JPH05105773A - Plate-like fiber-reinforced composite molded product - Google Patents

Plate-like fiber-reinforced composite molded product

Info

Publication number
JPH05105773A
JPH05105773A JP3099896A JP9989691A JPH05105773A JP H05105773 A JPH05105773 A JP H05105773A JP 3099896 A JP3099896 A JP 3099896A JP 9989691 A JP9989691 A JP 9989691A JP H05105773 A JPH05105773 A JP H05105773A
Authority
JP
Japan
Prior art keywords
fiber
molded product
resin
torsional
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3099896A
Other languages
Japanese (ja)
Inventor
Hideyuki Ono
秀幸 大野
Hiroshi Onoda
央 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP3099896A priority Critical patent/JPH05105773A/en
Publication of JPH05105773A publication Critical patent/JPH05105773A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To provide the subject molded product achieved in both the improvement of the torsional physical property and in the light weight of the product and permitting the freedom of designs by arranging reinforcing fibers containing specific highly strong and highly elastic carbon fibers at a constant angle to the axis of a torsional deformation. CONSTITUTION:Reinforcing fibers containing carbon fibers having a tensile strength of 330kg/mm<2> and a tensile elastic modulus of 35X10<3>kg/mm<2> are arranged at an angle of 30-60 degree to the axis of torsional deformation to provide a plate-like fiber-reinforced composite molded product suitable for ski board structure members requiring light weights and high torsional physical properties.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軽量かつ高いねじり物
性を必要とする、例えばスキー板構造部材等の板状繊維
強化複合材成形物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plate-shaped fiber reinforced composite material molded product, such as a ski structural member, which requires light weight and high torsional physical properties.

【0002】[0002]

【従来の技術】繊維強化複合材料の一種として、繊維強
化された表面層と芯材からなるサンドイッチ板は、単
板、ハイブリッド板とともに航空・宇宙分野、スポーツ
分野等に広く用いられている。
2. Description of the Related Art As one type of fiber-reinforced composite material, a sandwich plate composed of a fiber-reinforced surface layer and a core material is widely used in the fields of aerospace and sports, as well as a single plate and a hybrid plate.

【0003】例えばサンドイッチ板のなかでも、特に軽
量な芯材を用いたサンドイッチ板においては、曲げ変形
における比強度、比剛性の高い材料として期待がもたれ
ているものの、ねじり物性が実用上充分でなく、問題と
なっている。
For example, among sandwich plates, a sandwich plate using a particularly lightweight core material is expected as a material having high specific strength and specific rigidity in bending deformation, but its twisting physical properties are not practically sufficient. , Has been a problem.

【0004】すなわち軽量な芯材は一般にせん断弾性率
が低いため、かかる芯材を用いたサンドイッチ板では、
ねじりのみならず曲げ等の変形が、芯材の影響を大きく
受け、諸物性が劣ったものとなることは避けられない。
That is, since a lightweight core material generally has a low shear modulus, a sandwich plate using such a core material is
It is unavoidable that not only twisting but also deformation such as bending will be greatly affected by the core material, resulting in poor physical properties.

【0005】この場合、諸物性をある程度まで高めるた
めに、芯材の厚みを増すことが一般的に行われている。
しかしながら、芯材の厚みを増すと、繊維強化複合材料
の特徴である設計の自由度が制約され、かつ重量が増加
することは避けられない。
In this case, the thickness of the core material is generally increased in order to improve various physical properties to some extent.
However, when the thickness of the core material is increased, it is inevitable that the design freedom, which is a characteristic of the fiber-reinforced composite material, is restricted and the weight is increased.

【0006】加えて、さらなる諸物性の向上をめざした
場合、従来の表面層に用いていた繊維強化複合材料の物
性には限界があるために、芯材の厚みを大幅に増して
も、該サンドイッチ板の物性が、表面層の物性の限界に
より制限されてしまう。
In addition, in the case of further improving various physical properties, the physical properties of the fiber-reinforced composite material used in the conventional surface layer are limited. The physical properties of the sandwich plate are limited by the physical properties of the surface layer.

【0007】したがってサンドイッチ板の物性を実用レ
ベルに高めるために、表面層の物性を高めねばならず、
表面層の厚みを増すこととなり、結果としてサンドイッ
チ板の重量が大幅に増加してしまうという問題がある。
Therefore, in order to improve the physical properties of the sandwich plate to a practical level, the physical properties of the surface layer must be improved,
There is a problem that the thickness of the surface layer is increased, and as a result, the weight of the sandwich plate is significantly increased.

【0008】これらのことから、軽量な芯材を用いたサ
ンドイッチ板においては、ねじり物性の向上と、軽量化
を含めた設計の自由度との両立は難しい問題であった。
From the above, it has been a difficult problem in the sandwich plate using the lightweight core material to improve both the torsional physical properties and the degree of freedom in design including weight saving.

【0009】例えば、スキー板の場合、滑走時の安定性
および振動減衰性等を向上させることを目的とした高い
ねじり物性や、滑走時の操作性の向上を目的とした軽量
化、および生産性向上を目的とした設計の自由度の大き
さおよび容易な製造方法が要望されていた。従来より、
この様なねじり強度またはねじり剛性の向上あるいは軽
量化あるいは生産性の向上を目的としたスキー板が設計
あるいは作製されている[例えば、特開昭52−234
34、特開昭55−70275、特開昭56−117
6、特開昭56−11077、特開昭56−1107
8、特開昭57−140149、特開昭59−2144
70、特開昭59−57680、特開昭60−7258
1、特開昭62−16777、特開平2−13615
0]。
[0009] For example, in the case of a ski, high torsional physical properties for the purpose of improving stability and vibration damping at the time of skiing, weight reduction for the purpose of improving operability at the time of skiing, and productivity. There has been a demand for a large degree of freedom in design and an easy manufacturing method for the purpose of improvement. Traditionally,
Such skis have been designed or manufactured for the purpose of improving the torsional strength or torsional rigidity, reducing the weight, or improving the productivity [eg, JP-A-52-234].
34, JP-A-55-70275, JP-A-56-117.
6, JP-A-56-11077, JP-A-56-1107
8, JP-A-57-140149, JP-A-59-2144
70, JP-A-59-57680, JP-A-60-7258.
1, JP-A-62-16777, JP-A-2-13615
0].

【0010】しかしながら、かかる提案においては、上
記要望の一部は満足してもその多くないし全部は満足し
得ないのが実状であった。
However, in such a proposal, it is the actual situation that some or all of the above requests cannot be satisfied even if some of them are satisfied.

【0011】一例として特開平2−136150には、
ねじり弾性を向上させたスキー板について開示されてい
る。ここでは、PAN系の炭素繊維をバイアクロス、す
なわち一方向引き揃え樹脂マトリックス複合材料の層
を、目的とするスキー板の長手方向に対して±45°方
向に配列して積層した表面層を設けるか、もしくは繊維
強化プラスチックス材料を芯材に巻き付けたトルクボッ
クス構造にするか、またはサンドイッチ板にする構造が
提案されている。
As an example, Japanese Patent Laid-Open No. 2-136150 discloses
A ski having improved torsional elasticity is disclosed. Here, a surface layer is provided in which PAN-based carbon fibers are via-crossed, that is, a layer of a unidirectionally aligned resin matrix composite material is arranged in a ± 45 ° direction with respect to the longitudinal direction of the intended ski, and laminated. Alternatively, a torque box structure in which a fiber-reinforced plastic material is wound around a core material, or a sandwich plate structure has been proposed.

【0012】しかしながら実際のところ、PNA系炭素
繊維等の低弾性な強化繊維を用いて、構造的な工夫だけ
で所要のねじり剛性を得るためには、複雑かつ多層の積
層構造もしくはトルクボックス構造を要し、また成形物
全体の厚みが大きくなり、設計の自由度が大幅に限定さ
れてしまうという問題がある。とくにスキー板の場合、
ねじり剛性のほかにも適切な曲げ剛性や重量、使い勝手
のよい厚さなど、別の要素も重要となり、ねじり剛性の
確保と同時に設計の自由度の確保も必要となっている。
However, in practice, in order to obtain the required torsional rigidity only by structurally devising a low elastic reinforcing fiber such as PNA type carbon fiber, a complicated and multi-layered laminated structure or torque box structure is used. In addition, there is a problem that the thickness of the entire molded product becomes large and the degree of freedom in design is significantly limited. Especially for skis,
In addition to torsional rigidity, other factors such as appropriate bending rigidity, weight, and convenient thickness are also important, and it is necessary to secure torsional rigidity as well as design flexibility.

【0013】[0013]

【発明が解決しようとする課題】本発明者らは、上記問
題点を解決すべく鋭意研究を重ねた結果、強化繊維の一
部に特定の高強度高弾性炭素繊維を用いると、諸物性に
優れた繊維強化複合材料を得ることができ、これを用い
た繊維強化複合材成形物は設計の自由度が大きく、簡単
な構造にて高いねじれ剛性を発揮し、かつ製造工程が簡
略化できることを見いだし、本発明に至った。
DISCLOSURE OF THE INVENTION As a result of intensive studies to solve the above problems, the present inventors have found that when a specific high-strength and high-elasticity carbon fiber is used as a part of the reinforcing fiber, various physical properties are improved. It is possible to obtain an excellent fiber-reinforced composite material, and a fiber-reinforced composite material molded product using this has a high degree of freedom in design, exhibits high torsional rigidity with a simple structure, and simplifies the manufacturing process. The inventors have found the present invention and have reached the present invention.

【0014】[0014]

【課題を解決するための手段】すなわち本発明は、少な
くとも成形物のねじり変形の軸に対して30゜以上60
゜以下の角度に配向した強化繊維を有し、かつ該強化繊
維の少なくとも一部が引張強度330kg/mm以上
かつ引張弾性率35×10kg/mm以上の炭素繊
維であることを特徴とする板状繊維強化複合材料成形物
に関する。
That is, according to the present invention, at least 30 ° or more with respect to the axis of torsional deformation of a molded article.
Characterized in that it has reinforcing fibers oriented at an angle of ≤ °, and at least a part of the reinforcing fibers is a carbon fiber having a tensile strength of 330 kg / mm 2 or more and a tensile elastic modulus of 35 × 10 3 kg / mm 2 or more. And a plate-shaped fiber-reinforced composite material molded article.

【0015】本発明の板状繊維強化複合材成形物に使用
される強化繊維としては、引張強度が通常220〜55
0kg/mm、好ましくは250〜480kg/mm
を有し、かつ引張弾性率が通常7.7×10〜80
×10kg/mm、好ましくは40〜75×10
kg/mmを有する繊維であって、例えば炭素繊維、
アラミド繊維、ガラス繊維、シリカ繊維等が挙げられ
る。
The reinforcing fibers used in the plate-shaped fiber-reinforced composite material molded product of the present invention have a tensile strength of usually 220 to 55.
0 kg / mm 2 , preferably 250 to 480 kg / mm
2 and the tensile modulus is usually 7.7 × 10 3 to 80
× 10 3 kg / mm 2 , preferably 40 to 75 × 10 3.
fibers having kg / mm 2 , eg carbon fibers,
Examples include aramid fiber, glass fiber and silica fiber.

【0016】そして該強化繊維の少なくとも一部、通常
50〜100vol%、好ましくは60〜100vol
%に、引張強度が330kg/mm以上550kg/
mm以下、好ましくは360kg/mm以上480
kg/mm以下であり、かつ引張弾性率が35×10
kg/mm以上85×10kg/mm以下、好
ましくは40×10kg/mm以上75×10
g/mm以下の炭素繊維が用いられる。上記引張強度
および上記引張弾性率を満たす炭素繊維であれば特に種
類は限定されず、例えばピッチ系炭素繊維、ポリアクリ
ロニトリル系あるいはレーヨン系等の種々の炭素繊維を
用いることができるが、特にピッチ系炭素繊維、そのな
かでも光学異方性ピッチから製造したピッチ系炭素繊維
が最も好ましい。
And, at least a part of the reinforcing fiber, usually 50 to 100 vol%, preferably 60 to 100 vol.
%, The tensile strength is 330 kg / mm 2 or more and 550 kg /
mm 2 or less, preferably 360 kg / mm 2 or more and 480
kg / mm 2 or less and tensile elastic modulus of 35 × 10
3 kg / mm 2 or more and 85 × 10 3 kg / mm 2 or less, preferably 40 × 10 3 kg / mm 2 or more and 75 × 10 3 k
Carbon fibers of g / mm 2 or less are used. The type is not particularly limited as long as it is a carbon fiber satisfying the above tensile strength and the above tensile elastic modulus, and various carbon fibers such as pitch-based carbon fiber, polyacrylonitrile-based or rayon-based can be used, but particularly pitch-based carbon fiber can be used. Most preferred are carbon fibers, among which pitch-based carbon fibers produced from optically anisotropic pitch.

【0017】該ピッチ系炭素繊維を製造する方法として
は、例えば軟化点100〜400℃、好ましくは150
〜350℃を有する石炭系あるいは石油系のピッチのう
ち、光学的に等方性なピッチあるいは異方性のピッチ、
特に好ましくは光学異方性相の含有量が60〜100v
ol%である光学異方性ピッチを用い、まず上記ピッチ
を公知の方法で溶融紡糸してピッチ繊維とした後、酸化
性ガス雰囲気下、通常50〜400℃、好ましくは10
0〜350℃で不融化処理を行い、次いで不活性ガス雰
囲気下、通常800〜3,000℃で炭化処理を行い炭
素繊維とする方法が好ましい。該酸化性ガスとしては例
えば空気、酸素、酸化窒素、酸化イオウ、ハロゲンある
いはこれらの混合物が挙げられる。また該不活性ガスと
しては例えばAr,He,Xe,Rn,Nガス等が挙
げられる。
As a method for producing the pitch-based carbon fiber, for example, the softening point is 100 to 400 ° C., preferably 150.
An optically isotropic pitch or an anisotropic pitch among coal-based or petroleum-based pitches having a temperature of up to 350 ° C.,
Particularly preferably, the content of the optically anisotropic phase is 60 to 100 v.
Using an optically anisotropic pitch of ol%, the above pitch is first melt-spun by a known method to give pitch fibers, and then in an oxidizing gas atmosphere, usually 50 to 400 ° C., preferably 10
A method is preferred in which the infusibilizing treatment is performed at 0 to 350 ° C., and then the carbonizing treatment is usually performed at 800 to 3,000 ° C. in an inert gas atmosphere to obtain carbon fibers. Examples of the oxidizing gas include air, oxygen, nitric oxide, sulfur oxide, halogen, or a mixture thereof. Examples of the inert gas include Ar, He, Xe, Rn, N 2 gas and the like.

【0018】該強化繊維に引張強度が330kg/mm
以上の炭素繊維を全く含有しない場合、ねじり剛性が
大幅に悪化するので好ましくない。
The reinforcing fiber has a tensile strength of 330 kg / mm.
Not containing two or more carbon fibers at all is not preferable because the torsional rigidity is significantly deteriorated.

【0019】該強化繊維は通常100〜25,000
本、好ましくは200〜12,000本の繊維束とさ
れ、さらに通常一方向積層物、二次元織物、三次元織
物、組み紐状組織あるいは該織物や組織を積層した状態
で用いられるが、特に二軸配向状態となることが望まし
い。例えば目的とする成形物に対称性をもたせる場合に
は、二軸配向状態であることが望ましい。また強化繊維
を織物もしくは組み紐状組織にしたものを用いると、作
業性を大幅に向上させることができ、かつ充分な性能の
ものを得ることができるために、非常に好ましい。
The reinforcing fiber is usually 100 to 25,000.
The number of fibers is preferably 200 to 12,000, and is usually used as a unidirectional laminate, a two-dimensional woven fabric, a three-dimensional woven fabric, a braided structure, or a state in which the woven fabric or the structure is laminated, It is desirable to be in an axially oriented state. For example, in order to impart symmetry to the target molded product, it is desirable that the molded product be in a biaxial orientation state. Further, it is very preferable to use a woven fiber or a braided structure as the reinforcing fiber, because the workability can be greatly improved and a sufficient performance can be obtained.

【0020】本発明の板状繊維強化複合材成形物は、少
なくとも強化繊維の一部に、繊維の方向が成形物のねじ
り変形の軸に対して30゜以上60゜以下、好ましくは
35゜以上55゜以下、さらに好ましくは40゜以上4
5°以下の方向であるものを有する。その割合は、目的
により適宜選択できるが、通常強化繊維の60〜100
vol%、特に70〜100vol%程度が望ましい。
上記角度の強化繊維の割合が小さいと、該強化繊維の補
強効果が充分でなく、ねじり諸物性が低下する。
In the plate-shaped fiber-reinforced composite material molded product of the present invention, at least a part of the reinforcing fiber has a fiber direction of 30 ° or more and 60 ° or less, preferably 35 ° or more with respect to the axis of torsional deformation of the molded product. 55 ° or less, more preferably 40 ° or more 4
Some have a direction of 5 ° or less. The ratio can be appropriately selected depending on the purpose, but usually 60 to 100 of the reinforcing fiber
Vol%, especially about 70 to 100 vol% is desirable.
When the ratio of the reinforcing fibers having the above-mentioned angle is small, the reinforcing effect of the reinforcing fibers is insufficient, and the twisting physical properties are deteriorated.

【0021】該強化繊維に含浸される樹脂としては、通
常熱硬化性樹脂が用いられ、例えば不飽和ポリエステル
樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール
樹脂、フラン樹脂、ポリイミド樹脂等およびこれらを含
有する樹脂、およびこれらの混合物などが挙げられる。
これらの中でも特に硬化温度が通常100℃以下、好ま
しくは90℃以下、最も好ましくは80℃以下である樹
脂を用いると、芯材との接着と硬化を同時に兼ねて行う
場合の芯材の材質の選択範囲が広がり、芯材にTgの比
較的低いものを用いることができるので、非常に望まし
い。このような樹脂としては、例えば上記熱硬化性樹脂
に、硬化剤として例えばイミダゾール系硬化剤、イソシ
アネート系硬化剤等を含有させた樹脂などが挙げられ
る。
As the resin with which the reinforcing fibers are impregnated, a thermosetting resin is usually used, and examples thereof include unsaturated polyester resin, vinyl ester resin, epoxy resin, phenol resin, furan resin, polyimide resin and the like. Resins, mixtures thereof, and the like.
Among these, when a resin having a curing temperature of usually 100 ° C. or lower, preferably 90 ° C. or lower, and most preferably 80 ° C. or lower is used, the material of the core material in the case of simultaneously performing adhesion and curing with the core material It is very desirable because the selection range is widened and a core material having a relatively low Tg can be used. Examples of such a resin include a resin obtained by adding the above thermosetting resin with a curing agent such as an imidazole curing agent and an isocyanate curing agent.

【0022】強化繊維に上記樹脂を含浸する方法は特に
限定されず、例えば樹脂槽中に強化繊維を導入する方
法、強化繊維にハケで樹脂を塗って含浸させるハンドレ
イアップ法、プルトルージョン法、レジンインジェクシ
ョン法、その他の公知の方法で行うことができる。
The method of impregnating the above-mentioned resin into the reinforcing fibers is not particularly limited, and examples thereof include a method of introducing the reinforcing fibers into a resin tank, a hand lay-up method in which the reinforcing fibers are coated with a resin by a brush, and a impregnation method. It can be performed by a resin injection method or other known methods.

【0023】該強化繊維と該樹脂の割合は、成形物の用
途等により適宜選択されるが、含浸物中の繊維含有率は
通常30〜75vol%、特に40〜65vol%程度
が望ましい。
The ratio of the reinforcing fiber to the resin is appropriately selected depending on the intended use of the molded product, etc., but the fiber content in the impregnated product is usually 30 to 75 vol%, preferably about 40 to 65 vol%.

【0024】上記強化繊維に樹脂を含浸したものを成形
物とする方法としては適宜公知の方法が用いられる。芯
材等と接着する場合には、芯材に用いる材料に適した方
法が選択できる。
As a method of forming a molded product by impregnating the above-mentioned reinforcing fibers with a resin, a known method is appropriately used. When adhering to a core material or the like, a method suitable for the material used for the core material can be selected.

【0025】強化繊維に樹脂を含浸したものを成形物と
する方法としては例えば、まず強化繊維に樹脂を含浸さ
せ、次いで樹脂を冷却・半硬化させた中間体を製造し、
さらに該中間体を成形・積層し、中間体の硬化と同時に
成形・接着する、いわゆるプリプレグを使用する方法、
強化繊維を型の上に置き、ハケおよびローラーにより樹
脂を含浸させ、さらに強化繊維を置き、樹脂を含浸する
工程を繰り返して積層するハンドレイアップ法、強化繊
維に樹脂をスプレーおよびローラーで含浸させるスプレ
ーアップ法、プリプレグシートを所定の配向角になるよ
うに型に積層し、オートクレーブ中で真空バックまたは
加圧バックで成形しつつ硬化する方法、強化繊維を型の
中に置き、型を閉じた後に樹脂を型の中に低圧で射出す
ることにより、含浸と成形を同時に行う方法、プルトル
ージョン法、フィラメントワインディング法などが挙げ
られる。
As a method of forming a molded product by impregnating reinforcing fibers with a resin, for example, the reinforcing fibers are first impregnated with the resin, and then the resin is cooled and semi-cured to produce an intermediate,
Further, a method using a so-called prepreg, in which the intermediate is molded and laminated, and the intermediate is cured and molded and bonded at the same time,
Place the reinforcing fiber on the mold, impregnate the resin with a brush and a roller, place the reinforcing fiber and repeat the step of impregnating the resin with a hand lay-up method, impregnating the reinforcing fiber with the resin by spraying and roller. Spray-up method, prepreg sheet is laminated in a mold so that it has a predetermined orientation angle, and is cured by molding in an autoclave with a vacuum bag or a pressure bag. The reinforcing fiber is placed in the mold and the mold is closed. Examples of the method include a method of simultaneously injecting and molding by injecting a resin into a mold at a low pressure later, a pull-through method, a filament winding method, and the like.

【0026】かくして得られた本発明の板状繊維強化複
合材料成形物は単独で用いるだけでなく、例えば芯材等
の他の材料と接着して用いることもできる。該芯材は特
に限定されず、樹脂系材料としては例えば塩化ビニル、
ポリウレタン、ABS、エポキシ樹脂、フェノール樹
脂、スチレン等の各種樹脂の発泡体および該発泡体に補
強材として繊維材料の短繊維やマイクロバルーンを内包
させたもの、更にはアルミハニカム、アラミドハニカム
等のハニカム構造体等、バルサ、サワグルミ等の極軽量
芯材等を用いることができる。
The thus-obtained plate-shaped fiber-reinforced composite material molded article of the present invention can be used not only alone, but also by being bonded to another material such as a core material. The core material is not particularly limited, and examples of the resin material include vinyl chloride,
Foams of various resins such as polyurethane, ABS, epoxy resin, phenolic resin, styrene, and the like, in which the short fibers of the fiber material and microballoons are included as a reinforcing material in the foams, and further, honeycombs such as aluminum honeycombs and aramid honeycombs It is possible to use an extremely lightweight core material such as a structure, balsa, and walnut.

【0027】このように芯材等の他の材料と接着して用
いる場合には、まず他の材料と上記中間体または中間体
積層物を積層し、中間体の硬化と同時に該接着を行うこ
とが望ましい。
When used by adhering to another material such as the core material as described above, first, another material and the above-mentioned intermediate or intermediate laminate are laminated, and the adhesion is performed simultaneously with curing of the intermediate. Is desirable.

【0028】ここで軽量な芯材を用いる場合、該芯材と
本発明の板状繊維強化複合材料成形物の接着に際して
は、接着剤を併用することが望ましい。該接着剤として
は例えばエポキシ系樹脂、フェノール系樹脂、ウレタン
系樹脂、シリコン系樹脂、ニトリル系樹脂、チオール系
樹脂等、好ましくはエポキシ系樹脂、フェノール系樹脂
等が挙げられ、特に使用する芯材と比較して少なくとも
必要十分なせん断強度、通常1kg/mm以上のせん
断強度を有するものであることが望ましく、加えて、薄
いフィルム状接着剤、例えば厚さ0.2mm程度の該接
着剤を用いることは、生産性の向上に有効な手段であ
る。
When a lightweight core material is used, it is desirable to use an adhesive agent when the core material and the plate-shaped fiber-reinforced composite material molding of the present invention are bonded. Examples of the adhesive include epoxy resin, phenol resin, urethane resin, silicon resin, nitrile resin, thiol resin, etc., preferably epoxy resin, phenol resin, etc. It is desirable that it has at least a necessary and sufficient shear strength, usually a shear strength of 1 kg / mm 2 or more, in addition to a thin film adhesive, for example, an adhesive having a thickness of about 0.2 mm. Using is an effective means for improving productivity.

【0029】[0029]

【実施例】以下に実施例を挙げ、本発明を具体的に説明
するが、本発明はこれに限定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto.

【0030】(実施例1)強化繊維として引張強度36
0kg/mm、引張弾性率が41×10kg/mm
の炭素繊維の2,000本束の2次元織物に、熱硬化
性樹脂としてビスフェノールA型エポキシ樹脂、イミダ
ゾール系硬化剤、充填剤を所定量加えた樹脂配合物を調
製し、さらに、強化繊維に上記樹脂配合物を含浸させ、
プリプレグを得た。
Example 1 Tensile strength of 36 as reinforcing fiber
0 kg / mm 2 , tensile elastic modulus 41 × 10 3 kg / mm
A two-dimensional fabric of 2,000 bundles of 2 carbon fiber, bisphenol A type epoxy resin as a thermosetting resin, imidazole curing agent, the predetermined amount added resin blend filler was prepared and further, reinforcing fibers Impregnated with the above resin mixture,
I got a prepreg.

【0031】次に硬質塩化ビニル発泡体の芯材の上下両
面に、強化繊維の方向がねじり変形の軸に対して45°
の角度になるように上記プリプレグを上下1層づつ積層
した。
Next, on the upper and lower surfaces of the core material of the rigid vinyl chloride foam, the direction of the reinforcing fibers was 45 ° with respect to the axis of torsional deformation.
The above prepregs were laminated one by one on the upper and lower sides so as to form an angle of.

【0032】これを温度90℃、圧力0.5kg/cm
、1時間の条件でオートクレーブ成形することによ
り、表面層の硬化および表面層と芯材との接着を同時に
行い、目的の板状繊維強化複合材成形物を得た。得られ
た成形物の大きさはねじり変形の軸方向が40cm、軸
と垂直方向が7cm、厚さ方向が0.6cmであった。
The temperature is 90 ° C. and the pressure is 0.5 kg / cm.
3. By subjecting to autoclave molding under the condition of 1 hour, the surface layer was cured and the surface layer and the core material were adhered at the same time to obtain a target plate-shaped fiber-reinforced composite material molded product. The size of the obtained molded product was 40 cm in the axial direction of torsional deformation, 7 cm in the direction perpendicular to the axis, and 0.6 cm in the thickness direction.

【0033】得られた成形物の両端をそれぞれ治具では
さみ、一端を固定し、他端にねじりトルクをかけて、ト
ルクとねじれ角の関係からねじり剛性を測定し、表1に
示した。
Both ends of the obtained molded product were clamped by jigs, one end was fixed, and a torsional torque was applied to the other end, and the torsional rigidity was measured from the relationship between the torque and the torsion angle.

【0034】(実施例2)実施例1において、強化繊維
に引張強度が400kg/mm、引張弾性率が50.
0×10kg/mmの炭素繊維を用い、実施例1と
同一寸法の成形物を得た。得られた成形物のねじり物性
を実施例1と同様にして測定し、表1に示した。
Example 2 In Example 1, the reinforcing fiber had a tensile strength of 400 kg / mm 2 and a tensile elastic modulus of 50.
A molded product having the same dimensions as in Example 1 was obtained using 0 × 10 3 kg / mm 2 of carbon fiber. The torsional physical properties of the obtained molded product were measured in the same manner as in Example 1 and shown in Table 1.

【0035】(実施例3)実施例1において、強化繊維
に引張強度が400kg/mm、引張弾性率が41.
0×10kg/mmの炭素繊維を用い、実施例1と
同一寸法の成形物を得た。得られた成形物のねじり物性
を実施例1と同様にして測定し、表1に示した。
Example 3 In Example 1, the reinforcing fiber had a tensile strength of 400 kg / mm 2 and a tensile elastic modulus of 41.
A molded product having the same dimensions as in Example 1 was obtained using 0 × 10 3 kg / mm 2 of carbon fiber. The torsional physical properties of the obtained molded product were measured in the same manner as in Example 1 and shown in Table 1.

【0036】(実施例4)実施例1において、強化繊維
に引張強度が400kg/mm、引張弾性率が41×
10kg/mmの炭素繊維と、引張強度が282k
g/mm、引張弾性率が13.4×10kg/mm
のアラミド繊維を、繊維体積比率3対1で混織した織
物組織を用い、実施例1と同一寸法の成形物を得た。得
られた成形物のねじり物性を実施例1と同様にして測定
し、表1に示した。
Example 4 In Example 1, the reinforcing fiber has a tensile strength of 400 kg / mm 2 and a tensile elastic modulus of 41 ×.
Carbon fiber of 10 3 kg / mm 2 and tensile strength of 282k
g / mm 2 , tensile modulus of 13.4 × 10 3 kg / mm
A molded article having the same size as in Example 1 was obtained by using a woven fabric structure in which 2 aramid fibers were mixed and woven at a fiber volume ratio of 3: 1. The torsional physical properties of the obtained molded product were measured in the same manner as in Example 1 and shown in Table 1.

【0037】(比較例1)実施例1において、強化繊維
に引張強度が250kg/mm、引張弾性率が7.7
×10kg/mmのガラス繊維を用い、実施例1と
同一寸法の成形物を得た。得られた成形物のねじり物性
を実施例1と同様にして測定し、表1に示した。
(Comparative Example 1) In Example 1, the reinforcing fiber has a tensile strength of 250 kg / mm 2 , and a tensile elastic modulus of 7.7.
A molded product having the same dimensions as in Example 1 was obtained by using × 10 3 kg / mm 2 of glass fiber. The torsional physical properties of the obtained molded product were measured in the same manner as in Example 1 and shown in Table 1.

【0038】(比較例2)実施例1において、強化繊維
に引張強度が360kg/mm、引張弾性率が23.
5×10kg/mmの炭素繊維の一方向プリプレグ
を用い、実施例1と同一寸法の成形物を得た。得られた
成形物のねじり物性を実施例1と同様にして測定し、表
1に示した。
(Comparative Example 2) In Example 1, the reinforcing fiber had a tensile strength of 360 kg / mm 2 , and a tensile elastic modulus of 23.
Using a unidirectional prepreg of carbon fiber of 5 × 10 3 kg / mm 2 , a molded product having the same dimensions as in Example 1 was obtained. The torsional physical properties of the obtained molded product were measured in the same manner as in Example 1 and shown in Table 1.

【0039】[0039]

【表1】 [Table 1]

【0040】表1により、強化繊維に引張強度が360
kg/mm、引張弾性率が70.0×10kg/m
の炭素繊維を用いた実施例1のねじり剛性は、強化
繊維にガラス繊維のみを用いた比較例1の約4.4倍、
強化繊維に低弾性の炭素繊維のみを用いた比較例2の約
2.2倍を示している。また強化繊維の75%に引張強
度400kg/mm、引張弾性率が41.0×10
kg/mmの炭素繊維を含有する実施例4のねじり剛
性は、強化繊維にガラス繊維のみを用いた比較例1の約
2.9倍、強化繊維に低弾性の炭素繊維のみを用いる比
較例2の約1.4倍を示している。
According to Table 1, the reinforcing fiber has a tensile strength of 360.
kg / mm 2 , tensile elastic modulus 70.0 × 10 3 kg / m
The torsional rigidity of Example 1 using m 2 of carbon fiber was about 4.4 times that of Comparative Example 1 using only glass fiber as the reinforcing fiber,
This shows about 2.2 times that of Comparative Example 2 in which only low elasticity carbon fibers were used as the reinforcing fibers. Further, the tensile strength is 400 kg / mm 2 , and the tensile elastic modulus is 41.0 × 10 3 in 75% of the reinforcing fibers.
The torsional rigidity of Example 4 containing kg / mm 2 of carbon fiber was about 2.9 times that of Comparative Example 1 using only glass fiber as the reinforcing fiber, and Comparative Example using only low elastic carbon fiber as the reinforcing fiber. 2 is about 1.4 times.

【0041】[0041]

【発明の効果】上記の実施例で記述したように、本発明
は、高弾性かつ高強度なる炭素繊維を強化繊維の一部に
用いることにより、板状繊維強化複合材成形物の高ねじ
り物性発現を実現し、更にかかる優れた強化効果が故
に、少量でその効果が容易に発現されるために、軽量化
を容易で、簡単な構造を採用することができ、かつ製造
工程簡略化が可能で、該板状繊維強化複合材成形物の生
産性向上にも効果を発揮するものである。また本発明に
よれば板状繊維強化複合材成形を厚くすることなく高ね
じり物性を実現できるために、成形物の設計上の自由度
が大きい。
INDUSTRIAL APPLICABILITY As described in the above examples, according to the present invention, by using carbon fiber having high elasticity and high strength as a part of the reinforcing fiber, the twisting property of the plate-shaped fiber reinforced composite material molded article is improved. It realizes the expression, and because of such excellent strengthening effect, the effect is easily expressed even in a small amount, so it is easy to reduce the weight, a simple structure can be adopted, and the manufacturing process can be simplified. Thus, it is also effective in improving the productivity of the plate-shaped fiber-reinforced composite material molded product. Further, according to the present invention, since a high twist physical property can be realized without increasing the thickness of the plate-shaped fiber reinforced composite material molding, the degree of freedom in designing the molded product is large.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも成形物のねじり変形の軸に対
して30゜以上60゜以下の角度に配向した強化繊維を
有し、かつ該強化繊維の少なくとも一部が引張強度33
0kg/mm以上かつ引張弾性率35×10kg/
mm以上の炭素繊維であることを特徴とする板状繊維
強化複合材料成形物。
1. A reinforcing fiber oriented at an angle of 30 ° or more and 60 ° or less with respect to an axis of torsional deformation of a molded article, and at least a part of the reinforcing fiber has a tensile strength 33.
0 kg / mm 2 or more and tensile elastic modulus 35 × 10 3 kg /
A plate-shaped fiber-reinforced composite material molded product, which is a carbon fiber having a size of mm 2 or more.
JP3099896A 1991-02-04 1991-02-04 Plate-like fiber-reinforced composite molded product Pending JPH05105773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3099896A JPH05105773A (en) 1991-02-04 1991-02-04 Plate-like fiber-reinforced composite molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3099896A JPH05105773A (en) 1991-02-04 1991-02-04 Plate-like fiber-reinforced composite molded product

Publications (1)

Publication Number Publication Date
JPH05105773A true JPH05105773A (en) 1993-04-27

Family

ID=14259538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3099896A Pending JPH05105773A (en) 1991-02-04 1991-02-04 Plate-like fiber-reinforced composite molded product

Country Status (1)

Country Link
JP (1) JPH05105773A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762111A (en) * 1993-08-23 1995-03-07 Toray Ind Inc Heat-resistant composite material
US6105991A (en) * 1997-11-20 2000-08-22 The Burton Corporation Core for a gliding board
US6502850B1 (en) 1999-10-12 2003-01-07 The Burton Corporation Core for a gliding board
JP2013256119A (en) * 2012-06-08 2013-12-26 Boeing Co:The Optimized cross-ply orientation in composite laminate
JP2014084356A (en) * 2012-10-22 2014-05-12 Toho Tenax Co Ltd Prepreg
JP2021116330A (en) * 2020-01-23 2021-08-10 ジャパンコンポジット株式会社 Molding material and molded article
CN114929789A (en) * 2020-03-11 2022-08-19 三菱化学株式会社 CFRP structure, method for producing CFRP structure, carbon fiber prepreg, and method for producing carbon fiber prepreg

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762111A (en) * 1993-08-23 1995-03-07 Toray Ind Inc Heat-resistant composite material
US6105991A (en) * 1997-11-20 2000-08-22 The Burton Corporation Core for a gliding board
US6520530B1 (en) 1997-11-20 2003-02-18 The Burton Corporation Core for a gliding board
US6502850B1 (en) 1999-10-12 2003-01-07 The Burton Corporation Core for a gliding board
JP2013256119A (en) * 2012-06-08 2013-12-26 Boeing Co:The Optimized cross-ply orientation in composite laminate
JP2014084356A (en) * 2012-10-22 2014-05-12 Toho Tenax Co Ltd Prepreg
JP2021116330A (en) * 2020-01-23 2021-08-10 ジャパンコンポジット株式会社 Molding material and molded article
CN114929789A (en) * 2020-03-11 2022-08-19 三菱化学株式会社 CFRP structure, method for producing CFRP structure, carbon fiber prepreg, and method for producing carbon fiber prepreg
EP4119602A4 (en) * 2020-03-11 2023-08-16 Mitsubishi Chemical Corporation Cfrp structural body, method for producing cfrp structural body, carbon fiber prepreg, and method for producing carbon fiber prepreg

Similar Documents

Publication Publication Date Title
JP2006213059A (en) Method for manufacturing frp composite
KR960000558B1 (en) Oriented prepreg and carbon fiber reinforced composite
JP2003201388A (en) Epoxy resin composition, resin cured product, prepreg and fiber reinforced composite
US5116668A (en) Hybrid yarn, unidirectional hybrid prepreg and laminated material thereof
JPH05105773A (en) Plate-like fiber-reinforced composite molded product
JP4107475B2 (en) Reinforcing fibers for fiber reinforced composites
JP2002327374A (en) Carbon fiber for fiber reinforced plastic and fiber reinforced plastic
JP2000355630A (en) Member made from fiber-reinforced plastic
KR101884606B1 (en) Epoxy resin composition for fiber reinforced composite with high impact resistance and high strength
JP2850165B2 (en) Pitch based carbon fiber reinforced composite molding
JPH025979A (en) Golf club
JPH0339821B2 (en)
KR102461792B1 (en) Tow prepreg having high impact strength for the filament winding
JP2566705B2 (en) Unidirectional prepreg, carbon fiber reinforced resin composite material and manufacturing method thereof
JP3864751B2 (en) Resin composition for carbon fiber reinforced composite material, prepreg, and carbon fiber reinforced composite material
JP3137671B2 (en) Prepreg
JP4608175B2 (en) Method for producing prepreg reinforcing sheet, method for producing prepreg
JP2001011287A (en) Fiber-reinforced plastic member
JPH02286323A (en) Resin fiber-reinforced composite material
JP3137670B2 (en) Composite material
JPH09208724A (en) Prepreg and composite
JPH01148545A (en) Interlaminar hybrid laminated material
JP3301142B2 (en) Prepreg
JP2546754B2 (en) Method for manufacturing golf club shaft
JP2002347148A (en) Tubular body made of fiber-reinforced composite material and golf club shaft constituted by using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Effective date: 20060726

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090811

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090811

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110811

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120811

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250