JPH05107092A - Thermal flowmeter - Google Patents

Thermal flowmeter

Info

Publication number
JPH05107092A
JPH05107092A JP3298135A JP29813591A JPH05107092A JP H05107092 A JPH05107092 A JP H05107092A JP 3298135 A JP3298135 A JP 3298135A JP 29813591 A JP29813591 A JP 29813591A JP H05107092 A JPH05107092 A JP H05107092A
Authority
JP
Japan
Prior art keywords
flow rate
flow
control valve
temperature difference
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3298135A
Other languages
Japanese (ja)
Inventor
Akira Nakamura
明 中村
Tatsuro Kuromaru
達郎 黒丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP3298135A priority Critical patent/JPH05107092A/en
Publication of JPH05107092A publication Critical patent/JPH05107092A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To obtain the flowmeter capable of easily achieving the enlargement of a measurement flow area. CONSTITUTION:A flow control valve 13 is provided on a bypath 6. A ratio of the flow allowed to flow in a sensor tube 1 to the other flow allowed to flow in the bypath 6, namely, a separation ratio can easily be regulated by regulating a degree of the opening of the flow control valve 13. The enlargement of a measurement flow area can be easily achieved without being accompanied by the exchange and the like of parts. Furthermore, its share in addition to the number of the parts can be lessened by contriving the enlargement of the measurement flow area without being accompanied by the exchange and the like of the parts and workability is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流体に生じる温度差を
検出して流体の流量を計測する熱式流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal type flow meter for detecting a temperature difference generated in a fluid and measuring the flow rate of the fluid.

【0002】[0002]

【従来の技術】従来の熱式流量計の一例として、図6に
示す分流式の熱式流量計がある。図において、1は流体
を通すセンサ管で、このセンサ管1は肉厚の薄いステン
レス等の金属材料またはフッ素樹脂等の樹脂材料で構成
されている。センサ管1の途中にはコイル状のヒータ2
が密着した状態で嵌装されている。ヒータ2には定電圧
回路3が接続されており、ヒータ2に一定電圧を印加し
てヒータ2を発熱させ、ヒータ2の発熱により流体を一
定熱量Pで加熱させるようになっている。
2. Description of the Related Art As an example of a conventional thermal type flow meter, there is a split type thermal type flow meter shown in FIG. In the figure, reference numeral 1 denotes a sensor tube through which a fluid passes, and the sensor tube 1 is made of a thin metal material such as stainless steel or a resin material such as fluororesin. A coil-shaped heater 2 is provided in the middle of the sensor tube 1.
Are fitted in close contact with each other. A constant voltage circuit 3 is connected to the heater 2, and a constant voltage is applied to the heater 2 to cause the heater 2 to generate heat, and the heat generated by the heater 2 heats the fluid with a constant amount of heat P.

【0003】センサ管1の、ヒータ2の上流側部分及び
下流側部分には流体の温度を検出する上流側及び下流側
温度センサ4,5がそれぞれ設けられている。上流側及
び下流側温度センサ4,5のそれぞれは、小型のサーミ
スタ、薄膜の白金測温抵抗体または白金等の温度係数が
大きい金属製の細線等により構成されており、応答性の
優れたものになっている。
Upstream and downstream temperature sensors 4 and 5 for detecting the temperature of the fluid are provided on the upstream and downstream portions of the heater 2 of the sensor tube 1, respectively. Each of the upstream and downstream temperature sensors 4 and 5 is composed of a small thermistor, a thin film platinum resistance temperature detector, or a thin wire made of metal such as platinum having a large temperature coefficient, and has excellent responsiveness. It has become.

【0004】上流側及び下流側温度センサ4,5をバイ
パスするようにセンサ管1にバイパス管6が設けられて
いる。バイパス管6内にはオリフィスを有する分流素子
7が嵌装されており、分流素子7を異なる大きさのオリ
フィスを有するものと取替えることにより、センサ管1
を流れる流量Q1 とバイパス管6を流れる流量Q2 との
比(以下、分流比という)αを変更できるようになって
いる。
A bypass pipe 6 is provided in the sensor pipe 1 so as to bypass the upstream and downstream temperature sensors 4, 5. A flow dividing element 7 having an orifice is fitted in the bypass pipe 6, and the flow dividing element 7 is replaced with a flow dividing element 7 having an orifice of a different size.
A ratio (hereinafter, referred to as a diversion ratio) α between the flow rate Q 1 flowing through the bypass pipe 6 and the flow rate Q 2 flowing through the bypass pipe 6 can be changed.

【0005】上流側及び下流側温度センサ4,5に接続
して温度差検出回路8が設けられ、温度差検出回路8に
は増幅回路9を介して演算回路10が接続されている。温
度差検出回路8は、上流側及び下流側温度センサ4,5
のそれぞれが検出する上流側及び下流側検出温度Ta
b を入力して検出温度差ΔT(ΔT=Tb −Ta )を
求め、この検出温度差ΔTを演算回路10に出力する。
A temperature difference detection circuit 8 is provided so as to be connected to the upstream and downstream temperature sensors 4 and 5, and an arithmetic circuit 10 is connected to the temperature difference detection circuit 8 via an amplifier circuit 9. The temperature difference detection circuit 8 includes upstream and downstream temperature sensors 4, 5
Of each of the upstream and downstream detection temperatures Ta ,
The detected temperature difference ΔT (ΔT = T b −T a ) is obtained by inputting T b , and this detected temperature difference ΔT is output to the arithmetic circuit 10.

【0006】演算回路10は、検出温度差ΔTとヒータ2
から流体に供給されている一定の加熱量Pに基づいてセ
ンサ管1を通過する流量Q1 を求め、さらにこの流量Q
1 と分流比αとから流体の総流量Qを求めるようにして
いる。
The arithmetic circuit 10 is configured to detect the temperature difference ΔT and the heater 2
The flow rate Q 1 passing through the sensor tube 1 is calculated based on the constant heating amount P supplied to the fluid from
The total flow rate Q of the fluid is calculated from 1 and the flow dividing ratio α.

【0007】この熱式流量計では、発熱体から流体に時
間当たり一定の熱量Pを供給した状態で、上流側及び下
流側温度センサ4,5で温度検出を行ない、両温度セン
サ4,5の検出温度ΔTと加熱量Pに基づいてセンサ管
1を通過する流体の流量Q1を計測し、その流量Q1
分流比αとから流体の総流量Qを求めることになる。ま
た、この熱式流量計は、分流素子7を取替えることによ
り流体の流量変化範囲に応じた適正な分流比を設定し、
測定流量域を広く取れるようにしている。
In this thermal type flow meter, the temperature is detected by the upstream and downstream temperature sensors 4 and 5 in a state where a constant amount of heat P is supplied per hour from the heating element to the fluid. The flow rate Q 1 of the fluid passing through the sensor tube 1 is measured based on the detected temperature ΔT and the heating amount P, and the total flow rate Q of the fluid is obtained from the flow rate Q 1 and the diversion ratio α. Further, in this thermal type flow meter, the flow dividing element 7 is replaced to set an appropriate flow dividing ratio according to the flow rate change range of the fluid,
The measurement flow rate range is wide.

【0008】[0008]

【発明が解決しようとする課題】ところで、上述した熱
式流量計では、分流素子を管内に設けていること等によ
り、分流比の変更、ひいては測定流量域の拡大は容易に
は行なえず不便なものであった。
By the way, in the above-mentioned thermal type flow meter, since the flow dividing element is provided in the pipe, it is inconvenient that the flow dividing ratio cannot be changed and the measurement flow range can be expanded easily. It was a thing.

【0009】本発明は、上記事情に鑑みてなされたもの
で、測定流量域の拡大を容易に達成できる熱式流量計を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermal type flow meter capable of easily achieving an expansion of a measurement flow rate range.

【0010】[0010]

【課題を解決するための手段】本発明は、上記目的を達
成するために、流体を通す管に発熱体を取付け、前記管
の前記発熱体の上流側及び下流側にそれぞれ上流側及び
下流側温度検出手段を設け、該両温度検出手段をバイパ
スするように前記管にバイパス管6を設けた熱式流量計
において、前記管及び前記バイパス管6のうち少なくと
も一方に流量制御弁を設けたことを特徴とする。
In order to achieve the above object, the present invention has a heating element attached to a pipe through which a fluid is passed, and the upstream side and the downstream side of the heating element are connected to the upstream side and the downstream side of the heating element, respectively. In a thermal type flow meter in which a temperature detecting means is provided and a bypass pipe 6 is provided in the pipe so as to bypass both temperature detecting means, a flow control valve is provided in at least one of the pipe and the bypass pipe 6. Is characterized by.

【0011】[0011]

【作用】このような構成とすれば、管及び前記バイパス
管のうち少なくとも一方に設けた流量制御弁の開度を調
整することによってセンサ管を流れる流量とバイパス管
を流れる流量との比、即ち分流比を容易に調整できる。
According to this structure, the ratio of the flow rate of the sensor tube to the flow rate of the bypass tube, that is, the flow rate of the sensor tube by adjusting the opening degree of the flow rate control valve provided in at least one of the tube and the bypass tube, that is, The diversion ratio can be easily adjusted.

【0012】[0012]

【実施例】以下、本発明の第1実施例の熱式流量計を図
1ないし図3に基づいて説明する。なお、図6に示す部
材と同等の部材は同一の符号で示しその説明は省略す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A thermal type flow meter according to a first embodiment of the present invention will be described below with reference to FIGS. The same members as those shown in FIG. 6 are designated by the same reference numerals and the description thereof will be omitted.

【0013】図において、バイパス管6の途中には、ニ
ードル形状の弁体11と、この弁体11を駆動するソレノイ
ド12とを有する電磁式の流量制御弁13が図6の分流素子
7に替えて設けられている。温度差検出回路8に接続し
て演算回路14が設けられ、流量制御弁13に接続して制御
回路15が設けられ、さらに制御回路15及び演算回路14に
接続して分流比設定回路16が設けられている。
In the figure, an electromagnetic flow control valve 13 having a needle-shaped valve element 11 and a solenoid 12 for driving the valve element 11 is provided in the middle of the bypass pipe 6 instead of the flow dividing element 7 of FIG. Are provided. An arithmetic circuit 14 is provided in connection with the temperature difference detection circuit 8, a control circuit 15 is provided in connection with the flow rate control valve 13, and a diversion ratio setting circuit 16 is provided in connection with the control circuit 15 and the arithmetic circuit 14. Has been.

【0014】流量制御弁13の開度は、バイパス管6を流
れる流体の流量に対して図2に示すように比例する関係
になっており、流量制御弁13の開度を調整することによ
りセンサ管1を流れる流量Q1 とバイパス管6を流れる
流量Q2 との比(以下、分流比という)αを変更できる
ようになっている。
The opening of the flow control valve 13 is proportional to the flow rate of the fluid flowing through the bypass pipe 6 as shown in FIG. 2, and the sensor can be adjusted by adjusting the opening of the flow control valve 13. A ratio (hereinafter referred to as a diversion ratio) α between the flow rate Q 1 flowing through the pipe 1 and the flow rate Q 2 flowing through the bypass pipe 6 can be changed.

【0015】分流比設定回路16は、手動操作される図示
しない入力手段を接続しており、この入力手段から分流
比αに対応した指示信号を入力することにより、後述す
るように流量制御弁13を制御するために用いられる分流
比設定信号aを発生し、この分流比設定信号aを演算回
路14及び制御回路15に出力する。
The diversion ratio setting circuit 16 is connected to an input means (not shown) that is manually operated. By inputting an instruction signal corresponding to the diversion ratio α from this input means, the flow control valve 13 will be described later. To generate a shunt ratio setting signal a, which is output to the arithmetic circuit 14 and the control circuit 15.

【0016】制御回路15は、分流比設定信号aを入力す
ることにより、この分流比設定信号aに応じた制御信号
bを発生し、この制御信号bをソレノイド12に出力して
弁体11を駆動させて制御信号bに対応させて流量制御弁
13の開度を設定させるようになっている。
The control circuit 15 receives the shunt ratio setting signal a to generate a control signal b corresponding to the shunt ratio setting signal a, and outputs the control signal b to the solenoid 12 to turn the valve element 11 on. Flow control valve driven to correspond to control signal b
It is designed to set the opening of 13.

【0017】演算回路14は、検出温度差ΔT及びヒータ
2から流体に供給されている一定の加熱量P等に次式
(1)の関係があることに基づいて、検出温度差ΔTを
入力して式(1)の演算を行なってセンサ管1を通過す
る流量Q1 を求める。 ΔT=k・〔P/(ρ・CP ・Q)〕 (1) ρ:密度,Q:加熱量,CP :比熱,k:係数,
The arithmetic circuit 14 inputs the detected temperature difference ΔT based on the relationship of the following expression (1) between the detected temperature difference ΔT and the constant heating amount P supplied to the fluid from the heater 2. Equation (1) is calculated to obtain the flow rate Q 1 passing through the sensor tube 1. ΔT = k · [P / (ρ · CP · Q)] (1) ρ: density, Q: heating amount, CP : specific heat, k: coefficient,

【0018】演算回路14は、さらに流量Q1 、バイパス
管6を流れる流量Q2 、総流量Q及び分流比αに次式
(2)の関係があることにより式(2)の演算を行なっ
て本熱式流量計に流入される総流量Qを求めるようにし
ている。
The arithmetic circuit 14 further calculates the equation (2) because the flow rate Q 1 , the flow rate Q 2 flowing through the bypass pipe 6, the total flow rate Q and the diversion ratio α are related by the following equation (2). The total flow rate Q flowing into the thermal flow meter is calculated.

【00】 Q=Q1 +Q2 =Q1 +α・Q1 =(1+α)・Q1 (2)Q = Q 1 + Q 2 = Q 1 + α · Q 1 = (1 + α) · Q 1 (2)

【0019】以上のように構成された熱式流量計では、
流量計則に先立って、流体の測定流量範囲等に応じて設
定される分流比αに対応した指示信号を入力手段から出
力すると、分流比設定回路16が、指示信号に応じた分流
比設定信号aを発生し、この分流比設定信号aを演算回
路14及び制御回路15に出力する。
In the thermal type flow meter constructed as described above,
Prior to the flow meter rule, when an instruction signal corresponding to the diversion ratio α set according to the measured flow rate range of the fluid is output from the input means, the diversion ratio setting circuit 16 causes the diversion ratio setting signal corresponding to the instruction signal. a is generated, and this shunt ratio setting signal a is output to the arithmetic circuit 14 and the control circuit 15.

【0020】制御回路15は、分流比設定信号aに応じた
制御信号bをソレノイド12に出力して弁体11を駆動させ
て分流比設定信号aに対応させて流量制御弁13の開度を
設定させる。これにより、分流比αが定められる。
The control circuit 15 outputs a control signal b corresponding to the diversion ratio setting signal a to the solenoid 12 to drive the valve body 11 to adjust the opening degree of the flow control valve 13 corresponding to the diversion ratio setting signal a. Let it set. Thereby, the diversion ratio α is determined.

【0021】このように分流比αが定められた状態で、
流体計測を行なうためにヒータ2を発熱させつつ流体を
本熱式流量計に流入させると、温度差検出回路8は上流
側及び下流側温度センサ4,5のそれぞれで検出される
上流側及び下流側検出温度Ta ,Tb から検出温度差Δ
Tを求め、この検出温度差ΔTを演算回路14に出力す
る。
With the split ratio α thus determined,
When the fluid is flown into the present thermal type flow meter while heating the heater 2 to measure the fluid, the temperature difference detection circuit 8 detects the upstream side and the downstream side detected by the upstream side and the downstream side temperature sensors 4 and 5, respectively. From the side detected temperatures T a and T b
T is obtained and the detected temperature difference ΔT is output to the arithmetic circuit 14.

【0022】すると、演算回路14は、前記入力データに
基づいて前記式(1)の演算を行なってセンサ管1を通
過する流量Q1 を求めると共に、この流量Q1 及び分流
比αに基づいて前記式(2)の演算を行なって総流量Q
を求めることになる。
Then, the arithmetic circuit 14 calculates the equation (1) based on the input data to obtain the flow rate Q 1 passing through the sensor tube 1, and based on the flow rate Q 1 and the diversion ratio α. The total flow rate Q is calculated by performing the calculation of the equation (2).
Will be asked.

【0023】また、上述した例と異なる値の分流比を設
定する場合には、上述した例と同様にしてその値の分流
比に対応した指示信号を入力手段から出力することによ
り、分流比設定回路16が、指示信号に応じた分流比設定
信号aを制御回路15に出力し、制御回路15が流量制御弁
13を制御して開度設定を行なって前記所望の分流比を得
ることになる。
Further, when setting the diversion ratio of a value different from the above-mentioned example, the diversion ratio is set by outputting an instruction signal corresponding to the diversion ratio of the value from the input means in the same manner as in the above-mentioned example. The circuit 16 outputs the diversion ratio setting signal a corresponding to the instruction signal to the control circuit 15, and the control circuit 15 outputs the flow control valve.
The opening degree is set by controlling 13 to obtain the desired diversion ratio.

【0024】このようにバイパス管6に流量制御弁13を
設けてその開度を容易に調整できることによってセンサ
管1を流れる流量とバイパス管6を流れる流量との比、
即ち分流比を容易に調整できることとなる。このため、
測定流量域の拡大を、精度高い計測を維持した状態で達
成できる。さらに分流素子を用いた従来の熱式流量計で
は、測定流量域の拡大を分流素子の取替えによって達成
したのに比して、このような部品交換を伴うことなく単
に制御回路15の制御信号の大きさを替えることによって
達成できるので、部品点数をその分少なくできると共
に、分流比を変更する上での作業性が向上することにな
る。
By thus providing the flow control valve 13 on the bypass pipe 6 and adjusting the opening thereof easily, the ratio of the flow amount flowing through the sensor pipe 1 to the flow amount flowing through the bypass pipe 6,
That is, the diversion ratio can be easily adjusted. For this reason,
The measurement flow rate range can be expanded while maintaining highly accurate measurement. Further, in the conventional thermal type flowmeter using the shunt element, compared to the expansion of the measurement flow rate range achieved by replacing the shunt element, the control signal of the control circuit 15 is simply transmitted without such replacement of parts. Since this can be achieved by changing the size, the number of parts can be reduced correspondingly, and the workability in changing the diversion ratio can be improved.

【0025】なお、上記実施例では体積流量を求める場
合を例にしたが、体積流量に密度ρを掛けて得られる質
量流量を求める場合であっても、上述と同様な処理が施
されることになる。
In the above embodiment, the case where the volume flow rate is obtained has been taken as an example, but the same processing as above is performed even when obtaining the mass flow rate obtained by multiplying the volume flow rate by the density ρ. become.

【0026】上記実施例では、制御回路15が分流比設定
信号aに応じた制御信号bを発生し、制御信号bに対応
させて流量制御弁13の開度を設定させる場合を例にした
が、これに替えて次のように構成してもよい。すなわ
ち、制御回路15に温度差検出回路8から検出温度差を示
す信号を入力するようにし、分流比設定回路16から分流
比設定信号aを入力すると共に、温度差検出回路8から
検出温度差を入力し分流比設定信号aに対して検出温度
差で補正するようにして制御信号bを求め、この制御信
号bをソレノイド12に出力して弁体11を駆動させて分流
比設定信号aに対応させて流量制御弁13の開度を設定さ
せるようになっている。
In the above embodiment, the case where the control circuit 15 generates the control signal b according to the diversion ratio setting signal a and sets the opening of the flow control valve 13 in correspondence with the control signal b has been taken as an example. Alternatively, it may be configured as follows. That is, a signal indicating the detected temperature difference is input from the temperature difference detection circuit 8 to the control circuit 15, the shunt ratio setting signal a is input from the shunt ratio setting circuit 16, and the detected temperature difference is output from the temperature difference detection circuit 8. A control signal b is obtained by inputting and correcting the shunt ratio setting signal a by the detected temperature difference, and this control signal b is output to the solenoid 12 to drive the valve body 11 to correspond to the shunt ratio setting signal a. By doing so, the opening degree of the flow rate control valve 13 is set.

【0027】このように構成された熱式流量計では、図
3に示すように分流比αに対応する指示信号が入力手段
から入力されると(ステップS1)、前述したように制御
回路15から分流比設定信号aに対して検出温度差ΔTで
補正された制御信号bが流量制御弁13に出力されること
により、流量制御弁13は、分流比設定信号aのみの制御
信号bによる開度E0 に検出温度差ΔTによる制御信号
bで得られる開度ETを加えるようにして開度Eを設定
し(ステップS2)、このように開度Eを設定した状態で
センサ管1の流量Q1 及び検出温度差ΔTを求める(ス
テップS3)一方、検出温度差ΔTを制御回路15にフィー
ドバックして流量制御弁13の開度を補正する。ステップ
S3の処理に続いて演算回路14は前記(1),(2)の演
算を行なって(ステップS4)総流量Qを求めることにな
る(ステップS5)。この場合、検出温度差ΔTに応じて
流量制御弁13の開度を調整するようにフィードバック制
御を行なっているので、流量変化に応じてより精度高く
流量を計測できることになる。
In the thermal type flow meter thus constructed, when the instruction signal corresponding to the diversion ratio α is input from the input means as shown in FIG. 3 (step S1), the control circuit 15 outputs the signal as described above. The control signal b corrected by the detected temperature difference ΔT with respect to the diversion ratio setting signal a is output to the flow control valve 13, so that the flow control valve 13 is opened by the control signal b of only the diversion ratio setting signal a. The opening E is set by adding the opening E T obtained by the control signal b based on the detected temperature difference ΔT to E 0 (step S2), and the flow rate of the sensor tube 1 is set with the opening E set in this way. On the other hand, Q 1 and the detected temperature difference ΔT are obtained (step S3), while the detected temperature difference ΔT is fed back to the control circuit 15 to correct the opening degree of the flow control valve 13. Step
Subsequent to the processing of S3, the arithmetic circuit 14 carries out the operations of (1) and (2) (step S4) to obtain the total flow rate Q (step S5). In this case, since the feedback control is performed so as to adjust the opening degree of the flow rate control valve 13 according to the detected temperature difference ΔT, the flow rate can be measured more accurately according to the change in the flow rate.

【0028】次に、図4及び図5に基づいて本発明の第
2実施例の熱式流量計を説明する。この熱式流量計は、
図1に示す第1実施例のものに比し、バイパス管6に設
けた流量制御弁13に替えてセンサ管1における下流側温
度センサ5の下流側に配置した流量制御弁13を設けてい
ること、分流比設定回路16及び制御回路15に替えて比例
制御回路20を設けていること、バイパス管6に分流素子
7を設けていること及び温度差検出回路8の出力側に増
幅回路9を設けていることが異なっており、他の部材は
第1実施例と同一部材で構成されており、その同一部材
の説明は省略する。
Next, a thermal type flow meter according to a second embodiment of the present invention will be described with reference to FIGS. 4 and 5. This thermal type flow meter
Compared with the first embodiment shown in FIG. 1, a flow rate control valve 13 provided on the downstream side of the downstream side temperature sensor 5 in the sensor pipe 1 is provided instead of the flow rate control valve 13 provided on the bypass pipe 6. A proportional control circuit 20 in place of the diversion ratio setting circuit 16 and the control circuit 15, a diversion element 7 in the bypass pipe 6, and an amplifier circuit 9 on the output side of the temperature difference detection circuit 8. However, the other members are the same as those of the first embodiment, and the description of the same members will be omitted.

【0029】この場合、比例制御回路20は、上流側及び
下流側温度センサ4,5のそれぞれが検出する上流側及
び下流側検出温度Ta ,Tb を入力して検出温度差ΔT
(ΔT=Tb −Ta )を求め、この検出温度差ΔTとあ
らかじめ設定した基準温度差T0 との差分を取って差分
データ(T0 −ΔT)を求め、次式(3)の演算を行な
って流量制御弁13の制御量Eを得るようにしている。 E=E+A(T0 −ΔT) … … (3) E:流量制御弁13の制御量 A:係数
In this case, the proportional control circuit 20 inputs the upstream and downstream detected temperatures T a and T b detected by the upstream and downstream temperature sensors 4 and 5, respectively, and detects the detected temperature difference ΔT.
(ΔT = T b −T a ), the difference between the detected temperature difference ΔT and the preset reference temperature difference T 0 is calculated to obtain difference data (T 0 −ΔT), and the calculation of the following equation (3) is performed. Is performed to obtain the control amount E of the flow control valve 13. E = E + A (T 0 −ΔT) (3) E: Control amount of flow control valve 13 A: Coefficient

【0030】さらに比例制御回路20は、制御量Eに基づ
いて流量制御弁13を制御してセンサ管1に流れる流量が
一定になるようにしておいて、後述する式(8),
(9)の演算を行ない総流量Qを求めるようにしてい
る。この比例制御回路20の処理内容を以下に説明する。
Further, the proportional control circuit 20 controls the flow rate control valve 13 based on the control amount E so that the flow rate of the sensor tube 1 becomes constant, and the equation (8), which will be described later,
The calculation of (9) is performed to obtain the total flow rate Q. The processing contents of the proportional control circuit 20 will be described below.

【0031】検出温度差ΔTが基準温度差T0 より大き
い場合、流量Q1 は少ないものとなっている(式(1)
参照)ので、開度が大きくなるように制御し、また検出
温度差ΔTが基準温度差T0 より小さい場合、流量Q1
は多いものとなっているので、開度が大きくなるように
制御して一定の流量Q1 の確保を図っている。
When the detected temperature difference ΔT is larger than the reference temperature difference T 0 , the flow rate Q 1 is small (equation (1)).
Control) so that the opening is increased, and if the detected temperature difference ΔT is smaller than the reference temperature difference T 0 , the flow rate Q 1
Since there are many, the control is performed so that the opening degree is increased to secure a constant flow rate Q 1 .

【0032】一方、センサ管1の差圧ΔP0 、流量制御
弁13の差圧ΔP1 及びバイパス管6の差圧ΔPの間には
次式(4)の関係がある。 ΔP0 +ΔP1 =ΔP … … (4)
On the other hand, the differential pressure [Delta] P 0 of the sensor tube 1, between the differential pressure [Delta] P of the differential pressure [Delta] P 1 and the bypass pipe 6 in the flow control valve 13 a relationship of the following equation (4). ΔP 0 + ΔP 1 = ΔP (4)

【0033】ここで、流量制御弁13を流れる流量をQ
1 、バイパス管6を流れる流量をQ2とすれば、次式
(5),(6),(7)の関係がある。 ΔP0 = 128μm01 /(πd0 4) … … (5) ΔP1 = 128μm11 /(πd1 4) … … (6) ΔP2 = 128μm22 /(πd2 4) … … (7) μ :粘度 d0 :センサ管1の内径 m0 :センサ管1の長
さ d1 :流量制御弁13の等価直径 m1 :流量制御弁13の
等価長さ d2 :バイパス管6の等価直径 m2 :バイパス管6の
等価長さ
Here, the flow rate of the flow control valve 13 is set to Q
1 , and assuming that the flow rate flowing through the bypass pipe 6 is Q 2 , there is a relationship of the following equations (5), (6), (7). ΔP 0 = 128μm 0 Q 1 / (πd 0 4) ... ... (5) ΔP 1 = 128μm 1 Q 1 / (πd 1 4) ... ... (6) ΔP 2 = 128μm 2 Q 2 / (πd 2 4) ... (7) μ: viscosity d 0 : inner diameter of sensor tube 1 m 0 : length of sensor tube 1 d 1 : equivalent diameter of flow control valve 13 m 1 : equivalent length of flow control valve 13 d 2 : bypass pipe Equivalent diameter of 6 m 2 : Equivalent length of bypass pipe 6

【0034】また、本熱式流量計に流入する総流量Q
は、流量制御弁13を流れる流量をQ1とバイパス管6を
流れる流量をQ2 との和として得られることから、この
ような関係があること及び前記各式に基づいて総流量Q
は、次式(8)で得られる。 Q=Q1 +Q2 =Q1 〔1+(m0 /m2 )(d2 4/d0 4)〕 +Q1 〔1+(m1 /m2 )(d2 4/d1 4)〕 … … (8)
Further, the total flow rate Q flowing into the present thermal type flow meter
Is the flow rate through the flow control valve 13 to flow through the Q 1, the bypass pipe 6 can be obtained as the sum of the Q 2, total flow rate Q based on and each of the formulas above have such relationship
Is obtained by the following equation (8). Q = Q 1 + Q 2 = Q 1 [1+ (m 0 / m 2 ) (d 2 4 / d 0 4 )] + Q 1 [1+ (m 1 / m 2 ) (d 2 4 / d 1 4 )] ... … (8)

【0035】ここで、流量Q1 を上述したように一定に
することにより、m0 ,m1 ,m2,d0 ,d2 は固定
値であるから、総流量Qは次式(9)で求まることにな
る。 Q=G1 +G2 /d1 4 … … (9) G1 ,G2 :定数
Here, by making the flow rate Q 1 constant as described above, m 0 , m 1 , m 2 , d 0 , d 2 are fixed values, so the total flow rate Q is expressed by the following equation (9). It will be found in. Q = G 1 + G 2 / d 1 4 (9) G 1 and G 2 : constants

【0036】即ち、比例制御回路20は流量制御弁13の開
度を流量制御弁13を流れる流量が一定になるように制御
するが、この制御により達成される制御弁等価直径d1 4
の変化量から総流量Qを検出することになる。
That is, the proportional control circuit 20 controls the opening of the flow rate control valve 13 so that the flow rate of the flow rate control valve 13 becomes constant, and the control valve equivalent diameter d 1 4 achieved by this control is achieved.
The total flow rate Q will be detected from the change amount of.

【0037】このように構成された熱式流量計では、図
5に示すように、まず基準温度差T0 を設定しておき
(ステップS10 )、温度差検出回路8が上流側及び下流
側検出温度Ta ,Tb に基づいて検出温度差ΔTを求め
(ステップS11 )これを比較制御回路20に出力すると、
比較制御回路20が、E=E+A(T0 −ΔT)の演算を
行なって(ステップS12 )、流量制御弁13の制御量Eを
得(ステップS13 )、この制御量Eを流量制御弁13に出
力して流量制御弁13を制御してセンサ管1に流れる流量
が一定になるようにする(ステップS14 )と共に、前記
式(8),(9)の演算を行なって総流量Qを求める
(ステップS15 )。
In the thermal type flow meter thus constructed, as shown in FIG. 5, first, the reference temperature difference T 0 is set (step S10), and the temperature difference detecting circuit 8 detects the upstream side and the downstream side. The detected temperature difference ΔT is obtained based on the temperatures T a and T b (step S11). When this is output to the comparison control circuit 20,
The comparison control circuit 20 calculates E = E + A (T 0 −ΔT) (step S12) to obtain the control amount E of the flow rate control valve 13 (step S13), and supplies this control amount E to the flow rate control valve 13. The flow rate is controlled by controlling the flow rate control valve 13 so that the flow rate flowing through the sensor tube 1 becomes constant (step S14), and the total flow rate Q is calculated by performing the operations of the equations (8) and (9). Step S15).

【0038】このようにセンサ管1に流量制御弁13を設
けてその開度を調整して分流比を変更できるので、流体
流量計測における測定流量域の拡大を図れる。センサ管
1に流れる流量が変化すると、ヒータ2による一定の加
熱量に対する流体の温度上昇が異なったものとなってし
まうので、本実施例のようにセンサ管1に流量制御弁13
を設ける場合には得られる流量値を適正なものとするた
めに、演算回路14に流量値算出に際しデータを補正する
手段を設ける等の処置を施す必要があるが、本実施例で
は上述したようにセンサ管1に流れる流量を一定に保つ
ようにしているので、上述したようなデータ補正手段等
設けることなく流体の流量計測を精度高く実施できるこ
とになる。
As described above, since the flow rate control valve 13 is provided in the sensor pipe 1 and the opening degree thereof can be adjusted to change the diversion ratio, the measurement flow rate range in the fluid flow rate measurement can be expanded. When the flow rate flowing through the sensor tube 1 changes, the temperature rise of the fluid with respect to a constant heating amount by the heater 2 becomes different, so that the flow rate control valve 13 is provided in the sensor tube 1 as in the present embodiment.
In order to make the obtained flow rate value proper, it is necessary to take measures such as providing the arithmetic circuit 14 with means for correcting the data in calculating the flow rate value. In addition, since the flow rate of the sensor tube 1 is kept constant, the flow rate of the fluid can be measured with high accuracy without providing the above-described data correction means.

【0039】なお、上記各実施例では、流量制御弁の弁
体がニードル形状である場合を例にしたが、本発明はこ
れに限定されるものではなく、例えば平板状であっても
よい。
In each of the above embodiments, the case where the valve body of the flow control valve is needle-shaped has been taken as an example, but the present invention is not limited to this, and may be flat-shaped, for example.

【0040】[0040]

【発明の効果】本発明は、以上説明したように構成され
た熱式流量計であるから、管及び前記バイパス管のうち
少なくとも一方に設けた流量制御弁の開度を調整するこ
とにより分流比の調整を図れるので、測定流量域の拡大
を容易にかつ部品交換等伴うことなく達成できる。さら
に部品交換等伴うことなく測定流量域の拡大を図れるこ
とにより部品点数をその分少なくできると共に、作業性
が向上することになる。
Since the present invention is the thermal type flow meter configured as described above, the flow dividing ratio is adjusted by adjusting the opening degree of the flow rate control valve provided in at least one of the pipe and the bypass pipe. Can be adjusted, so that the measurement flow rate range can be easily expanded without replacement of parts. Further, the number of parts can be reduced correspondingly by expanding the measurement flow rate range without exchanging parts and the workability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の熱式流量計を模式的に示
す断面図である。
FIG. 1 is a sectional view schematically showing a thermal type flow meter according to a first embodiment of the present invention.

【図2】同熱式流量計の流量制御弁の開度・流量特性を
示す図である。
FIG. 2 is a diagram showing an opening degree / flow rate characteristic of a flow rate control valve of the same thermal type flow meter.

【図3】温度差検出回路の出力データをフィードバック
して流量制御弁の制御に用いるタイプの熱式流量計の作
用例を示すフローチャートである。
FIG. 3 is a flowchart showing an operation example of a thermal type flow meter of a type used to feed back output data of a temperature difference detection circuit and control the flow rate control valve.

【図4】本発明の第2実施例の熱式流量計を模式的に示
す図である。
FIG. 4 is a diagram schematically showing a thermal type flow meter according to a second embodiment of the present invention.

【図5】同熱式流量計の作用例を示すフローチャートで
ある。
FIG. 5 is a flowchart showing an operation example of the same thermal type flow meter.

【図6】従来の熱式流量計の一例を模式的に示す図であ
る。
FIG. 6 is a diagram schematically showing an example of a conventional thermal type flow meter.

【符号の説明】[Explanation of symbols]

1 センサ管 2 ヒータ 4 上流側温度センサ 5 下流側温度センサ 6 バイパス管 13 流量制御弁 1 Sensor Pipe 2 Heater 4 Upstream Temperature Sensor 5 Downstream Temperature Sensor 6 Bypass Pipe 13 Flow Control Valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流体を通す管に発熱体を取付け、前記管
の前記発熱体の上流側及び下流側にそれぞれ上流側及び
下流側温度検出手段を設け、該両温度検出手段をバイパ
スするように前記管にバイパス管を設けた熱式流量計に
おいて、前記管及び前記バイパス管のうち少なくとも一
方に流量制御弁を設けたことを特徴とする熱式流量計。
1. A heating element is attached to a pipe through which a fluid passes, and upstream and downstream temperature detecting means are provided on the upstream side and the downstream side of the heating element of the pipe, respectively, so that both temperature detecting means are bypassed. A thermal type flow meter in which a bypass pipe is provided in the pipe, wherein a flow control valve is provided in at least one of the pipe and the bypass pipe.
JP3298135A 1991-10-18 1991-10-18 Thermal flowmeter Pending JPH05107092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3298135A JPH05107092A (en) 1991-10-18 1991-10-18 Thermal flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3298135A JPH05107092A (en) 1991-10-18 1991-10-18 Thermal flowmeter

Publications (1)

Publication Number Publication Date
JPH05107092A true JPH05107092A (en) 1993-04-27

Family

ID=17855640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3298135A Pending JPH05107092A (en) 1991-10-18 1991-10-18 Thermal flowmeter

Country Status (1)

Country Link
JP (1) JPH05107092A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10684154B2 (en) 2016-12-12 2020-06-16 Ventbuster Holdings Inc. Gas meter and associated methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10684154B2 (en) 2016-12-12 2020-06-16 Ventbuster Holdings Inc. Gas meter and associated methods
US11486751B2 (en) 2016-12-12 2022-11-01 Ventbuster Holdings Inc. Gas meter and associated methods
US20230041777A1 (en) * 2016-12-12 2023-02-09 Ventbuster Holdings Inc. Gas meter and associated methods
US11713992B2 (en) * 2016-12-12 2023-08-01 Ventbuster Holdings Inc. Gas meter and associated methods

Similar Documents

Publication Publication Date Title
JP2631481B2 (en) Mass flow meter and its measurement method
EP0715710B1 (en) Differential current thermal mass flow transducer
CN101652591B (en) Method and apparatus for measuring the temperature of a gas in a mass flow controller
JP4949039B2 (en) Flow rate detector
KR102237868B1 (en) System for and method of providing pressure insensitive self verifying mass flow controller
JPH04230806A (en) Flow rate sensor
JPH05107092A (en) Thermal flowmeter
JP2004020306A (en) Method and device for calibrating mass flow controller
JP2875919B2 (en) Mass flow meter
JP3706283B2 (en) Flow sensor circuit
JP2964186B2 (en) Thermal flow meter
JP2930742B2 (en) Thermal flow meter
JPH0449893B2 (en)
JP2788329B2 (en) Method and apparatus for measuring flow velocity and flow direction of fluid
JPH09222344A (en) Mass flow controller
JP5178262B2 (en) Thermal flow meter and its initial adjustment method and initial adjustment device
JPH01227016A (en) Mass flowmeter
KR102190440B1 (en) Thermal mass flowmeter
JP3019009U (en) Mass flow meter
JPH07261846A (en) Mass flow controller
KR0163621B1 (en) Temperature and speed measuring method in moving field using one thermal line sensor
JP2003097990A (en) Thermal flowmeter
JPH04235611A (en) Mass flow controller
KR20020080137A (en) Sensor for detecting the mass flow rate and device and method for controlling mass flow rate using it
JP3373981B2 (en) Thermal flow meter