JPS61246562A - Heat pump with heating tower - Google Patents

Heat pump with heating tower

Info

Publication number
JPS61246562A
JPS61246562A JP8722485A JP8722485A JPS61246562A JP S61246562 A JPS61246562 A JP S61246562A JP 8722485 A JP8722485 A JP 8722485A JP 8722485 A JP8722485 A JP 8722485A JP S61246562 A JPS61246562 A JP S61246562A
Authority
JP
Japan
Prior art keywords
antifreeze
liquid level
heat pump
tank
heating tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8722485A
Other languages
Japanese (ja)
Other versions
JPH0752048B2 (en
Inventor
俊彦 伊藤
隆夫 小林
堺田 進
元 雅樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Takenaka Komuten Co Ltd
Original Assignee
Ebara Corp
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Takenaka Komuten Co Ltd filed Critical Ebara Corp
Priority to JP60087224A priority Critical patent/JPH0752048B2/en
Publication of JPS61246562A publication Critical patent/JPS61246562A/en
Publication of JPH0752048B2 publication Critical patent/JPH0752048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Central Heating Systems (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 「産業上の利用分野」 本発明は不凍液を使用し空気から集熱を行うヒーティン
グタワー付きヒートポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] "Industrial Application Field" The present invention relates to a heat pump with a heating tower that uses antifreeze and collects heat from the air.

「従来の技術」 不凍液を使用した空気から集熱を行うヒーティングタワ
ー付きヒートポンプは、冬期の暖房用熱源を空気に求め
ている。これを同じく空気を熱源に求める汎用空気熱源
ヒートポンプと対比して見た場合、 (1)汎用空気熱源ヒートポンプの空気熱交換器では熱
交換面に着霜、着氷が生じ、能力の低下、所要動力の上
昇等の不都合が生じるがヒ−ティングタワー付きヒート
ポンプでは此の不都合が生じない。
``Conventional technology'' A heat pump with a heating tower that uses antifreeze to collect heat from the air relies on the air as a heat source for heating during the winter. Comparing this with a general-purpose air-source heat pump that also uses air as its heat source, (1) In the air heat exchanger of a general-purpose air-source heat pump, frost and ice build up on the heat exchange surface, reducing the capacity and reducing the required Although inconveniences such as an increase in power arise, a heat pump with a heating tower does not cause such inconveniences.

(λ)汎用空気熱源ヒートポンプでは、冷媒循環ガス量
の関係等から高圧ガス冷媒を使用せざるを得ないのが一
般であるが、ヒーティングタワー付きヒートポンプ用冷
凍機では低圧冷媒フロンR//の使用も可能で、機器の
安全性、取扱いの容易さ、省エネルギーの利点がある。
(λ) General-purpose air heat source heat pumps generally have no choice but to use high-pressure gas refrigerants due to the amount of refrigerant circulating gas, but heat pump refrigerators with heating towers use low-pressure refrigerant Freon R//. It has the advantages of equipment safety, ease of handling, and energy saving.

(3)空気熱源ヒートポンプで冷媒配管を建物内に引き
廻す場合は、漏洩による冷媒の損耗、漏洩による不安全
等の欠点があるが、ヒーティングタワー付きヒートポン
プでは此の懸念がない。
(3) When using an air source heat pump to route refrigerant piping into a building, there are disadvantages such as loss of refrigerant due to leakage and unsafe conditions due to leakage, but heat pumps with heating towers do not have these concerns.

等の利点がある。There are advantages such as

従来の不凍液を用いて空気から集熱を行うヒーティング
タワー付きヒートポンプには不凍液循環系は閉回路とな
っており、夏期ヒーティングタワーをクーリングタワー
として用いる場合に不凍液を収容保存しておく不凍液循
環回路外の不凍液槽を備え、冬期ヒートポンプサイクル
を稼動するに際して不凍液循環回路に該不凍液循環回路
外の不凍液を入れ替えるものがある。
Conventional heat pumps with heating towers that use antifreeze to collect heat from the air have a closed antifreeze circulation system, and when the heating tower is used as a cooling tower in the summer, the antifreeze circulation circuit stores and stores antifreeze. Some devices include an external antifreeze tank and replace the antifreeze outside the antifreeze circulation circuit with the antifreeze circulation circuit when operating the winter heat pump cycle.

「発明が解決しようとする問題点」 然し乍ら、不凍液循環回路を循環する不凍液の濃度が変
動し、不凍液の凍結、不凍液量増大による外部への不凍
液のオーバフロー、不凍液減少による不凍液の補充の必
要性、濃縮進行によるポンプのキャビテーション等の不
都合の発生が懸念されている。
"Problems to be Solved by the Invention" However, the concentration of antifreeze circulating in the antifreeze circulation circuit fluctuates, freezing of the antifreeze, overflow of antifreeze to the outside due to an increase in the amount of antifreeze, and the need to replenish the antifreeze due to a decrease in antifreeze. There are concerns that problems such as pump cavitation may occur as the concentration progresses.

ところが、此のヒーティングタワー付きヒートポンプの
理論及び実証試験結果で (1)  不凍液は外気温湿度条件と負荷条件により濃
縮、バランス、稀釈の状態変化が生じる。
However, the theory and demonstration test results of this heat pump with heating tower show that (1) Antifreeze changes its state of concentration, balance, and dilution depending on the outside temperature, humidity, and load conditions.

(コ) 不凍液濃度の変化は、不凍液液位変化としてあ
られれる。
(j) Changes in antifreeze concentration can be seen as changes in antifreeze level.

ことが判明している。It turns out that this is true.

本発明は不凍液を用いて9気から集熱を行うヒーティン
グタワー付きヒートポンプの上記考察に基づいて前記問
題点を解消し、不凍液量から濃度を不凍液量により制御
可能なものを提供することを目的とするものである。
The present invention is based on the above consideration of a heat pump with a heating tower that collects heat from 9 air using antifreeze, and aims to solve the above problems and provide a heat pump whose concentration can be controlled by the amount of antifreeze. That is.

〔発明の構成〕[Structure of the invention]

「問題点を解決するための手段」 本項第1の発明は不凍液を使用し、空気から集熱を行う
ヒーティングタワー付きヒートポンプにおいて、不凍液
槽に液位検出手段を設けて、不凍液の濃度変化を不凍液
の液位変化で検知し、不凍液の濃度を不凍液の液量によ
り制御することを特徴とするヒーティングタワー付きヒ
ートポンプである。
"Means for solving the problem" The first invention of this section is a heat pump with a heating tower that uses antifreeze and collects heat from the air. This is a heat pump with a heating tower that detects the change in the level of the antifreeze and controls the concentration of the antifreeze based on the amount of the antifreeze.

本願第コの発明は不凍液を使用し、空気から集熱を行う
ヒーティングタワー付きヒートポンプにおいて、液位Q
検出手段を備えた不凍液槽を複数個設け、該複数の不凍
液槽の内ヒートポンプの不凍液循環回路の系内の一つの
不凍液槽と、その他の系外の不凍液槽間に不凍液の授受
手段を備え、上記各液位検出手段の示す信号を組合せて
上記不凍液の授受手段並びに不凍液の濃縮稀釈手段を制
御する制御装置を設けたことを特徴としたヒーティング
タワー付きヒートポンプである。
The third invention of the present application is a heat pump with a heating tower that uses antifreeze and collects heat from the air.
A plurality of antifreeze tanks each having a detection means are provided, and an antifreeze transfer means is provided between one of the plurality of antifreeze tanks in the antifreeze circulation circuit system of the heat pump and other antifreeze tanks outside the system, The heat pump with a heating tower is characterized in that it is provided with a control device that combines the signals indicated by each of the liquid level detection means to control the antifreeze transfer means and the antifreeze concentration/dilution means.

「作用」 本願第1発明の作用は不凍液槽の液位検出手段の信号に
より検知した不凍液濃度が推定される。この不凍液濃度
に基づいて当該不凍液槽の液量を調節することにより濃
度制御を行うものである。
"Operation" The operation of the first invention of the present application is to estimate the concentration of antifreeze detected from the signal of the liquid level detection means of the antifreeze tank. Concentration control is performed by adjusting the amount of liquid in the antifreeze tank based on this antifreeze concentration.

本願第2発明の作用は不凍液の循環回路の系内の不凍液
槽と該回路の系外の不凍液槽の不凍液の液位が検出され
ると不凍液液位の組合せにより、不凍液の濃縮稀釈状態
が判明する。例えば不凍液循環回路の系内の不凍液槽と
該回路の系外の不凍液槽の液位が共に低いときは不凍液
は濃縮されており稀釈手段を動作させ、共に高いときは
不凍液は稀釈されており、濃縮手段を動作させ、夫々の
液位が異なるときは不凍液授受手段により不凍液の循環
回路の系内外の不凍液槽の液量を調整する。
The effect of the second invention of the present application is that when the liquid levels of antifreeze in the antifreeze tank inside the antifreeze circulation circuit and the antifreeze tank outside the circuit are detected, the concentration and dilution state of the antifreeze can be determined based on the combination of the antifreeze liquid levels. do. For example, when the liquid levels of the antifreeze tank inside the antifreeze circulation circuit and the antifreeze tank outside the circuit are both low, the antifreeze is concentrated and the dilution means is operated, and when both are high, the antifreeze is diluted, The concentration means is operated, and when the respective liquid levels are different, the amount of liquid in the antifreeze tanks inside and outside the antifreeze circulation circuit is adjusted by the antifreeze transfer means.

「実施例」 以下、本発明の実施例を図面に従って説明する。第1図
、第2図は不凍液を使用し、空気から不凍液を介して集
熱を行うヒーティングタワー付きヒートポンプのフロー
シートである。
"Embodiments" Examples of the present invention will be described below with reference to the drawings. FIGS. 1 and 2 are flow sheets of a heat pump with a heating tower that uses antifreeze and collects heat from the air via the antifreeze.

ヒートポンプサイクルは通常の不凍液を介して集熱を行
うヒーティングタワー付きヒートポンプと同一である。
The heat pump cycle is the same as that of a heat pump with a heating tower that collects heat through normal antifreeze.

夏期はヒーティングタワーはクーリングタワーとして作
用する。即ち、夏期冷房時、クーリングタワーの下部水
槽6には給水管3りから弁29を介して給水されて冷却
水が貯留されている。夏期冷房時は第1図に示すように
弁コl、−−、コ!、コロ、31.jJは閉められ、弁
コ3.η〜27.コtは開放されており(記号0は閉弁
状態、記号0は開弁状態)冷媒は主圧縮機lで圧縮され
て、冷却水コンデンサコに送り込まれてその内部の冷却
水の流れている熱交換器により冷却され凝縮し、膨張弁
3にて減圧され、クーラダ中に送り込まれて、その内部
の熱交換器中を流れを冷房用の水を冷却して蒸発し主圧
縮機/に吸込まれる。
During the summer, the heating tower acts as a cooling tower. That is, during summer cooling, cooling water is stored in the lower water tank 6 of the cooling tower, which is supplied from the water supply pipe 3 through the valve 29. During summer cooling, as shown in Figure 1, valves l, --, ko! , Coro, 31. jJ is closed and bento 3. η~27. The valve t is open (symbol 0 is the valve closed state, symbol 0 is the valve open state). The refrigerant is compressed by the main compressor l, and is sent to the cooling water condenser, and the cooling water inside it is flowing. The water is cooled and condensed by the heat exchanger, reduced in pressure by the expansion valve 3, and sent into the cooler.The water flows through the heat exchanger inside the cooler to cool the cooling water, evaporates, and is sucked into the main compressor. be caught.

冷却水はポンプ3により下部水槽6から送り出され、弁
λりを介して冷却水コンデンサコに送り込まれ、冷媒の
熱を奪って弁コgを介して下部水槽6上部のファンによ
る空気流中にある散布器りにて散布され空冷されて下部
水槽基に落下する。
Cooling water is sent out from the lower water tank 6 by the pump 3 and sent to the cooling water condenser via the valve λ, which removes heat from the refrigerant and flows through the valve g into the air flow by the fan at the upper part of the lower water tank 6. It is sprayed by a sprayer, cooled by air, and falls into the lower water tank base.

冷房用の水は冷温水槽tからポンプ9+こより汲み上げ
られ弁コJを介してクーラダに入り冷媒により冷却され
、弁コダを介して冷温水槽tに戻るものである。
Water for cooling is pumped up from the cold/hot water tank t by a pump 9+, enters the cooler via a valve J, is cooled by a refrigerant, and returns to the cold/hot water tank t via the valve.

こ−で下部水槽基の冷却水と不凍液の入替についてのべ
る。夏期冷房状態から冬期のヒートポンプ使用時には先
ず下部水槽6から放流できる弁33を開いて冷却水を抜
くと共に不図示の配管途中のドレンを抜いて冷却水を抜
く。
Here we will talk about replacing the cooling water and antifreeze in the lower water tank. When the heat pump is used from a summer cooling state to a winter season, first, the valve 33 that allows water to be discharged from the lower water tank 6 is opened to drain the cooling water, and a drain (not shown) in the middle of the piping is removed to drain the cooling water.

次に不凍液の濃度、量の管理並びに不凍液の夏期貯留の
ために設けた不凍液槽/lから不凍液を下部水槽基に入
れるには弁コア、コt、31,33を閉じチェック弁の
ついた弁31を開き、ポンプl−を運転して不凍液槽/
/の不凍液を汲み上げ、弁31を介して散布器りから下
部水槽6に不凍液を入れる。下部水槽基に備える液位検
出器lI/が下限液位を検出するとその信号を受けて液
位制御器4tコはポンプl−を限時運転後停止する。
Next, in order to manage the concentration and amount of antifreeze, and to pour antifreeze into the lower tank base from the antifreeze tank/l provided for summer storage of antifreeze, close the valve core, t, 31 and 33, and use a valve with a check valve. 31 and operate pump l- to drain the antifreeze tank/
/ is pumped up and poured into the lower water tank 6 from the sprayer via the valve 31. When the liquid level detector lI/ provided in the lower tank base detects the lower limit liquid level, in response to the signal, the liquid level controller 4t operates the pump l- for a limited time and then stops it.

尚、冬期状態(第一図)から夏期冷房時に切替る際不凍
液を下部水槽6から抜くときは冬期状態の弁コl−−g
、、yi、s旧こ右いて弁3/を閉じ、動力制御弁、7
1Iを開いてポンプ5を運転することにより下部水槽1
の不凍液を不凍液槽//に移し変えることができる。
In addition, when switching from the winter state (Figure 1) to summer cooling, when removing antifreeze from the lower water tank 6, use the winter state valve l--g.
,,yi,s Close valve 3/, power control valve 7
Lower water tank 1 is opened by opening 1I and operating pump 5.
of antifreeze can be transferred to the antifreeze tank //.

冬期暖房時は上述のように不凍液を下部水槽6に入れ、
弁コJ、コダ、2り、21を閉じ、弁コl。
During winter heating, add antifreeze to the lower water tank 6 as described above.
Close the valve J, Koda, 2, 21, and the valve L.

ココ、コ!、コ&、3/、Jコを開いておく。冬期暖房
時は第2図に示すように冷媒は主圧縮機lで圧縮されて
不作動の冷却水コンデンサを通過してブースタ圧縮機に
吸入される。ブースタ圧縮機で圧縮された冷媒は温水コ
ンデンサーダに送られ、温水コンデンサ/4(中の熱交
換器中を流れる水を加熱し、膨張弁triこより減圧さ
れて冷却水コンデンサーに戻る。
Here, here! , Co &, 3/, Leave J Co open. During winter heating, as shown in FIG. 2, the refrigerant is compressed by the main compressor 1, passes through an inactive cooling water condenser, and is sucked into the booster compressor. The refrigerant compressed by the booster compressor is sent to the hot water condenser, heats the water flowing through the heat exchanger inside the hot water condenser/4, is depressurized by the expansion valve TRI, and returns to the cooling water condenser.

冷却水コンデンサの冷媒液は更に膨張弁3により減圧さ
れクーラダに還流し、クーラダを流れる不凍液を冷却し
、自らは蒸発して再び主圧縮機lに吸入される。
The refrigerant liquid in the cooling water condenser is further reduced in pressure by the expansion valve 3 and flows back to the cooler, cools the antifreeze flowing through the cooler, evaporates itself, and is sucked into the main compressor 1 again.

冷温水槽Sからポンプデにより送られる水は弁−一を介
して温水コンデンサ/+1に入り加熱されて弁コlを介
して冷温水槽tに戻る。
Water sent from the cold/hot water tank S by the pump D enters the hot water condenser/+1 via valve 1, is heated, and returns to the cold/hot water tank t via valve 1.

暖房時下部水槽6中の不凍液はポンプ!に吸込まれて送
り出され弁コ!を介してクーラダ中に入り、クーラダ中
の熱交換器により冷媒から熱を奪われて冷却され弁、2
6を介して散布器りから散布されて空気により加熱され
て下部水槽6に貯留される。このようにヒートポンプサ
イクルを行なうところの不凍液循環回路が構成されてい
る。   ゛ 以上でのべた処は公知の不凍液にて集熱するヒーティン
グタワー付きヒートポンプである。
The antifreeze in the lower water tank 6 during heating is pumped! It is sucked in and sent out! The heat exchanger in the coolada removes heat from the refrigerant and cools the valve.
The water is sprayed from the sprayer via the water tank 6, heated by air, and stored in the lower water tank 6. In this way, the antifreeze circulation circuit that performs the heat pump cycle is configured. The above-mentioned heat pump is a heat pump with a heating tower that collects heat using a known antifreeze.

以上のようにヒーティングタワー付きヒートポンプは下
部水槽6、ポンプ!、弁コ3、不凍液を媒体とした外気
側熱交換器としてのクーラダ、弁−6.散布器り及びこ
れらを結ぶ配管を備える。
As mentioned above, the heat pump with heating tower has a lower water tank 6 and a pump! , Valve 3, Coolada as an outside air side heat exchanger using antifreeze as a medium, Valve-6. Equipped with a sprayer and piping to connect them.

以上の説明より明らかなようにヒートポンプサイクル時
に不凍液槽として用いられる下部水槽6以外に不凍液槽
//がヒートポンプサイクルを行なう不凍液循環回路の
系外に配されている。この不凍液槽//と不凍液循環回
路とは一部配管を共用しているが、不凍液槽iiと下部
水槽6間の不凍液の送受する配管はヒートポンプサイク
ルの不凍液循環回路とは独立したものとしてもよい。
As is clear from the above description, in addition to the lower water tank 6 used as an antifreeze tank during the heat pump cycle, an antifreeze tank // is arranged outside the antifreeze circulation circuit that performs the heat pump cycle. Although this antifreeze tank// and the antifreeze circulation circuit share some piping, the piping for sending and receiving antifreeze between the antifreeze tank ii and the lower water tank 6 may be independent from the antifreeze circulation circuit of the heat pump cycle. .

ヒートポンプサイクルの不凍液循環回路の不凍液量の検
出手段として下部水槽6に液位検出器tIlを備えるも
のであるが、この液位検出器4Ilは下部水槽6におけ
る上限液位を検出するセンサと下限液位を検出するセン
サを備え夫々上限液位、下限液位を示す信号を発するよ
うになっている。
The lower water tank 6 is equipped with a liquid level detector tIl as a means for detecting the amount of antifreeze in the antifreeze circulation circuit of the heat pump cycle. The tank is equipped with a sensor that detects the liquid level and emits signals indicating the upper limit liquid level and the lower limit liquid level, respectively.

該不凍液量の検出手段により検出した信号lこより、上
記不凍液の送受配管をとおる不凍液量を制御して不凍液
循環回路の不凍液量を一定に保つ制御装置は上記液位検
出器II/、液位検出器ダlの信号を受けてポンプ!、
/コ、動力制御弁3IIを制御する液位制御器グコから
なっている。
Based on the signal detected by the antifreeze amount detection means, the control device controls the amount of antifreeze passing through the antifreeze sending/receiving pipe to keep the amount of antifreeze in the antifreeze circulation circuit constant. Pump after receiving the signal from the machine! ,
It consists of a liquid level controller GUKO which controls the power control valve 3II.

ヒートポンプサイクルの不凍液循環回路の不凍液は負荷
が軽く、外気温度が高く、湿度が低いときは水分は蒸発
し濃縮され不凍液量は減少し、負荷が大きく、外気温度
が低く、湿度が大きいときは全気中の水分を吸収して濃
度低下して不凍液量は増大する。この不凍液量の増減は
下部水槽基の液位変化として現われる。
The antifreeze in the antifreeze circulation circuit of a heat pump cycle has a light load, and when the outside temperature is high and the humidity is low, water evaporates and concentrates, and the amount of antifreeze decreases.When the load is large, the outside temperature is low, and the humidity is high, the amount of antifreeze is reduced. The amount of antifreeze increases as it absorbs moisture from the air and its concentration decreases. This increase or decrease in the amount of antifreeze appears as a change in the liquid level in the lower tank base.

ヒートポンプサイクルの運転中はポンプノコは通常停止
しており、動力制御弁J4Iは閉じている。今、下部水
槽6中の不凍液の液位が濃縮により下降して下限液位に
なると液位検出器参/はその下限液位を検出した信号を
液位制御器lIコに送る。液位制御器4Iコはポンプl
−を運転し不凍液槽//の不凍液をくみ上げて弁31を
介して散布器りから下部水槽基に不凍液を入れる。下部
水槽6の液位が上昇すると液位検出器ダ/のオフセット
量だけ下限水位よりも若干高い液位において液位検出器
l/からの下限液位を示す信号は出なくなる。該信号の
消失を受けて、液位制御器ダコはポンプノコを限時運転
し、下部水槽基の液位が上下限液位の中間液位になるよ
うにしてポンプ7.2を停止する。
During operation of the heat pump cycle, the pump saw is normally stopped and power control valve J4I is closed. Now, when the liquid level of the antifreeze in the lower water tank 6 is lowered due to concentration and reaches the lower limit liquid level, the liquid level detector 6/ sends a signal detecting the lower limit liquid level to the liquid level controller 11. Liquid level controller 4I is pump l
- is operated to pump up antifreeze from the antifreeze tank // and pour the antifreeze into the lower water tank base from the sprayer via valve 31. When the liquid level in the lower water tank 6 rises, the signal indicating the lower limit liquid level is no longer output from the liquid level detector l/ when the liquid level is slightly higher than the lower limit water level by the offset amount of the liquid level detector da/. In response to the disappearance of the signal, the liquid level controller DAKO operates the pump saw for a limited time, and stops the pump 7.2 so that the liquid level in the lower water tank becomes an intermediate level between the upper and lower limit liquid levels.

ヒートポンプサイクルの運転中下部水槽6中の不凍液の
液位が吸水稀釈により上昇して上限液位(こなると液位
検出器はその上限液位を検出した信号を液位制御器グー
に送る。液位制御器41Jは動力制御弁3ケを開弁し、
不凍液循環回路のポンプ!の吐出側と弁、2夕間の配管
から、弁3コ、動力制御弁j4’を通じて不凍液を不凍
液槽//に逃がす。かくて下部水槽基の液位が下り、液
位検出器lIlのオフセット量だけ上限液位よりも下っ
た位置にて液位検出器41/の信号が消失すると該信号
の消失を受けて液位制御器lIコは動力制御弁3ダを限
時開弁動作して下部水槽基の上下限液位の中間液位にお
いて動力制御弁j4tを閉じる。
During the operation of the heat pump cycle, the liquid level of the antifreeze liquid in the lower water tank 6 rises due to water absorption and dilution to the upper limit liquid level (when this happens, the liquid level detector sends a signal detecting the upper limit liquid level to the liquid level controller Goo. The position controller 41J opens the three power control valves,
Antifreeze circulation circuit pump! The antifreeze liquid is released from the discharge side of the valve and the piping between the two valves and the third valve and the power control valve j4' to the antifreeze tank //. In this way, the liquid level in the lower water tank base decreases, and when the signal from the liquid level detector 41/ disappears at a position lower than the upper limit liquid level by the offset amount of the liquid level detector lIl, the liquid level decreases due to the disappearance of the signal. The controller lI opens the power control valve 3da for a limited time and closes the power control valve j4t at an intermediate liquid level between the upper and lower limit liquid levels of the lower water tank base.

不凍液槽//は夏期は不凍液の貯槽となるがヒートポン
プサイクルの不凍液循環回路の不凍液の容量よりも冬期
下部水槽基の液位を制御するだけの充分な大きな容量を
もっている。
The antifreeze tank// serves as an antifreeze storage tank in the summer, but has a capacity that is sufficiently larger than the antifreeze capacity of the antifreeze circulation circuit of the heat pump cycle to control the liquid level in the lower water tank base in the winter.

このような下部水槽基の液位制御の結果、下部水槽基の
液位が下限液位になると濃縮状態においてはより濃度の
低い不凍液槽//の不凍液により薄められ、下部水槽基
の液位が上限液位になって稀釈状態においてはより濃度
の高い不凍液槽/lの不凍液の混合により濃度が上昇し
て濃度調整が行われる。
As a result of such liquid level control in the lower water tank base, when the liquid level in the lower water tank base reaches the lower limit liquid level, in the concentrated state, it is diluted by the antifreeze solution in the antifreeze tank // with a lower concentration, and the liquid level in the lower water tank base increases. When the upper limit liquid level is reached and the antifreeze is in a diluted state, the concentration is increased by mixing the antifreeze solution of higher concentration in the antifreeze tank/l, and the concentration is adjusted.

上記説明では不凍液循環回路外の不凍液槽としては夏期
冷房時に不凍液を貯蔵して詔く不凍液槽により説明した
が上記実施例で不凍液循環回路外に置かれる不凍液槽に
は限定はなく、夏期冷房時に不凍液を貯蔵する不凍液槽
/l以外に独立した不凍液槽と下部水槽との閣で不凍液
の授受を行うようにしてもよい。
In the above explanation, the antifreeze tank outside the antifreeze circulation circuit is an antifreeze tank that stores antifreeze during summer cooling. However, in the above embodiment, there is no limit to the antifreeze tank placed outside the antifreeze circulation circuit, and during summer cooling In addition to the antifreeze tank/l that stores antifreeze solution, antifreeze solution may be delivered and received in an independent antifreeze tank and a lower water tank.

第3図は他の実施例のフローシートである。FIG. 3 is a flow sheet of another embodiment.

この実施例では前実施例において更に不凍液槽/lにも
不凍液槽//中の液位の検出器173と該液位検出器グ
3の信号を受ける液位制御器IIIIを備える。
In this embodiment, in addition to the previous embodiment, the antifreeze tank /1 is also provided with a detector 173 for the liquid level in the antifreeze tank // and a liquid level controller III that receives the signal from the liquid level detector G3.

下部水槽基の液位は前実施例と同様に制御されることに
より液位は下部水槽基の上限液位と下限液位の間を上下
してヒートポンプの不凍液循環回路にはほぼ一定量の不
凍液が流れている。
The liquid level in the lower water tank base is controlled in the same way as in the previous embodiment, so that the liquid level fluctuates between the upper limit liquid level and the lower limit liquid level in the lower water tank base, and an almost constant amount of antifreeze is supplied to the antifreeze circulation circuit of the heat pump. is flowing.

このようにして運転を続けると負荷が大きく、外気温が
低く、湿度が高い状態が続くと下部水槽6内の液位は上
昇が続き、動力制御弁、74Iを通じて不凍液槽iiに
入る稀釈された不凍液により、不凍液槽//の液位が上
昇する。このような状態が継続するとヒートポンプサイ
クルの不凍液循環回路の不凍液は著しく稀釈される。
If the operation continues in this manner, the load is large, the outside temperature is low, and the humidity remains high, the liquid level in the lower water tank 6 continues to rise, and the diluted liquid enters the antifreeze tank ii through the power control valve 74I. The liquid level in the antifreeze tank // rises due to the antifreeze. If this condition continues, the antifreeze in the antifreeze circulation circuit of the heat pump cycle will be significantly diluted.

以上と逆に負荷が小さく、外気温が高く、湿度が低い状
態が続くと下部水槽6内の液位は下降が続き、ポンプノ
コを通じて不凍液槽//の不凍液は下部水槽6iこ補給
される。このような状態がくり返されると不凍液槽l/
中の不凍液中のエチレングリコールのような氷点降下剤
の量がヒートポンプサイクルの不凍液循環回路中で増大
し不凍液の濃縮が進むと共に不凍液槽l/の液位は低下
する。
Conversely, if the load is small, the outside temperature is high, and the humidity remains low, the liquid level in the lower water tank 6 continues to fall, and the antifreeze in the antifreeze tank // is replenished to the lower water tank 6i through the pump saw. If this situation is repeated, the antifreeze tank l/
The amount of a freezing point depressant such as ethylene glycol in the antifreeze increases in the antifreeze circulation circuit of the heat pump cycle, and as the concentration of the antifreeze progresses, the liquid level in the antifreeze tank 1/1 decreases.

か−る不凍液槽//の液位の上下限は液位検出器4(j
により検出され、液位制御器タタは動力制御弁3ダを限
時間としポンプノコを限時運転とする。ポンプlλの運
転により不凍液槽//から下部水槽6に不凍液は送られ
、下部水槽を中の不凍液はポンプ3により弁3コ、動力
制御弁3’lを介して不凍液槽/Iに循環すると共にヒ
ートポンプサイクルの不凍液循環回路の不凍液は弁コロ
と散布器7間の配管にてポンプ/コにより送られる不凍
液槽//の不凍液と混合されて循環する。かくしてポン
プノコが限時運転停止、動力制御弁JIIが限時閉弁す
る頃には下部水槽6を含めたヒートポンプサイクルの不
凍液循環回路の不凍液と不凍液槽/lの不凍液濃度は平
均化されて調整されヒートポンプサイクルの不凍液循環
回路の不凍液は稀釈なものが濃くなり、濃縮されたもの
が稀釈される。
The upper and lower limits of the liquid level in the antifreeze tank // are determined by the liquid level detector 4 (j
Detected by , the liquid level controller TATA sets the power control valve 3D to a time limit and sets the pump saw to a time limit operation. Antifreeze is sent from the antifreeze tank// to the lower water tank 6 by the operation of the pump lλ, and the antifreeze in the lower water tank is circulated by the pump 3 to the antifreeze tank/I via the valve 3 and the power control valve 3'l. The antifreeze in the antifreeze circulation circuit of the heat pump cycle is mixed with the antifreeze in the antifreeze tank sent by the pump in the piping between the valve roller and the sprayer 7 and circulated. In this way, when the pump saw stops operating for a limited time and the power control valve JII closes for a limited time, the antifreeze in the antifreeze circulation circuit of the heat pump cycle including the lower water tank 6 and the antifreeze concentration in the antifreeze tank/l are averaged and adjusted, and the heat pump cycle Diluted antifreeze in the antifreeze circulation circuit becomes thicker, and concentrated antifreeze is diluted.

このような状態がくり返された場合に液位が液位検出器
II3の上下限検出液位を越えて著しく上下すると不凍
液槽/lからの不凍液のオーバーフロー或は貯留量の過
小化をまねき且つ不凍液は極端に稀釈又は濃縮された状
態となる。
If such a situation is repeated and the liquid level significantly rises and falls beyond the upper and lower limits of the liquid level detected by the liquid level detector II3, the antifreeze may overflow from the antifreeze tank/l or the amount stored may become too small. Antifreeze becomes extremely diluted or concentrated.

そこで液位検出器lIJには上下限液位よりも外側のオ
ーバーフロー液位並びに空液位検出端を設けておいて、
オーバーフロー液位を示す信号lこより液位検出器lI
3は例えば加熱による不凍液濃縮装置/6を動作させて
不凍液を濃縮し、空水位を示す信号により、不図示の給
水装置を通じて弁29を介して下部水槽基に給水し、又
は不凍液槽//に給水する。
Therefore, the liquid level detector lIJ is provided with overflow liquid level and empty liquid level detection ends outside the upper and lower limit liquid levels,
Liquid level detector lI from signal l indicating overflow liquid level
3 operates, for example, an antifreeze concentration device/6 by heating to concentrate the antifreeze, and in response to a signal indicating an empty water level, water is supplied to the lower water tank base via a valve 29 through a water supply device (not shown), or to the antifreeze tank//. Supply water.

この実施例のような事態は極端な場合であり、この状態
に到る可能性は少ないがより一層濃度制御の幅が大きい
A situation like this example is an extreme case, and although the possibility of reaching this state is small, the range of concentration control is much wider.

〔発明の効果〕〔Effect of the invention〕

本願第1発明は不凍液を使用し、空気から集熱を行うヒ
ーティングタワー付きヒ・−トポンブにおいて、不凍液
槽に液位検出手段を設けて、不凍液の濃度変化を不凍液
の液位変化で検知し、不凍液の濃度を不凍液の液量によ
り制御することを特徴とするヒーティングタワー付きヒ
ートポンプとしたから、不凍液濃度を使用できる範囲に
自動的に制御でき、従来、多くかかつていた人手化よる
濃度管理が省かれ、省力化と共に不凍液を用いて集熱を
行うヒーティングタワー付きヒートポンプの実用化に大
きく寄与するものである。
The first invention of the present application is a heat pump with a heating tower that uses antifreeze and collects heat from the air, in which a liquid level detection means is provided in the antifreeze tank, and changes in the concentration of the antifreeze are detected by changes in the liquid level of the antifreeze. Since the heat pump is equipped with a heating tower and is characterized by controlling the concentration of antifreeze by the amount of antifreeze, it is possible to automatically control the concentration of antifreeze within a usable range, eliminating the need for manual concentration control, which was previously the case. This will greatly contribute to labor savings and the practical application of heat pumps with heating towers that collect heat using antifreeze.

本願第一発明は不凍液を使用し、空気から集熱を行うヒ
ーティングタワー付きヒートポンプにおいて、液位や検
出手段を備えた不凍液槽を複数個設け、該複数の不凍液
槽の内ヒートポンプの不凍液循環口゛路の系内の一つの
不凍液槽と、その他の系外の不凍液槽間に不凍液の授受
手段を備え、上記各液位検出手段の示す信号を組合せて
上記不凍液の授受手段並びに不凍液の濃縮稀釈手段を制
御する制御装置を設けたことを特徴としたヒーティング
タワー付きヒートポンプとしたから、前記第1発明の効
果に加えるに不凍液そのものの濃度制御が行ない得るの
で外気条件のより広範な範囲においてヒートポンプの運
転が可能となる。
The first invention of the present application is a heat pump with a heating tower that uses antifreeze and collects heat from the air, in which a plurality of antifreeze tanks equipped with liquid level and detection means are provided, and one of the antifreeze tanks includes an antifreeze circulation port of the heat pump. An antifreeze transfer means is provided between one antifreeze tank in the system and other antifreeze tanks outside the system, and the signals indicated by the respective liquid level detection means are combined to perform the antifreeze transfer means and the concentration/dilution of the antifreeze. Since the heat pump with a heating tower is characterized in that it is equipped with a control device for controlling the means, in addition to the effects of the first invention, the concentration of the antifreeze itself can be controlled, so that the heat pump can be used in a wider range of outside air conditions. It becomes possible to drive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は夫々本発明の実施例のフローシート、
第3図は他の実施例のフローシートである。 /・・主圧縮機 コ・・冷却水コンデンサ3−・膨張弁
 tI−・クーラ 5・轡ポンプ6・6下部水槽 ?−
―散布器 t−6冷温水槽 デ・・ポンプ llI+1
1不凍液槽 lコ・・ポンプ /J@−ブースタ圧縮機
 14I・拳温水コンデンサ l!・・膨張弁 /M@
−不凍液濃縮装置 コ/〜−デ・−弁 31〜33・・
弁 J4t・・動力制御弁 3り・・給水管4t/4・
液位検出器 弘コ・会液位制御器4tJ・・液位検出器
 4L4t・・液位制御器。
FIGS. 1 and 2 are flow sheets of embodiments of the present invention, respectively.
FIG. 3 is a flow sheet of another embodiment. /・・Main compressor ・・Cooling water condenser 3-・Expansion valve tI-・Cooler 5・Lot pump 6・6 lower water tank ? −
- Spreader t-6 cold/hot water tank de-pump llI+1
1 Antifreeze tank 1.Pump /J@-booster compressor 14I.Fist hot water condenser 1!・・Expansion valve /M@
-Antifreeze concentrator CO/~-DE-Valve 31~33...
Valve J4t... Power control valve 3ri... Water supply pipe 4t/4.
Liquid level detector Hiroko・kai Liquid level controller 4tJ...Liquid level detector 4L4t...Liquid level controller.

Claims (1)

【特許請求の範囲】 1、不凍液を使用し、空気から集熱を行うヒーティング
タワー付きヒートポンプにおいて、不凍液槽に液位検出
手段を設けて、不凍液の濃度変化を不凍液の液位変化で
検出し、不凍液の濃度を不凍液の液量により制御するこ
とを特徴とするヒーティングタワー付きヒートポンプ。 2、液位を検出すべき不凍液貯槽がヒーティングタワー
の下部水槽であることを特徴とした特許請求の範囲第1
項記載のヒーティングタワー付きヒートポンプ。 3、不凍液を使用し、空気から集熱を行うヒーティング
タワー付きヒートポンプにおいて、液位の検出手段を備
えた不凍液槽を複数個設け、該複数の不凍液槽の内ヒー
トポンプの不凍液循環回路の系内の一つの不凍液槽と、
その他の系外の不凍液槽間に不凍液の授受手段を備え、
上記各液位検出手段の示す信号を組合せて上記不凍液の
授受手段並びに不凍液の濃縮稀釈手段を制御する制御装
置を設けたことを特徴としたヒーティングタワー付きヒ
ートポンプ。
[Scope of Claims] 1. In a heat pump with a heating tower that uses antifreeze and collects heat from the air, a liquid level detection means is provided in the antifreeze tank, and changes in the concentration of the antifreeze are detected by changes in the liquid level of the antifreeze. A heat pump with a heating tower, characterized in that the concentration of antifreeze is controlled by the amount of antifreeze. 2. Claim 1, characterized in that the antifreeze storage tank whose liquid level is to be detected is a lower water tank of a heating tower.
Heat pump with heating tower as described in section. 3. In a heat pump with a heating tower that uses antifreeze and collects heat from the air, a plurality of antifreeze tanks equipped with liquid level detection means are provided, and one of the antifreeze tanks is installed in the antifreeze circulation circuit system of the heat pump. one antifreeze tank,
A means for transferring antifreeze is provided between other antifreeze tanks outside the system,
A heat pump with a heating tower, characterized in that a control device is provided for controlling the antifreeze fluid delivery/reception means and the antifreeze concentration/dilution means by combining the signals indicated by the liquid level detection means.
JP60087224A 1985-04-23 1985-04-23 Heat pump with heating tower Expired - Lifetime JPH0752048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60087224A JPH0752048B2 (en) 1985-04-23 1985-04-23 Heat pump with heating tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60087224A JPH0752048B2 (en) 1985-04-23 1985-04-23 Heat pump with heating tower

Publications (2)

Publication Number Publication Date
JPS61246562A true JPS61246562A (en) 1986-11-01
JPH0752048B2 JPH0752048B2 (en) 1995-06-05

Family

ID=13908912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60087224A Expired - Lifetime JPH0752048B2 (en) 1985-04-23 1985-04-23 Heat pump with heating tower

Country Status (1)

Country Link
JP (1) JPH0752048B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110779263A (en) * 2019-11-29 2020-02-11 中国电力工程顾问集团西北电力设计院有限公司 Double-working-medium indirect air cooling system and control method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023222A (en) * 1973-06-28 1975-03-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5023222A (en) * 1973-06-28 1975-03-12

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110779263A (en) * 2019-11-29 2020-02-11 中国电力工程顾问集团西北电力设计院有限公司 Double-working-medium indirect air cooling system and control method thereof

Also Published As

Publication number Publication date
JPH0752048B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
JP6393697B2 (en) Desiccant air conditioning method and system
JP5125116B2 (en) Refrigeration equipment
KR101727561B1 (en) Energy-saving industrial air-conditioner and the operation method
US20080016890A1 (en) Chiller system with low capacity controller and method of operating same
CN105180497A (en) Air conditioning device
CN104704302A (en) Heat pump device
KR20070111919A (en) Air conditioner using of the subterranean heat
CN102575860A (en) Air conditioning device
CN103097832B (en) Conditioner
CN106766310A (en) Refrigeration system, refrigeration control method and refrigeration control device
KR101205679B1 (en) Quick water heating apparatus in air conditioner using of the subterranean heat
JPS61246562A (en) Heat pump with heating tower
KR20220115839A (en) Electricity-saving air conditioner to reduce power consumption
CN209655614U (en) A kind of heat pump low temperature anti-freeze system
CN112066458A (en) Air conditioning unit adopting throttle valve and control method thereof
KR20090065732A (en) Hybrid heat-pump using microcontroller
JPS61246561A (en) Heat pump with heating tower
JPS61246564A (en) Method of concentrating anti-freeze for heat pump with heating tower
JP3457697B2 (en) Air conditioner
JP3457790B2 (en) Heat transport device
JPS61246563A (en) Heat pump with heating tower
KR102225184B1 (en) Heat pump system
JPS5856528Y2 (en) Refrigeration equipment
JP3492913B2 (en) Oil recovery device
JPH04353370A (en) Heat pump type refrigerating device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term