JPH0510577B2 - - Google Patents

Info

Publication number
JPH0510577B2
JPH0510577B2 JP60087223A JP8722385A JPH0510577B2 JP H0510577 B2 JPH0510577 B2 JP H0510577B2 JP 60087223 A JP60087223 A JP 60087223A JP 8722385 A JP8722385 A JP 8722385A JP H0510577 B2 JPH0510577 B2 JP H0510577B2
Authority
JP
Japan
Prior art keywords
antifreeze
circulation circuit
liquid level
tank
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60087223A
Other languages
Japanese (ja)
Other versions
JPS61246561A (en
Inventor
Toshihiko Ito
Takao Kobayashi
Susumu Sakaida
Masaki Moto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Takenaka Komuten Co Ltd
Original Assignee
Ebara Corp
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Takenaka Komuten Co Ltd filed Critical Ebara Corp
Priority to JP60087223A priority Critical patent/JPS61246561A/en
Publication of JPS61246561A publication Critical patent/JPS61246561A/en
Publication of JPH0510577B2 publication Critical patent/JPH0510577B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 「産業上の利用分野」 本発明は不凍液を使用し空気から集熱を行うヒ
ーテイングタワー付きヒートポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] "Industrial Application Field" The present invention relates to a heat pump with a heating tower that uses antifreeze and collects heat from the air.

「従来の技術」 不凍液を使用した空気から集熱を行うヒーテイ
ングタワー付きヒートポンプは、冬期の暖房用熱
源を空気に求めている。これを同じく空気を熱源
に求める汎用空気熱源ヒートポンプと対比して見
た場合、 (1) 汎用空気熱源ヒートポンプの空気熱交換器で
は熱交換面に着霜、着氷が生じ、能力の低下、
所要動力の上昇等の不都合が生じるがヒーテイ
ングタワー付きヒートポンプでは此の不都合が
生じない。
``Conventional technology'' A heat pump with a heating tower that uses antifreeze to collect heat from the air relies on the air as a heat source for heating during the winter. Comparing this with a general-purpose air-source heat pump that also uses air as its heat source, (1) In the air-heat exchanger of a general-purpose air-source heat pump, frost and ice build up on the heat exchange surface, resulting in a decrease in capacity and
Although there are inconveniences such as an increase in the required power, a heat pump with a heating tower does not have these inconveniences.

(2) 汎用空気熱源ヒートポンプでは、冷媒循環ガ
ス量の関係等から高圧ガス冷媒を使用せざるを
得ないのが一般であるが、ヒーテイングタワー
付きヒートポンプ用冷凍機では低圧冷媒フロン
R11の使用も可能で、機器の安全性、取扱い
の容易さ、省エネルギーの利点がある。
(2) General-purpose air source heat pumps generally have no choice but to use high-pressure gas refrigerants due to the amount of refrigerant circulating gas, but low-pressure refrigerant Freon R11 may also be used in heat pump refrigerators with heating towers. It has the advantages of equipment safety, ease of handling, and energy saving.

(3) 空気熱源ヒートポンプで冷媒配管を建物内に
引き廻す場合は、漏洩による冷媒の損耗、漏洩
による不安全等の欠点があるが、ヒーテイング
タワー付きヒートポンプでは此の懸念がない。
(3) When using an air source heat pump to route refrigerant piping into a building, there are drawbacks such as loss of refrigerant due to leakage and unsafe conditions due to leakage, but heat pumps with heating towers do not have these concerns.

等の利点がある。There are advantages such as

従来の不凍液を用いて空気から集熱を行うヒー
テイングタワー付きヒートポンプには不凍液循環
系は閉回路となつており、夏期ヒーテイングタワ
ーをクーリングタワーとして用いる場合に不凍液
を収容保存しておく不凍液循環回路外に不凍液槽
を備え、冬期ヒートポンプサイクルを稼動するに
際して不凍液循環回路に該不凍液循環回路外の不
凍液を入れ替えるものがある。
Conventional heat pumps with heating towers that use antifreeze to collect heat from the air have a closed antifreeze circulation system, and when the summer heating tower is used as a cooling tower, there is an antifreeze circulation circuit that stores and stores antifreeze. Some devices have an external antifreeze tank and replace the antifreeze outside the antifreeze circulation circuit with the antifreeze circulation circuit when operating the winter heat pump cycle.

「発明が解決しようとする問題点」 然し乍ら、不凍液循環系内を循環する不凍液の
濃度が変動し、不凍液の凍結、不凍液量増大によ
る外部への不凍液のオーバフロー、不凍液減少に
よる不凍液の補充の必要性、濃縮進行によるポン
プのキヤビテーシヨン等の不都合の発生が懸念さ
れている。
"Problems to be Solved by the Invention" However, the concentration of antifreeze circulating in the antifreeze circulation system fluctuates, resulting in freezing of antifreeze, overflow of antifreeze to the outside due to an increase in the amount of antifreeze, and the need to replenish antifreeze due to decrease in antifreeze. There are concerns that problems such as pump cavitation may occur due to the progress of concentration.

そして、従来の上記夏期用の不凍液貯槽を設け
たものでは夏期用の不凍液貯槽は冬期暖房時はヒ
ートポンプの不凍液循環回路に不凍液が移し変え
られており、不凍液循環回路の不凍液の稀釈に対
しては濃厚不凍液を槽を別に準備しておいて注液
し、不凍液の濃縮に対しては給水を行なうという
ことを人力で行つており、保守管理に手間がかゝ
るものとなつている。
In the conventional system equipped with the above-mentioned summer antifreeze storage tank, antifreeze is transferred from the summer antifreeze storage tank to the antifreeze circulation circuit of the heat pump during winter heating, and the antifreeze liquid in the antifreeze circulation circuit is diluted. Concentrated antifreeze is prepared separately in a tank and injected into the tank, and water is supplied to concentrate the antifreeze, which is done manually, making maintenance and management time-consuming.

ところが、此のヒーテイングタワー付きヒート
ポンプの理論及び実証試験結果で (1) 不凍液は外気温湿度条件と負荷条件により濃
縮、バランス、稀釈の状態変化が生じる。
However, the theoretical and demonstration test results of this heat pump with heating tower show that (1) antifreeze changes its state of concentration, balance, and dilution depending on the outside temperature, humidity, and load conditions;

(2) 不凍液濃度の変化は、不凍液液位変化として
あらわれる。
(2) Changes in antifreeze concentration appear as changes in antifreeze level.

が判明している。It is clear that

本発明は不凍液を用いて空気から集熱を行うヒ
ーテイングタワー付きヒートポンプについての上
記考察に基づいて前記問題点を解消し、不凍液量
とその濃度を制御可能なものを提供することを目
的とするものである。
The present invention aims to solve the above problems based on the above considerations regarding a heat pump with a heating tower that collects heat from the air using antifreeze, and to provide a heat pump that can control the amount of antifreeze and its concentration. It is something.

〔発明の構成〕[Structure of the invention]

「問題点を解決するための手段」 本発明は不凍液を使用し、空気から集熱を行な
うヒーテイングタワー付きヒートポンプであつ
て、ヒートポンプサイクルを行なう不凍液循環回
路の系外に夏期に不凍液を貯留するための不凍液
槽を設け、該不凍液槽と上記不凍液循環回路との
間に不凍液の送受配管を配したものにおいて、不
凍液循環回路に該不凍液循環回路の不凍液量の検
出手段を備え、該不凍液量の検出手段により検出
した信号により、上記不凍液の送受配管をとおる
不凍液量を制御して不凍液循環回路の不凍液量を
ほぼ一定に保つ制御装置を備えたことを特徴とす
るヒーテイングタワー付きヒートポンプである。
"Means for Solving the Problems" The present invention is a heat pump with a heating tower that uses antifreeze and collects heat from the air, and the antifreeze is stored in the summer outside of the antifreeze circulation circuit that performs the heat pump cycle. An antifreeze tank is provided, and an antifreeze sending/receiving pipe is arranged between the antifreeze tank and the antifreeze circulation circuit, and the antifreeze circulation circuit is provided with means for detecting the amount of antifreeze in the antifreeze circulation circuit, This heat pump with a heating tower is characterized in that it is equipped with a control device that controls the amount of antifreeze passing through the antifreeze fluid transmission and reception piping based on the signal detected by the detection means to keep the amount of antifreeze fluid in the antifreeze fluid circulation circuit substantially constant.

「作用」 不凍液循環回路の不凍液量の検出手段により不
凍液量が検出された信号を受けて制御装置は不凍
液循環回路における不凍液量の過剰に対しては該
回路の系外の不凍液槽に不凍液の送受配管をとお
り不凍液を制御装置により流出させ、不凍液循環
回路における不凍液の不足の該信号に対しては不
凍液の送受配管をとおり不凍液を該回路の系外の
不凍液槽から不凍液の循環回路に制御装置により
流入させる。
"Operation" Upon receiving a signal indicating that the amount of antifreeze has been detected by the antifreeze amount detection means in the antifreeze circulation circuit, the control device sends and receives antifreeze to an antifreeze tank outside the circuit in case of an excess amount of antifreeze in the antifreeze circulation circuit. The control device causes the antifreeze to flow out through the piping, and in response to the signal of lack of antifreeze in the antifreeze circulation circuit, the control device flows the antifreeze from the antifreeze tank outside the circuit through the antifreeze sending and receiving piping to the antifreeze circulation circuit. Let it flow.

「実施例」 以下、本発明の実施例を図面に従つて説明す
る。第1図、第2図は不凍液を使用し、空気から
不凍液を介して集熱を行うヒーテイングタワー付
きヒートポンプのフローシートである。
"Embodiments" Examples of the present invention will be described below with reference to the drawings. Figures 1 and 2 are flow sheets of a heat pump with a heating tower that uses antifreeze and collects heat from the air via the antifreeze.

ヒートポンプサイクルは通常の不凍液をを介し
て集熱を行うヒーテイングタワー付きヒートポン
プと同一である。夏期はヒーテイングタワーはク
ーリングタワーとして作用する。即ち、夏期冷房
時、クーリングタワーの下部水槽6には給水管3
7から弁26を介して給水されて冷却水が貯留さ
れている。夏期冷房時は第1図に示すように弁2
1,22,25,26,31,32は閉められ、
弁23,24,27,28は開放されており(記
号Cは閉弁状態、記号Oは開弁状態)冷媒は主圧
縮機1で圧縮されて、冷却水コンデンサ2に送り
込まれてその内部の冷却水の流れている熱交換器
により冷却され凝縮し、膨脹弁3にて減圧され、
クーラ4中に送り込まれて、その内部の熱交換器
中を流れる冷房用の水を冷却して蒸発し主圧縮機
1に吸込まれる。
The heat pump cycle is the same as that of a heat pump with a heating tower that collects heat through normal antifreeze. During the summer, the heating tower acts as a cooling tower. That is, during summer cooling, the water supply pipe 3 is connected to the lower water tank 6 of the cooling tower.
7 through a valve 26, and cooling water is stored therein. During summer cooling, valve 2 is closed as shown in Figure 1.
1, 22, 25, 26, 31, 32 are closed,
The valves 23, 24, 27, and 28 are open (symbol C indicates the closed state, symbol O indicates the open state), and the refrigerant is compressed by the main compressor 1 and sent to the cooling water condenser 2, where the refrigerant is pumped into the cooling water condenser 2. It is cooled and condensed by the heat exchanger through which the cooling water flows, and the pressure is reduced by the expansion valve 3.
Cooling water is fed into the cooler 4 and flows through a heat exchanger inside the cooler 4, where it is cooled and evaporated, and then sucked into the main compressor 1.

冷却水はポンプ5により下部水槽6から送り出
され、弁27を介して冷却水コンデンサ2に送り
込まれ、冷媒の熱を奪つて弁28を介して下部水
槽6上部のフアンによる空気流中にある散布器7
にて散布され空冷されて下部水槽6に落下する。
Cooling water is sent out from the lower water tank 6 by the pump 5 and sent to the cooling water condenser 2 through the valve 27, where it removes heat from the refrigerant and is dispersed in the air stream by the fan above the lower water tank 6 through the valve 28. Vessel 7
The water is dispersed, air-cooled, and falls into the lower water tank 6.

冷房用の水は冷温水槽8からポンプ9により汲
み上げられ弁23を介してクーラ4に入り冷媒に
より冷却され、弁24を介して冷温水槽8に戻る
ものである。
Water for cooling is pumped up from the hot/cold water tank 8 by a pump 9, enters the cooler 4 via a valve 23, is cooled by a refrigerant, and returns to the hot/cold water tank 8 via a valve 24.

こゝで下部水槽6の冷却水と不凍液の入替につ
いてのべる。夏期冷房状態から冬期のヒートポン
プ使用時には先ず下部水槽6から放流できる弁3
3を開いて冷却水を抜くと共に不図示の配管途中
のドレンを抜いて冷却水を抜く。
Here, we will talk about replacing the cooling water and antifreeze in the lower water tank 6. A valve 3 that allows water to be discharged from the lower water tank 6 first when the heat pump is used from the summer cooling state to the winter season.
3 and drain the cooling water, and also drain the drain (not shown) in the middle of the piping to drain the cooling water.

次に不凍液の濃度、量の管理並びに不凍液の夏
期貯留のために設けた不凍液槽11から不凍液を
下部水槽6に入れるには弁27,28,32,3
3を閉じチエツク弁のついた弁31を開き、ポン
プ12を運転して不凍液槽11の不凍液を汲み上
げ、弁31を介して散布器7から下部水槽6に不
凍液を入れる。下部水槽6に備える液位検出器4
1が下限液位を検出するとその信号を受けて液位
制御器42はポンプ12を限時運転後停止する。
Next, valves 27, 28, 32, and 3 are used to control the concentration and amount of antifreeze and to charge antifreeze from the antifreeze tank 11 provided for summer storage of antifreeze into the lower water tank 6.
3 is closed, a valve 31 with a check valve is opened, the pump 12 is operated to pump up the antifreeze from the antifreeze tank 11, and the antifreeze is poured into the lower water tank 6 from the sprayer 7 via the valve 31. Liquid level detector 4 provided in the lower water tank 6
1 detects the lower limit liquid level, in response to the signal, the liquid level controller 42 operates the pump 12 for a limited time and then stops it.

尚、冬期状態から夏期冷房時に切替る際不凍凍
を下部水槽6から抜くときは冬期状態(第2図)
の弁21〜28,31,32において弁31を閉
じ、動力制御弁34を開いてポンプ5を運転する
ことにより下部水槽6の不凍液を不凍液槽11に
移し変えることができる。
In addition, when switching from the winter state to summer cooling, when removing the antifreeze from the lower water tank 6, the winter state (Figure 2)
The antifreeze in the lower water tank 6 can be transferred to the antifreeze tank 11 by closing the valve 31 in the valves 21 to 28, 31, and 32, opening the power control valve 34, and operating the pump 5.

冬期暖房時は上述のように不凍液を下部水槽6
に入れ、弁23,24,27,28を閉じ、弁2
1,22,25,26,31,32を開いてお
く。冬期暖房時は第2図に示すように冷媒は主圧
縮機1で圧縮されて不作動の冷却水コンデンサを
通過してブースタ圧縮機に吸入される。ブースタ
圧縮機で圧縮された冷媒は温水コンデンサ14に
送られ、温水コンデンサ14中の熱交換器中を流
れる水を加熱し、膨脹弁15により減圧されて冷
却水コンデンサ2に戻る。冷却水コンデンサの冷
媒液は更に膨脹弁3により減圧されクーラ4に還
流し、クーラ4を流れる不凍液を冷却し、自らは
蒸発して再び主圧縮機1に吸入される。
During winter heating, add antifreeze to the lower water tank 6 as described above.
, close valves 23, 24, 27, and 28, and close valve 2.
Leave numbers 1, 22, 25, 26, 31, and 32 open. During winter heating, as shown in FIG. 2, the refrigerant is compressed by the main compressor 1, passes through an inactive cooling water condenser, and is sucked into the booster compressor. The refrigerant compressed by the booster compressor is sent to the hot water condenser 14, heats the water flowing through the heat exchanger in the hot water condenser 14, is depressurized by the expansion valve 15, and returns to the cooling water condenser 2. The refrigerant liquid in the cooling water condenser is further depressurized by the expansion valve 3 and flows back to the cooler 4, cools the antifreeze flowing through the cooler 4, evaporates itself, and is sucked into the main compressor 1 again.

冷温水槽8からポンプ9により送られる水は弁
22を介して温水コンデンサ14に入り加熱され
て弁21を介して冷温水槽8に戻る。
Water sent from the cold/hot water tank 8 by the pump 9 enters the hot water condenser 14 via the valve 22, is heated, and returns to the cold/hot water tank 8 via the valve 21.

暖房時下部水槽6中の不凍液はポンプ5に吸込
まれて送り出され弁25を介してクーラ4中に入
り、クーラ4中の熱交換器により冷媒から熱を奪
われて冷却され弁26を介して散布器7から散布
されて空気により加熱されて下部水槽6に貯留さ
れる。このようにヒートポンプサイクルを行なう
ところの不凍液循環回路が構成されている。
During heating, the antifreeze in the lower water tank 6 is sucked into the pump 5 and sent out, enters the cooler 4 via the valve 25, is cooled by removing heat from the refrigerant by the heat exchanger in the cooler 4, and then passes through the valve 26. The water is sprayed from the sprayer 7, heated by air, and stored in the lower water tank 6. In this way, the antifreeze circulation circuit that performs the heat pump cycle is configured.

以上でのべた処は公知の不凍液にて集熱するヒ
ーテイングタワー付きヒートポンプである。
The above-mentioned heat pump is a heat pump equipped with a heating tower that collects heat using antifreeze.

以上のようにヒーテイングタワー付きヒートポ
ンプは下部水槽6、ポンプ5、弁25、不凍液を
媒体とした外気側熱交換器としてのクーラ4、弁
26、散布器7及びこれらを結ぶ配管を備える。
As described above, the heat pump with a heating tower includes the lower water tank 6, the pump 5, the valve 25, the cooler 4 as an outside air side heat exchanger using antifreeze as a medium, the valve 26, the diffuser 7, and the piping connecting these.

以上の説明により明らかなようにヒートポンプ
サイクル時に不凍液槽として用いられる下部水槽
6以外に不凍液槽11がヒートポンプサイクルを
行なう不凍液循環回路の系外に配されている。こ
の不凍液槽11と不凍液循環回路とは一部配管を
共用しているが、不凍液槽11と下部水槽6間の
不凍液を送受する配管はヒートポンプサイクルの
不凍液循環回路とは独立したものとしてもよい。
As is clear from the above description, in addition to the lower water tank 6 used as an antifreeze tank during the heat pump cycle, an antifreeze tank 11 is arranged outside the antifreeze circulation circuit that performs the heat pump cycle. Although the antifreeze tank 11 and the antifreeze circulation circuit share some piping, the piping for transmitting and receiving antifreeze between the antifreeze tank 11 and the lower water tank 6 may be independent of the antifreeze circulation circuit of the heat pump cycle.

ヒートポンプサイクルの不凍液循環回路の不凍
液量は検出手段として下部水槽6に液位検出器4
1を備えるものであるが、この液位検出器41は
下部水槽6における上限液位を検出するセンサと
下限液位を検出するセンサを備え夫々上限液位、
下限液位を示す信号を発するようになつている。
A liquid level detector 4 is installed in the lower water tank 6 as a detection means to detect the amount of antifreeze in the antifreeze circulation circuit of the heat pump cycle.
1, this liquid level detector 41 is equipped with a sensor for detecting the upper limit liquid level and a sensor for detecting the lower limit liquid level in the lower water tank 6, respectively.
It is designed to emit a signal indicating the lower limit liquid level.

該不凍液量の検出手段により検出した信号によ
り、上記不凍液の送受配管をとおる不凍液量を制
御して不凍液循環回路の不凍液量を一定に保つ制
御装置は上記液位検出器41、液位検出器41の
信号を受けてポンプ5,12、動力制御弁34を
制御する液位制御器42からなつている。
A control device that controls the amount of antifreeze passing through the antifreeze sending/receiving pipe based on the signal detected by the antifreeze amount detection means to keep the amount of antifreeze in the antifreeze circulation circuit constant includes the liquid level detector 41 and the liquid level detector 41. The liquid level controller 42 controls the pumps 5, 12 and the power control valve 34 in response to the signal.

ヒートポンプサイクルの不凍液循環回路の不凍
液は負荷が軽く、外気温度が高く、湿度が低いと
きは水分は蒸発し濃縮され不凍液量は減少し、負
荷が大きく、外気温度が低く、湿度が大きいとき
は空気中の水分を吸収して濃度低下して不凍液量
は増大する。この不凍液量の増減は下部水槽6の
液位変化として現われる。
The antifreeze in the antifreeze circulation circuit of a heat pump cycle has a light load, and when the outside temperature is high and the humidity is low, water evaporates and concentrates and the amount of antifreeze decreases; when the load is large, the outside temperature is low, and the humidity is high, the amount of antifreeze is The amount of antifreeze increases as it absorbs moisture and its concentration decreases. This increase or decrease in the amount of antifreeze appears as a change in the liquid level in the lower water tank 6.

ヒートポンプサイクルの運転中はポンプ12は
通常停止しており、動力制御弁34は閉じてい
る。今、下部水槽6中の不凍液の液位が濃縮によ
り下降して下限液位となると液位検出器41はそ
の下限液位を検出した信号を液位制御器42に送
る。液位制御器42はポンプ12を運転し不凍液
槽11の不凍液をくみ上げて弁31を介して散布
器7から下部水槽6に不凍液を入れる。下部水槽
6の液位が上昇すると液位検出器41のオフセツ
ト量だけ下限水位よりも若干高い液位において液
位検出器41からの下限液位を示す信号は出なく
なる。該信号の消失を受けて、液位制御器42は
ポンプ12を限時運転し、下部水槽6の液位が上
下限液位の中間液位になるようにしてポンプ12
を停止する。
During operation of the heat pump cycle, pump 12 is normally stopped and power control valve 34 is closed. Now, when the liquid level of the antifreeze in the lower water tank 6 decreases due to concentration and reaches the lower limit liquid level, the liquid level detector 41 sends a signal detecting the lower limit liquid level to the liquid level controller 42. The liquid level controller 42 operates the pump 12 to pump up the antifreeze from the antifreeze tank 11 and introduces the antifreeze from the sprayer 7 into the lower water tank 6 via the valve 31. When the liquid level in the lower water tank 6 rises, the signal indicating the lower limit liquid level is no longer output from the liquid level detector 41 when the liquid level is slightly higher than the lower limit water level by the offset amount of the liquid level detector 41. In response to the disappearance of the signal, the liquid level controller 42 operates the pump 12 for a limited time so that the liquid level in the lower water tank 6 becomes an intermediate liquid level between the upper and lower limit liquid levels.
stop.

ヒートポンプサイクルの運転中下部水槽6中の
不凍液の液位が吸水稀釈により上昇して上限液位
になると液位検出器はその上限液位を検出した信
号を液位制御器42に送る。液位制御器42は動
力制御弁34を開弁し、不凍液循環回路のポンプ
5の吐出側と弁25間の配管から、弁32、動力
制御弁34を通じて不凍液を不凍液槽11に逃が
す。かくて下部水槽6の液位が下り、液位検出器
41のオフセツト量だけ上限液位よりも下つた位
置にて液位検出器41の信号が消失すると該信号
の消失を受けて液位制御器42は動力制御弁34
を限時開弁動作して下部水槽6の上下限液位の中
間液位において動力制御弁34を閉じる。
During operation of the heat pump cycle, when the liquid level of the antifreeze in the lower water tank 6 rises due to water absorption and dilution and reaches the upper limit liquid level, the liquid level detector sends a signal detecting the upper limit liquid level to the liquid level controller 42. The liquid level controller 42 opens the power control valve 34 and releases antifreeze from the piping between the discharge side of the pump 5 and the valve 25 in the antifreeze circulation circuit to the antifreeze tank 11 through the valve 32 and the power control valve 34. Thus, when the liquid level in the lower water tank 6 decreases and the signal from the liquid level detector 41 disappears at a position where the liquid level falls below the upper limit liquid level by the offset amount of the liquid level detector 41, the liquid level is controlled in response to the disappearance of the signal. The device 42 is the power control valve 34
The power control valve 34 is closed at an intermediate liquid level between the upper and lower limit liquid levels of the lower water tank 6 by opening the valve for a limited time.

不凍液槽11は夏期は不凍液の貯槽となるがヒ
ートポンプサイクルの不凍液循環回路の不凍液の
容量よりも冬期下部水槽6の液位を制御するだけ
の充分な大きさの容量をもつている。
The antifreeze tank 11 serves as an antifreeze storage tank during the summer, but has a capacity that is larger than the antifreeze capacity of the antifreeze circulation circuit of the heat pump cycle to control the liquid level in the lower water tank 6 during the winter.

このような下部水槽6の液位制御の結果、下部
水槽6の液位が下限液位になると濃縮状態におい
てはより濃度の低い不凍液槽11の不凍液により
薄められ、下部水槽6の液位が上限液位になつて
希釈状態においてはより濃度の高い不凍液槽11
の不凍液の混合により濃度が上昇してこれらが交
互に行われて濃度調整が行われる。
As a result of such liquid level control in the lower water tank 6, when the liquid level in the lower water tank 6 reaches the lower limit level, in the concentrated state, it is diluted by the antifreeze in the antifreeze tank 11, which has a lower concentration, and the liquid level in the lower water tank 6 reaches the upper limit. The antifreeze tank 11 has a higher concentration when the liquid level reaches a diluted state.
By mixing the antifreeze solutions, the concentration increases, and these steps are performed alternately to adjust the concentration.

尚、例えば不凍液槽11に補助手段として公知
の不凍液の加熱濃縮手段又は濃厚な不凍液を追加
するタンクを備えておいてもよい。
For example, the antifreeze tank 11 may be provided with a known means for heating and concentrating antifreeze or a tank for adding concentrated antifreeze as an auxiliary means.

〔発明の効果〕〔Effect of the invention〕

本発明は不凍液を使用し、空気から集熱を行な
うヒーテイングタワー付きヒートポンプであつ
て、ヒートポンプサイクルを行なう不凍液循環回
路の系外に夏期に不凍液を貯留するための不凍液
槽を設け、該不凍液槽と上記不凍液循環回路との
間に不凍液の送受配管を配したものにおいて、不
凍液循環回路に該不凍液循環回路の不凍液量の検
出手段を備え、該不凍液量の検出手段により検出
した信号により、上記不凍液の送受配管をとおる
不凍液量を制御して不凍液循環回路の不凍液量を
ほぼ一定に保つ制御装置を備えたことを特徴とす
るヒーテイングタワー付きヒートポンプとしたか
ら、ヒートポンプサイクルを行う不凍液の循環回
路を流れる液量をほぼ一定に保つことができ、不
凍液濃度をほぼ一定に保つことができる。不凍液
量が吸水により増大して不凍液循環回路から外部
へ溢れることが防止され、不凍液量が減少して不
凍液循環量が不足し、濃縮が進行して粘度上昇に
より不凍液の循環が充分できなくなるということ
が回避される。これらにより、今まで人手を要し
ていた不凍液の管理が自動化される。
The present invention is a heat pump with a heating tower that uses antifreeze and collects heat from the air, and includes an antifreeze tank for storing antifreeze in summer outside the antifreeze circulation circuit that performs the heat pump cycle. and the antifreeze fluid circulation circuit, wherein the antifreeze fluid circulation circuit is provided with means for detecting the amount of antifreeze fluid in the antifreeze fluid circulation circuit, and the antifreeze fluid is detected by the signal detected by the antifreeze fluid amount detection means in the antifreeze fluid circulation circuit. The heat pump with a heating tower is characterized by being equipped with a control device that controls the amount of antifreeze that passes through the transmission and reception piping to keep the amount of antifreeze in the antifreeze circulation circuit almost constant. The amount of liquid flowing can be kept almost constant, and the concentration of antifreeze can be kept almost constant. The amount of antifreeze increases due to water absorption and is prevented from overflowing from the antifreeze circulation circuit to the outside, the amount of antifreeze decreases and the amount of antifreeze circulating becomes insufficient, and the concentration progresses and the viscosity increases, making it impossible to circulate the antifreeze sufficiently. is avoided. These will automate antifreeze management, which previously required manual labor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の実施例のフローシー
トである。 1……主圧縮機、2……冷却水コンデンサ、3
……膨脹弁、4……クーラ、5……ポンプ、6…
…下部水槽、7……散布器、8……冷温水槽、9
……ポンプ、11……不凍液槽、12……ポン
プ、13……ブースタ圧縮機、14……温水コン
デンサ、15……膨脹弁、21〜29,31〜3
3……弁、34……動力制御弁、41……液位検
出器、42……液位制御器。
FIGS. 1 and 2 are flow sheets of an embodiment of the present invention. 1... Main compressor, 2... Cooling water condenser, 3
...Expansion valve, 4...Cooler, 5...Pump, 6...
... Lower water tank, 7 ... Spreader, 8 ... Cold and hot water tank, 9
... Pump, 11 ... Antifreeze tank, 12 ... Pump, 13 ... Booster compressor, 14 ... Hot water condenser, 15 ... Expansion valve, 21-29, 31-3
3...Valve, 34...Power control valve, 41...Liquid level detector, 42...Liquid level controller.

Claims (1)

【特許請求の範囲】[Claims] 1 不凍液を使用し、空気から集熱を行なうヒー
テイングタワー付きヒートポンプであつて、ヒー
トポンプサイクルを行なう不凍液循環回路の系外
に夏期に不凍液を貯留するための不凍液槽を設
け、該不凍液槽と上記不凍液循環回路との間に不
凍液の送受配管を配したものにおいて、不凍液循
環回路に該不凍液循環回路の不凍液量の検出手段
を備え、該不凍液量の検出手段により検出した信
号により、上記不凍液の送受配管をとおる不凍液
量を制御して不凍液循環回路の不凍液量をほぼ一
定に保つ制御装置を備えたことを特徴とするヒー
テイングタワー付きヒートポンプ。
1 A heat pump with a heating tower that uses antifreeze and collects heat from the air, with an antifreeze tank for storing antifreeze in the summer outside the antifreeze circulation circuit that performs the heat pump cycle, and the antifreeze tank and the above In a device in which an antifreeze fluid transmission/reception pipe is arranged between the antifreeze fluid circulation circuit and the antifreeze fluid circulation circuit, the antifreeze fluid circulation circuit is provided with means for detecting the amount of antifreeze fluid in the antifreeze fluid circulation circuit, and the sending and receiving of the antifreeze fluid is performed based on a signal detected by the antifreeze fluid amount detection means. A heat pump with a heating tower, characterized in that it is equipped with a control device that controls the amount of antifreeze passing through piping to keep the amount of antifreeze in an antifreeze circulation circuit almost constant.
JP60087223A 1985-04-23 1985-04-23 Heat pump with heating tower Granted JPS61246561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60087223A JPS61246561A (en) 1985-04-23 1985-04-23 Heat pump with heating tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60087223A JPS61246561A (en) 1985-04-23 1985-04-23 Heat pump with heating tower

Publications (2)

Publication Number Publication Date
JPS61246561A JPS61246561A (en) 1986-11-01
JPH0510577B2 true JPH0510577B2 (en) 1993-02-10

Family

ID=13908890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60087223A Granted JPS61246561A (en) 1985-04-23 1985-04-23 Heat pump with heating tower

Country Status (1)

Country Link
JP (1) JPS61246561A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023222A (en) * 1973-06-28 1975-03-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023222A (en) * 1973-06-28 1975-03-12

Also Published As

Publication number Publication date
JPS61246561A (en) 1986-11-01

Similar Documents

Publication Publication Date Title
CN107014016B (en) Fluorine pump natural cooling evaporation type condensation water chiller and control method thereof
US8051669B2 (en) Liquid evaporation cooling apparatus
CN107014014B (en) Heat pipe natural cooling evaporation type condensation water chiller and control method thereof
CN104704302A (en) Heat pump device
KR20200062925A (en) Low power consumption cooling system with improved efficiency by using condensed water
KR101647285B1 (en) Thermal storage air conditioning system that can perform sequential or simultaneous frost accumulation and emissions or heat storage and dissipation by using a single heat exchanger and its control method
CN207585141U (en) A kind of integral type energy tower heat pump
JPH0510577B2 (en)
KR101045512B1 (en) Low temperature water two-stage absorbtion typerefrigerator
JP3434281B2 (en) Absorption refrigerator
CN209655614U (en) A kind of heat pump low temperature anti-freeze system
JPH0510578B2 (en)
CN208720598U (en) A kind of air conditioner cold water unit and air-conditioning
JPS61246562A (en) Heat pump with heating tower
CN112066458A (en) Air conditioning unit adopting throttle valve and control method thereof
JP3225155B2 (en) Absorption air conditioner
CN206269414U (en) A kind of auxiliary hot enthalpy increasing heat pump system
EP0050611A1 (en) Method and apparatus for conserving energy in an air conditioning system
JP3457697B2 (en) Air conditioner
CN117006560B (en) Water-cooling integrated water chilling unit with natural cooling function and control method
CN219083294U (en) Temperature difference thermodynamic driving air conditioner
JPH04353370A (en) Heat pump type refrigerating device
KR19990079016A (en) Cooling system using midnight power
JP3281228B2 (en) Absorption type cold / hot water unit
JPS5856528Y2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term