to be 30 ° or more and 60 ° or less and aligning the polarization axis of the polarizing plate in the vertical and horizontal directions of the display screen, The extinction pattern in the pixel portion is in the vertical and horizontal directions, and the viewing angle characteristics are improved with respect to the vertical and horizontal directions.
A bright liquid crystal display device without black-and-white inversion in the direction can be obtained.

【0021】さらに、リターデーションについては、3
00nm≦d・Δn≦650nmのほぼ中央値である4
50nmから外れるほど暗くなり、リターデーションは
小さいほど視角特性は良くなるが、本発明によれば、明
るさを維持した状態で、リターデーションを小さくする
ことができるので、視角特性がさらに改善される。
Further, regarding the retardation, 3
4 which is almost the center value of 00 nm ≦ d · Δn ≦ 650 nm
The viewing angle characteristic becomes better as the deviation from 50 nm becomes smaller and the retardation becomes smaller, but according to the present invention, the retardation can be reduced while maintaining the brightness, so that the viewing angle characteristic is further improved. .

【0022】[0022]

【実施例】以下、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0023】(実施例1)本実施例1は、一対の透明電
極基板間に液晶層を挟持し、液晶分子が軸対称配向をし
ている液晶セルを構成し、この液晶セルを、偏光軸が直
交する一対の偏光板で、画素部の一辺と一方の偏光板の
偏光軸とのなす角が所定角度範囲内となるように挟持し
ている。
Example 1 In Example 1, a liquid crystal cell was sandwiched between a pair of transparent electrode substrates to constitute a liquid crystal cell in which liquid crystal molecules were oriented in an axially symmetrical manner. Are sandwiched so that the angle between one side of the pixel portion and the polarization axis of one of the polarizing plates is within a predetermined angle range.

【0024】このように、画素部の一辺と一方の偏光板
の偏光軸とのなす角が所定角度範囲内とすることによっ
て、透過率が向上して良好な透過光強度が得られ、明る
い表示となる。また、各画素部に対応して液晶分子の配
向が透明電極基板の法線方向の対称軸を持つ軸対称配向
とすることによって、コントラストの視角依存性が少な
くなる。
As described above, by setting the angle between one side of the pixel portion and the polarization axis of one of the polarizing plates within a predetermined angle range, the transmittance is improved, good transmitted light intensity is obtained, and a bright display is obtained. Becomes Further, the viewing angle dependence of the contrast is reduced by setting the alignment of the liquid crystal molecules to be an axially symmetric alignment having a symmetric axis in the normal direction of the transparent electrode substrate corresponding to each pixel portion.

【0025】図1は、画素部に対し、偏光板を回転した
時の透過光の透過率変化を示す図であり、横軸は、画素
の一辺と一方の偏光板の偏光軸とのなす角、縦軸は透過
率(透過光の相対強度)を示している。
FIG. 1 is a diagram showing a change in the transmittance of transmitted light when the polarizing plate is rotated with respect to the pixel portion. The horizontal axis represents the angle between one side of the pixel and the polarization axis of one of the polarizing plates. The vertical axis indicates the transmittance (the relative intensity of the transmitted light).

【0026】図1に示すように、画素部の一辺と30°
〜60°の角度をなすように2枚の偏光板の偏光軸を液
晶セルの外側に配置することによって良好な透過光強度
を得ることができ、明るい表示が得られる。
As shown in FIG. 1, one side of the pixel portion is
By arranging the polarization axes of the two polarizing plates outside the liquid crystal cell so as to form an angle of up to 60 °, good transmitted light intensity can be obtained, and a bright display can be obtained.

【0027】図2は画素部1の対角線方向に偏光板の偏
光軸A,A’を合わせた時に見える明視野2と暗視野3
の様子を示しており、画素部1の一辺と一方の偏光板の
偏光軸Aとのなす角が45°の場合であって、図1に示
すように透過率の最も良好な場合である。
FIG. 2 shows a bright field 2 and a dark field 3 seen when the polarization axes A and A ′ of the polarizer are aligned in the diagonal direction of the pixel section 1.
In this case, the angle between one side of the pixel portion 1 and the polarization axis A of one of the polarizing plates is 45 °, which is the case where the transmittance is the best as shown in FIG.

【0028】図3は画素部1の辺方向に偏光板の偏光軸
A,A’を合わせた時に見える明視野2と暗視野3の様
子を示しており、画素部1の一辺と一方の偏光板の偏光
軸Aとのなす角が0°の場合であって、図1に示すよう
に透過率の最も低い場合である。
FIG. 3 shows the state of the bright field 2 and the dark field 3 seen when the polarization axes A and A 'of the polarizing plate are aligned in the direction of the side of the pixel section 1. One side of the pixel section 1 and one side of the polarized light are shown. This is a case where the angle between the plate and the polarization axis A is 0 ° and a case where the transmittance is the lowest as shown in FIG.

【0029】以上により、本実施例1の液晶表示装置が
構成され、以下のようにして製造することができる。
As described above, the liquid crystal display device according to the first embodiment is constituted, and can be manufactured as follows.

【0030】図4は本発明の実施例1の液晶表示装置に
おける液晶注入前の空セルの断面図であり、図5は本発
明の実施例1の液晶表示装置の断面図である。
FIG. 4 is a sectional view of an empty cell before liquid crystal is injected in the liquid crystal display device according to the first embodiment of the present invention, and FIG. 5 is a sectional view of the liquid crystal display device according to the first embodiment of the present invention.

【0031】図4および図5において、ガラス基板11
上の表面に透明電極(点線の内側)12としてITO
(酸化インジュウム及び酸化スズの混合物、500n
m)をパターン蒸着する。さらに、その上に、レジスト
材料(OMR83:東京応化製)をスピンコートし、図
6の形状に示すように、フォトリソ工程でレジストパタ
ーン(実線の外側)13を形成した。透明電極12とし
てのITO電極の領域である画素部1は、本実施例1で
は100μm角の正方形状で、画素部1のピッチは12
5μmとした。このようにして、下側の透明電極基板1
4が形成される。
In FIG. 4 and FIG.
ITO as transparent electrode (inside the dotted line) 12 on the upper surface
(Mixture of indium oxide and tin oxide, 500n
m) is pattern-deposited. Further, a resist material (OMR83: manufactured by Tokyo Ohka) was spin-coated thereon, and a resist pattern (outside of a solid line) 13 was formed by a photolithography process as shown in the shape of FIG. The pixel portion 1 which is an area of the ITO electrode as the transparent electrode 12 has a square shape of 100 μm square in the first embodiment, and the pitch of the pixel portion 1 is 12 μm.
The thickness was 5 μm. Thus, the lower transparent electrode substrate 1
4 are formed.

【0032】また、ガラス基板15上の表面に透明電極
16としてのITO電極を形成し、さらにその上に遮光
層としてMo層17を各々500nmの膜厚で形成す
る。この基板部に対して、下側の透明電極基板14に作
製したレジストパターン13と同一のパターンになるよ
うに、Mo層17のみを選択的にエッチングして遮光マ
スクとして上側の透明電極基板18が形成される。これ
ら上下の透明電極基板14,18を6μmのスペーサに
よりセル厚を維持することによって図4に示す空セルを
形成した。
Further, an ITO electrode as a transparent electrode 16 is formed on the surface of the glass substrate 15, and a Mo layer 17 is formed thereon as a light shielding layer to a thickness of 500 nm. Only the Mo layer 17 is selectively etched on this substrate portion so as to have the same pattern as the resist pattern 13 formed on the lower transparent electrode substrate 14, and the upper transparent electrode substrate 18 is used as a light shielding mask. It is formed. An empty cell shown in FIG. 4 was formed by maintaining the cell thickness of these upper and lower transparent electrode substrates 14 and 18 with a 6 μm spacer.

【0033】この空セルに、R−684(日本化薬製)
0.1gとp−フェニルスチレン0.1gと下記(化
1)の化合物0.6gと液晶ZLI−4792(メルク
社製:S−811,0.4重量%含有)3.74gと光
開始剤Irugacure651を0.02g混合した
混合材料を注入する。
In this empty cell, R-684 (manufactured by Nippon Kayaku)
0.1 g, p-phenylstyrene 0.1 g, 0.6 g of the following compound (formula 1), 3.74 g of liquid crystal ZLI-4792 (manufactured by Merck, containing S-811 and 0.4% by weight), and a photoinitiator A mixed material obtained by mixing 0.02 g of Irugacure 651 is injected.

【0034】[0034]

【化1】 Embedded image

【0035】このようにして注入された液晶セルを温度
110℃で、かつ、2枚のITO電極間に実効電圧2.
5V、60Hzの交番電圧を印加しながら、下側の透明
電極基板14側から紫外線を照射して、セル内の光硬化
性樹脂を液晶相と相分離させて硬化させ、レジストパタ
ーン13とMo層17の間にポリマー層19を形成し、
1℃/分の冷却速度で室温まで徐冷して、液晶層20と
この液晶層20を囲む高分子壁(レジストパターン13
とポリマー層19で構成されている)21を透明電極基
板14,18間に挟持した液晶セルを作製する。
The liquid crystal cell thus injected was heated at a temperature of 110 ° C. and an effective voltage of 2.times.
While applying an alternating voltage of 5 V and 60 Hz, ultraviolet light is irradiated from the lower transparent electrode substrate 14 side to separate and cure the photocurable resin in the cell from the liquid crystal phase, and the resist pattern 13 and the Mo layer are cured. 17 to form a polymer layer 19,
The liquid crystal layer 20 and the polymer wall surrounding the liquid crystal layer 20 (resist pattern 13) are gradually cooled to room temperature at a cooling rate of 1 ° C./min.
And a polymer layer 19) are sandwiched between the transparent electrode substrates 14 and 18 to produce a liquid crystal cell.

【0036】このようにして作製した液晶セルは、画素
単位で液晶のモノドメイン状態になっていた。
The liquid crystal cell thus produced was in a liquid crystal mono-domain state on a pixel-by-pixel basis.

【0037】この液晶セルを偏光顕微鏡下で回転して観
察した。このとき、偏光顕微鏡の偏光子と検光子は直交
している。すると各画素に十字型の消光模様(シュリー
レン模様)が観察され、液晶セルを回転してもシュリー
レン模様の中心位置は固定されていた。偏光軸が画素の
対角線方向の消光模様は図2に、偏光軸が画素の縦横方
向の場合の消光模様は図3に示している。以上から、作
製した液晶セルにおいて、各画素で液晶が基板面の法線
方向の対称軸を持つ軸対称配向が実現できたことがわか
る。
This liquid crystal cell was rotated and observed under a polarizing microscope. At this time, the polarizer and analyzer of the polarization microscope are orthogonal to each other. Then, a cross-shaped extinction pattern (Schlieren pattern) was observed in each pixel, and the center position of the Schlieren pattern was fixed even when the liquid crystal cell was rotated. FIG. 2 shows the extinction pattern in which the polarization axis is in the diagonal direction of the pixel, and FIG. 3 shows the extinction pattern in the case where the polarization axis is in the vertical and horizontal directions of the pixel. From the above, it can be seen that in each of the pixels in the manufactured liquid crystal cell, the liquid crystal was able to realize an axially symmetric alignment having a symmetric axis in the normal direction of the substrate surface.

【0038】さらに、この液晶セルの外側に偏光軸が直
交するように2枚の偏光板22,23を、一方の偏光軸
Aが画素の一辺と30°〜60°(本実施例1では45
°)の角度をなすように固定し、液晶セルのみを回転し
て透過光強度を測定した。その結果は図1と同様にな
り、画素の一辺と一方の偏光板の偏光軸とのなす角が3
0°〜60°のときに透過率が良好となって、明るい表
示が得られる。このとき、液晶セルは電圧無印加状態で
ある。なお、画素の一辺と一方の偏光板の偏光軸とのな
す角が45°のときに透過率が最も良くなる。
Further, two polarizing plates 22 and 23 are provided outside the liquid crystal cell so that the polarization axes are orthogonal to each other, and one polarization axis A is set at 30 ° to 60 ° with one side of the pixel (45 ° in the first embodiment).
°) and the liquid crystal cell alone was rotated to measure the transmitted light intensity. The result is the same as that in FIG. 1, and the angle between one side of the pixel and the polarization axis of one of the polarizing plates is 3
When the angle is 0 ° to 60 °, the transmittance is good, and a bright display is obtained. At this time, the liquid crystal cell is in a state where no voltage is applied. The transmittance is best when the angle between one side of the pixel and the polarization axis of one of the polarizing plates is 45 °.

【0039】(実施例2)本実施例2は、実施例1と同
様のセル作製方法で行うが、本実施例2と上記実施例1
との異なる点は、図6の正方形の透明電極(点線の内
側)12を図7の長方形の透明電極(点線の内側)12
aに代えて空セルを作製した点である。このとき、画素
電極のサイズは、X*Y=100μm*225μm角で
あり、画素電極のピッチは、X方向が125μm、Y方
向が250μmとし、画素内を100μ角の正方形にな
るようにレジストパターン13で上下に分割した。
(Embodiment 2) Embodiment 2 is performed by the same cell manufacturing method as in Embodiment 1, but Embodiment 2 and Embodiment 1 are performed.
6 is different from the square transparent electrode (inside the dotted line) 12 in FIG.
The point is that an empty cell was prepared instead of a. At this time, the size of the pixel electrode is X * Y = 100 μm * 225 μm square, and the pitch of the pixel electrode is 125 μm in the X direction and 250 μm in the Y direction, and the resist pattern is formed so that the inside of the pixel is a square of 100 μm. 13 divided vertically.

【0040】このようにして作製した液晶セルは、分割
した画素部が各々液晶のモノドメイン状態になってい
た。
In the liquid crystal cell thus manufactured, each of the divided pixel portions was in a liquid crystal monodomain state.

【0041】この液晶セルを偏光顕微鏡下で回転して観
察した。このとき、偏光顕微鏡の偏光子と検光子は直交
している。すると各画素のレジストパターン(実線の外
側)13で囲まれた絵素領域に十字型の消光模様(シュ
リーレン模様)が観察され、液晶セルを回転してもシュ
リーレン模様の中心位置は固定されていた。以上から、
作製した液晶セルにおいて、各画素で液晶が基板面の法
線方向の対称軸を持つ軸対称配向が実現できたことがわ
かる。
This liquid crystal cell was rotated and observed under a polarizing microscope. At this time, the polarizer and analyzer of the polarization microscope are orthogonal to each other. Then, a cross-shaped extinction pattern (Schlieren pattern) was observed in the picture element region surrounded by the resist pattern (outside of the solid line) 13 of each pixel, and the center position of the Schlieren pattern was fixed even when the liquid crystal cell was rotated. . From the above,
It can be seen that, in the manufactured liquid crystal cell, the liquid crystal was able to realize an axially symmetric alignment having an axis of symmetry in the normal direction of the substrate surface in each pixel.

【0042】さらに、この液晶セルの外側に偏光軸A,
A’が直交するように2枚の偏光板22,23を、一方
の偏光軸Aが画素の一辺と30°〜60°の角度をなす
ように固定し、液晶セルのみを回転して透過光強度を測
定した。その結果は図1と同様になり、画素の一辺と一
方の偏光板の偏光軸とのなす角が30°〜60°のとき
に透過率が良好となって、明るい表示が得られる。この
とき、液晶セルは電圧無印加状態である。なお、画素の
一辺と一方の偏光板の偏光軸とのなす角が45°のとき
に透過率が最も良くなる。
Further, the polarization axes A,
Two polarizing plates 22 and 23 are fixed so that A ′ is orthogonal to each other so that one polarization axis A forms an angle of 30 ° to 60 ° with one side of the pixel, and only the liquid crystal cell is rotated to transmit transmitted light. The strength was measured. The result is the same as in FIG. 1. When the angle between one side of the pixel and the polarization axis of one of the polarizing plates is 30 ° to 60 °, the transmittance is good and a bright display is obtained. At this time, the liquid crystal cell is in a state where no voltage is applied. The transmittance is best when the angle between one side of the pixel and the polarization axis of one of the polarizing plates is 45 °.

【0043】(実施例3)本実施例3は、実施例1と同
様のセル作製方法で行うが、本実施例3と上記実施例1
との異なる点は、図6の透明電極12およびレジストパ
ターン13を図8の右上角がへこんだ透明電極12bお
よびレジストパターン13bに代えて空セルを作製した
点である。このとき、画素のサイズは100μm角で、
画素のピッチを125μmとし、各画素部は本実施例3
では右上角が30μm角へこんでいる。これは、各透明
電極12b毎にアクティブ素子が設けられているためで
ある。
(Embodiment 3) Embodiment 3 is performed by the same cell manufacturing method as in Embodiment 1, but Embodiment 3 and Embodiment 1 are performed.
8 in that an empty cell is formed by replacing the transparent electrode 12 and the resist pattern 13 in FIG. 6 with the transparent electrode 12b and the resist pattern 13b in which the upper right corner of FIG. 8 is dented. At this time, the pixel size is 100 μm square,
The pixel pitch is 125 μm, and each pixel portion is
In the figure, the upper right corner is recessed into a 30 μm square. This is because an active element is provided for each transparent electrode 12b.

【0044】このようにして作製した液晶セルは、画素
単位で液晶のモノドメイン状態になっていた。
The liquid crystal cell manufactured in this manner was in a liquid crystal monodomain state for each pixel.

【0045】この液晶セルを偏光顕微鏡下で回転して観
察した。このとき、偏光顕微鏡の偏光子と検光子は直交
している。すると各画素のレジストパターン13bで囲
まれた領域に十字型の消光模様(シュリーレン模様)が
観察され、液晶セルを回転してもシュリーレン模様の中
心位置は固定されていた。以上から、作製した液晶セル
において、各画素で液晶が基板面の法線方向の対称軸を
持つ軸対称配向が実現できたことがわかる。
The liquid crystal cell was rotated and observed under a polarizing microscope. At this time, the polarizer and analyzer of the polarization microscope are orthogonal to each other. Then, a cross-shaped quenching pattern (Schlieren pattern) was observed in a region surrounded by the resist pattern 13b of each pixel, and the center position of the Schlieren pattern was fixed even when the liquid crystal cell was rotated. From the above, it can be seen that in each of the pixels in the manufactured liquid crystal cell, the liquid crystal was able to realize an axially symmetric alignment having a symmetric axis in the normal direction of the substrate surface.

【0046】さらに、この液晶セルの外側に偏光軸A,
A’が直交するように2枚の偏光板22,23を、一方
の偏光軸Aが画素の一辺と30°〜60°の角度をなす
ように固定し、液晶セルのみを回転して透過光強度を測
定した。その結果は図1と同様になり、画素の一辺と一
方の偏光板の偏光軸とのなす角が30°〜60°のとき
に透過率が良好となって、明るい表示が得られる。この
とき、液晶セルは電圧無印加状態である。なお、画素の
一辺と一方の偏光板の偏光軸とのなす角が45°のとき
に透過率が最も良くなる。
Further, the polarization axes A,
Two polarizing plates 22 and 23 are fixed so that A ′ is orthogonal to each other so that one polarization axis A forms an angle of 30 ° to 60 ° with one side of the pixel, and only the liquid crystal cell is rotated to transmit transmitted light. The strength was measured. The result is the same as in FIG. 1. When the angle between one side of the pixel and the polarization axis of one of the polarizing plates is 30 ° to 60 °, the transmittance is good and a bright display is obtained. At this time, the liquid crystal cell is in a state where no voltage is applied. The transmittance is best when the angle between one side of the pixel and the polarization axis of one of the polarizing plates is 45 °.

【0047】(実施例4)本実施例4は、実施例1と同
様のセル作製方法で行うが、本実施例4と上記実施例3
との異なる点は、図8の透明電極12bを図9の透明電
極12cに代えて空セルを作製した点である。このと
き、画素のサイズは、X(縦方向)*Y(横方向)=1
00μm*225μm角、画素のピッチはX方向125
μm、Y方向250μmとし、各画素は右上角が30μ
m角へこんでいる。各画素を100μm角の正方形に近
い形状になるようにレジストパターン13bで上下に分
割した。
(Embodiment 4) Embodiment 4 is carried out by the same cell manufacturing method as in Embodiment 1, but Embodiment 4 and Embodiment 3 are performed.
The difference from this is that an empty cell is produced by replacing the transparent electrode 12b in FIG. 8 with the transparent electrode 12c in FIG. At this time, the pixel size is X (vertical direction) * Y (horizontal direction) = 1
00 μm * 225 μm square, pixel pitch 125 in the X direction
μm, 250 μm in the Y direction, and the upper right corner of each pixel is 30 μm.
m square. Each pixel was vertically divided by a resist pattern 13b so as to have a shape close to a square of 100 μm square.

【0048】このようにして作製した液晶セルは、分割
された画素単位で液晶のモノドメイン状態になってい
た。
The liquid crystal cell manufactured in this manner was in a liquid crystal monodomain state for each divided pixel.

【0049】この液晶セルを偏光顕微鏡下で回転して観
察した。このとき、偏光顕微鏡の偏光子と検光子は直交
している。すると各画素のレジストで囲まれた領域に十
字型の消光模様(シュリーレン模様)が観察され、液晶
セルを回転してもシュリーレン模様の中心位置は固定さ
れていた。以上から、作製した液晶セルにおいて、各画
素で液晶が基板面の法線方向の対称軸を持つ軸対称配向
が実現できたことがわかる。
The liquid crystal cell was rotated and observed under a polarizing microscope. At this time, the polarizer and analyzer of the polarization microscope are orthogonal to each other. As a result, a cross-shaped quenching pattern (Schlieren pattern) was observed in a region surrounded by the resist of each pixel, and the center position of the Schlieren pattern was fixed even when the liquid crystal cell was rotated. From the above, it can be seen that in each of the pixels in the manufactured liquid crystal cell, the liquid crystal was able to realize an axially symmetric alignment having a symmetric axis in the normal direction of the substrate surface.

【0050】さらに、この液晶セルの外側に透過軸であ
る偏光軸A,A’が直交するように2枚の偏光板22,
23を、一方の偏光軸Aが画素の一辺と30°〜60°
の角度をなすように固定し、液晶セルのみを回転して透
過光強度を測定した。その結果は図1と同様になり、画
素の一辺と一方の偏光板の偏光軸とのなす角が30°〜
60°のときに透過率が良好となって、明るい表示が得
られる。このとき、液晶セルは電圧無印加状態である。
なお、画素の一辺と一方の偏光板の偏光軸とのなす角が
45°のときに透過率が最も良くなる。
Further, the two polarizing plates 22 and 22 are disposed outside the liquid crystal cell so that the polarization axes A and A 'which are transmission axes are orthogonal to each other.
23, one polarization axis A is 30 ° to 60 ° with one side of the pixel.
And the liquid crystal cell alone was rotated to measure the transmitted light intensity. The result is the same as that in FIG. 1, and the angle between one side of the pixel and the polarization axis of one of the polarizing plates is 30 ° to
At 60 °, the transmittance is good, and a bright display is obtained. At this time, the liquid crystal cell is in a state where no voltage is applied.
The transmittance is best when the angle between one side of the pixel and the polarization axis of one of the polarizing plates is 45 °.

【0051】(実施例5)本実施例5は、実施例1と同
様のセル作製方法で行うが、本実施例5と上記実施例1
との異なる点は、図6の透明電極12およびレジストパ
ターン13を、図10の画素部を構成する透明電極12
dおよびレジストパターン13dに代えて空セルを作製
した点であり、さらに、表示画面24の一辺に対して、
画素部の辺方向が30°以上60°以下(本実施例5の
場合は45°)であるように配置する点である。この場
合、一対の透明電極基板を挟むように設けられた偏光板
22,23の偏光軸A,A’は、互いに直交するととも
に表示画面24の縦横方向に一致するように設置され
る。このとき、画素のサイズは100μm角の正方形
で、画素部のピッチは125μmとし、この場合、各画
素部の対角線が基板の各辺に対して平行に並んでいる。
(Embodiment 5) Embodiment 5 is performed by the same cell manufacturing method as in Embodiment 1, but Embodiment 5 and Embodiment 1 are performed.
6 is that the transparent electrode 12 and the resist pattern 13 of FIG.
d and an empty cell was prepared in place of the resist pattern 13d.
The arrangement is such that the side direction of the pixel portion is not less than 30 ° and not more than 60 ° (45 ° in the fifth embodiment). In this case, the polarizing axes A and A ′ of the polarizing plates 22 and 23 provided so as to sandwich the pair of transparent electrode substrates are installed so as to be orthogonal to each other and coincide with the vertical and horizontal directions of the display screen 24. At this time, the size of the pixel is a square of 100 μm square, and the pitch of the pixel portion is 125 μm. In this case, diagonal lines of each pixel portion are arranged in parallel with each side of the substrate.

【0052】このようにして作製した液晶セルは、画素
単位で液晶のモノドメイン状態になっていた。
The liquid crystal cell manufactured in this manner was in a liquid crystal monodomain state for each pixel.

【0053】この液晶セルを偏光顕微鏡下で回転して観
察した。このとき、偏光顕微鏡の偏光子と検光子は直交
している。すると各画素のレジストで囲まれた領域に十
字型の消光模様(シュリーレン模様)が観察され、液晶
セルを回転してもシュリーレン模様の中心位置は固定さ
れていた。以上から、作製した液晶セルにおいて、各画
素で液晶が基板面の法線方向の対称軸を持つ軸対称配向
が実現できたことがわかる。
The liquid crystal cell was rotated and observed under a polarizing microscope. At this time, the polarizer and analyzer of the polarization microscope are orthogonal to each other. As a result, a cross-shaped quenching pattern (Schlieren pattern) was observed in a region surrounded by the resist of each pixel, and the center position of the Schlieren pattern was fixed even when the liquid crystal cell was rotated. From the above, it can be seen that in each of the pixels in the manufactured liquid crystal cell, the liquid crystal was able to realize an axially symmetric alignment having a symmetric axis in the normal direction of the substrate surface.

【0054】さらに、この液晶セルの外側に偏光軸A,
A’が直交するように2枚の偏光板22,23を、一方
の偏光軸Aが画素の一辺と30°〜60°(本実施例5
の場合は45°)の角度をなすように固定し、液晶セル
のみを回転して透過光強度を測定した。その結果は図1
と同様になり、画素の一辺と一方の偏光板の偏光軸との
なす角が30°〜60°のときに透過率が良好となっ
て、明るい表示が得られ、かつ、偏光軸A,A’が表示
画面24の縦横方向に平行で、画素部の消光模様が縦横
方向となり、この縦横方向に視角特性が良くなる。この
とき、液晶セルは電圧無印加状態である。画素の一辺と
一方の偏光板の偏光軸とのなす角が45°のときに透過
率が最も良くなる。
Further, the polarization axes A,
The two polarizing plates 22 and 23 are arranged so that A ′ is orthogonal to each other.
Was fixed at an angle of 45 °), and only the liquid crystal cell was rotated to measure the transmitted light intensity. The result is shown in FIG.
When the angle between one side of the pixel and the polarization axis of one of the polarizing plates is 30 ° to 60 °, the transmittance is good, a bright display is obtained, and the polarization axes A, A Is parallel to the vertical and horizontal directions of the display screen 24, and the extinction pattern of the pixel portion is in the vertical and horizontal directions, and the viewing angle characteristics are improved in the vertical and horizontal directions. At this time, the liquid crystal cell is in a state where no voltage is applied. The transmittance is best when the angle between one side of the pixel and the polarization axis of one of the polarizing plates is 45 °.

【0055】なお、実施例5の図10の絵素部を構成す
る透明電極12dおよびレジストパターン13dを図1
1の透明電極12eおよびレジストパターン13eに代
えて空セルを作製してもよく、また、図12の透明電極
12fおよびレジストパターン13fに代えて空セルを
作製してもよい。
Incidentally, the transparent electrode 12d and the resist pattern 13d constituting the picture element portion of FIG.
An empty cell may be produced in place of the transparent electrode 12e and the resist pattern 13e of FIG. 1, or an empty cell may be produced in place of the transparent electrode 12f and the resist pattern 13f of FIG.

【0056】なお、上記実施例1〜5において、画素部
1の形状については四角形が好ましく、特に、正方形に
近い形状が好ましい。長方形の場合にはその対角線方向
が45°とならず、また、対角線方向が互いに直交しな
いので、対角線方向が互いに直交する正方形に近い形に
なるように分割する。この場合、各正方形の辺方向が一
致するように高分子壁で分割することが好ましい。ま
た、これらの四角形は、角の少なくとも1部がカットさ
れていたり、短辺の1/2未満の曲率でカットされてい
ても良い。
In the first to fifth embodiments, the shape of the pixel portion 1 is preferably a square, and particularly preferably a shape close to a square. In the case of a rectangle, the diagonal direction is not 45 ° and the diagonal directions are not orthogonal to each other. Therefore, the rectangle is divided so that the diagonal directions are close to squares orthogonal to each other. In this case, it is preferable that each of the squares is divided by the polymer wall so that the side directions of the squares coincide with each other. In addition, these quadrangles may have at least a part of the corners cut or cut with a curvature of less than half of the short side.

【0057】また、リターデーションについては300
nm≦d・Δn≦650nmが良い。このリターデーシ
ョンは、300nm≦d・Δn≦650nmのほぼ中央
値である450nmよりも大きくても小さくても450
nmから外れるほど暗くなるが、リターデーションは小
さいほど視角特性は良くなる。したがって、リターデー
ションは視角特性の観点から300nm≦d・Δn≦4
00nmが好ましい。ただし、d:液晶層の厚み、Δn
=|ne−no|、ne=液晶の異常光屈折率、no=液晶
の常光屈折率である。本発明によれば、明るさを維持し
た状態で、リターデーションを小さく設定することがで
きるので、明るさとともに視角特性が改善される。
The retardation is 300
It is preferable that nm ≦ d · Δn ≦ 650 nm. This retardation is larger or smaller than 450 nm which is almost the median of 300 nm ≦ d · Δn ≦ 650 nm.
The smaller the deviation from nm, the darker, but the smaller the retardation, the better the viewing angle characteristics. Therefore, the retardation is 300 nm ≦ d · Δn ≦ 4 from the viewpoint of viewing angle characteristics.
00 nm is preferred. Here, d: thickness of the liquid crystal layer, Δn
= | N e -n o |, n e = liquid crystal extraordinary refractive index, which is the ordinary refractive index of n o = liquid crystal. According to the present invention, since the retardation can be set small while maintaining the brightness, the viewing angle characteristics are improved together with the brightness.

【0058】さらに、液晶を軸対称配向させる方法とし
ては、一対の電極基板の少なくとも一方の液晶層側表面
に、凹部および凸部のうち一方もしくは両方、あるいは
柱部を形成する方法を用いることができる。この場合、
基板間隙に、液晶と硬化性樹脂を含む混合物を注入して
液晶と硬化性樹脂を相分離させると、凹部において液晶
が析出し、または凸部を取り囲むように液晶領域が発達
する。これによって、凹部近傍または凸部近傍、もしく
は、柱部近傍を基板に垂直な軸として、液晶が放射状な
どの軸対称状に配向する。したがって、このような凹部
および凸部などを形成することにより、対称軸の位置を
確定することができ、均一な配向状態を得ることができ
る。
Further, as a method of axially symmetrically aligning the liquid crystal, a method of forming one or both of a concave portion and a convex portion or a column portion on at least one liquid crystal layer side surface of a pair of electrode substrates is used. it can. in this case,
When a mixture containing a liquid crystal and a curable resin is injected into the gap between the substrates to cause phase separation between the liquid crystal and the curable resin, the liquid crystal precipitates in the concave portions or the liquid crystal region develops so as to surround the convex portions. Thereby, the liquid crystal is oriented in an axially symmetrical shape such as a radial shape with the vicinity of the concave portion, the vicinity of the convex portion, or the vicinity of the pillar portion as an axis perpendicular to the substrate. Therefore, by forming such concave portions and convex portions, the position of the symmetry axis can be determined, and a uniform alignment state can be obtained.

【0059】[0059]

【発明の効果】以上のように本発明によれば、液晶分子
が軸対称配向で、画素の一辺と一方の偏光板の偏光軸と
のなす角を30°以上60°以下の範囲内に設定するた
め、コントラストの視角依存性が少なく、高輝度かつ高
コントラストな液晶表示装置を実現することができる。
As described above, according to the present invention, the liquid crystal molecules are axially symmetrically oriented, and the angle between one side of the pixel and the polarization axis of one of the polarizing plates is set within the range of 30 ° to 60 °. Therefore, a high-brightness and high-contrast liquid crystal display device having low viewing angle dependence of contrast can be realized.

【0060】また、表示画面の一辺に対して、画素の辺
方向が30°以上60°以下の範囲内になるように各画
素が配置されていれば、画素部の消光模様が縦横方向と
なり、この縦横方向に視角特性を改善することができ
る。
Further, if each pixel is arranged so that the side direction of the pixel is within the range of 30 ° or more and 60 ° or less with respect to one side of the display screen, the extinction pattern of the pixel portion becomes the vertical and horizontal directions, The viewing angle characteristics can be improved in the vertical and horizontal directions.

【0061】さらに、上記構成に加えて液晶層のリター
デーションを300以上650nm以下とすれば、明る
さを維持した状態で、リターデーションを小さく設定す
ることができ、明るさとともに視角特性をさらに改善す
ることができる。
Further, when the retardation of the liquid crystal layer is set to 300 to 650 nm in addition to the above structure, the retardation can be set small while maintaining the brightness, and the viewing angle characteristics as well as the brightness are further improved. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】画素に対し、偏光板を回転した時の透過光の透
過率変化を示す図である。
FIG. 1 is a diagram showing a change in transmittance of transmitted light when a polarizing plate is rotated with respect to a pixel.

【図2】画素1の対角線方向に偏光板の偏光軸A,A’
を合わせた時に見える明視野2と暗視野3の様子を示す
図である。
FIG. 2 shows a polarization axis A, A ′ of a polarizing plate in a diagonal direction of a pixel 1;
FIG. 4 is a diagram showing a state of a bright field 2 and a dark field 3 that can be seen when are combined.

【図3】画素1の辺方向に偏光板の偏光軸A,A’を合
わせた時に見える明視野2と暗視野3の様子を示す図で
ある。
FIG. 3 is a diagram showing a state of a bright field 2 and a dark field 3 which are seen when the polarization axes A and A ′ of the polarizing plate are aligned with the side direction of the pixel 1;

【図4】本発明の実施例1の液晶表示装置における液晶
注入前の空セルの断面図である。
FIG. 4 is a sectional view of an empty cell before liquid crystal is injected in the liquid crystal display device according to the first embodiment of the present invention.

【図5】本発明の実施例1の液晶表示装置の断面図であ
る。
FIG. 5 is a cross-sectional view of the liquid crystal display device according to the first embodiment of the present invention.

【図6】1画素がレジストパターンで囲まれた1領域で
ある場合を示す図である。
FIG. 6 is a diagram showing a case where one pixel is one region surrounded by a resist pattern.

【図7】1画素がレジストパターンで囲まれた複数の領
域である場合を示す図である。
FIG. 7 is a diagram illustrating a case where one pixel is a plurality of regions surrounded by a resist pattern.

【図8】1画素が完全な矩形でない場合の図6の一例を
示す図である。
FIG. 8 is a diagram illustrating an example of FIG. 6 when one pixel is not a perfect rectangle;

【図9】1画素が完全な矩形でない場合の図7の一例を
示す図である。
FIG. 9 is a diagram illustrating an example of FIG. 7 when one pixel is not a perfect rectangle;

【図10】表示画面の一辺に対して、各画素の一辺が4
5°で配列している場合の図6の他の例を示す図であ
る。
FIG. 10 shows that one side of each pixel is 4 with respect to one side of the display screen.
FIG. 7 is a diagram showing another example of FIG. 6 in the case of arrangement at 5 °.

【図11】表示画面の一辺に対して、各画素の一辺が4
5°で配列している場合の図7の他の例を示す図であ
る。
FIG. 11 shows that one side of each pixel is 4 with respect to one side of the display screen.
FIG. 8 is a diagram showing another example of FIG. 7 in the case of arrangement at 5 °.

【図12】表示画面の一辺に対して、各画素の一辺が4
5°で配列している場合の図6のさらに他の例を示す図
である。
FIG. 12 shows that one side of each pixel is 4 with respect to one side of the display screen.
FIG. 7 is a diagram showing still another example of FIG. 6 in the case of arrangement at 5 °.

【符号の説明】[Explanation of symbols]

1 画素部 2 明視野 3 暗視野 12,12a,12c,12d,12e,12f 透
明電極 13,13b,13d,13e,13f レジストパ
ターン 20 液晶領域 22,23 偏光板 24,24e,24f 表示画面 A,A’ 偏光軸方向
Reference Signs List 1 pixel portion 2 bright field 3 dark field 12, 12a, 12c, 12d, 12e, 12f transparent electrode 13, 13b, 13d, 13e, 13f resist pattern 20 liquid crystal region 22, 23 polarizing plate 24, 24e, 24f display screen A, A 'Polarization axis direction

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−265902(JP,A) 特開 平7−49493(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/1337 G02F 1/1335 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-265902 (JP, A) JP-A-7-49493 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G02F 1/1337 G02F 1/1335

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一対の偏光板間に、液晶層を間に有する
一対の電極基板が挾持され、表示画面に複数の画素部が
配列され、各画素部にそれぞれ対応して該液晶層の配向
が該電極基板の法線方向の対称軸をもつ軸対称配向をし
ている液晶表示装置において、該画素部の一辺と一方の
偏光板の偏光軸とのなす角を30°以上60°以下の範
囲内に設定し、前記表示画面の一辺に対して、前記画素
部の一辺方向が30°以上60°以下の範囲内になるよ
うに各画素部が配置されている液晶表示装置。
A pair of electrode substrates having a liquid crystal layer between them are sandwiched between a pair of polarizing plates, a plurality of pixel portions are arranged on a display screen, and the orientation of the liquid crystal layer corresponds to each pixel portion. In a liquid crystal display device having an axially symmetric orientation having a symmetry axis in a normal direction of the electrode substrate, an angle between one side of the pixel portion and the polarization axis of one of the polarizing plates is not less than 30 ° and not more than 60 °. Set within the range, and with respect to one side of the display screen, the pixel
The direction of one side of the part is within the range of 30 ° to 60 °
A liquid crystal display device in which each pixel portion is arranged as described above .
【請求項2】 前記液晶層のリターデーション(液晶層
の厚みと液晶の異常光屈折率と常光屈折率の差の積)が
300nm以上650nm以下である請求項1に記載の
液晶表示装置。
2. The retardation of the liquid crystal layer (liquid crystal layer).
Is the product of the thickness of the liquid crystal and the difference between the extraordinary refractive index and the ordinary refractive index of the liquid crystal)
The liquid crystal display device according to claim 1, wherein the thickness is 300 nm or more and 650 nm or less .
JP09715195A 1995-04-21 1995-04-21 Liquid crystal display Expired - Fee Related JP3148561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09715195A JP3148561B2 (en) 1995-04-21 1995-04-21 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09715195A JP3148561B2 (en) 1995-04-21 1995-04-21 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH08292437A JPH08292437A (en) 1996-11-05
JP3148561B2 true JP3148561B2 (en) 2001-03-19

Family

ID=14184578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09715195A Expired - Fee Related JP3148561B2 (en) 1995-04-21 1995-04-21 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP3148561B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502807B1 (en) * 1997-06-30 2005-10-12 삼성전자주식회사 Wide viewing angle liquid crystal display using vertical orientation cylinder symmetry mode

Also Published As

Publication number Publication date
JPH08292437A (en) 1996-11-05

Similar Documents

Publication Publication Date Title
JP3322197B2 (en) Liquid crystal display
US6344883B2 (en) Liquid crystal display device and method for producing the same
US7084947B2 (en) Multi-domain liquid crystal display device having alignment structures for producing axial symmetrical alignment and method for producing the same
US6201592B1 (en) Liquid crystal display device and method for producing the same
JP3544348B2 (en) Liquid crystal display
US6501524B1 (en) Liquid crystal display device
US20020047968A1 (en) Liquid crystal display device
JPH09160042A (en) Liquid crystal display element
KR100695698B1 (en) Discotic-type twist-film compensated single-domain or two-domain twisted nematic liquid crystal displays
JPH07225389A (en) Liquid crystal display element and its manufacture
JP2006091229A (en) Liquid crystal display
JP2005196176A (en) Liquid crystal display device
JP2002214613A (en) Liquid crystal display
JP3367901B2 (en) Liquid crystal display device and method of manufacturing liquid crystal display device
JP4031658B2 (en) Liquid crystal display
JP3031812B2 (en) Liquid crystal display
JP3148561B2 (en) Liquid crystal display
JP4651337B2 (en) Liquid crystal display device
JPH09222604A (en) Liquid crystal display panel
JP3367900B2 (en) Liquid crystal display
JP3207374B2 (en) Liquid crystal display device
JPH0876077A (en) Electric field control diffraction grating and liquid crystal element
JP2836594B2 (en) Ferroelectric liquid crystal display and antiferroelectric liquid crystal display
JP3115819B2 (en) Color filter substrate, method of manufacturing the same, and liquid crystal display device using the same
JP3205502B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees