JP2850165B2 - Pitch based carbon fiber reinforced composite molding - Google Patents

Pitch based carbon fiber reinforced composite molding

Info

Publication number
JP2850165B2
JP2850165B2 JP3160188A JP16018891A JP2850165B2 JP 2850165 B2 JP2850165 B2 JP 2850165B2 JP 3160188 A JP3160188 A JP 3160188A JP 16018891 A JP16018891 A JP 16018891A JP 2850165 B2 JP2850165 B2 JP 2850165B2
Authority
JP
Japan
Prior art keywords
prepreg
carbon fiber
pitch
based carbon
tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3160188A
Other languages
Japanese (ja)
Other versions
JPH04310728A (en
Inventor
昭夫 大島
三知宏 毛利
敦 南条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP3160188A priority Critical patent/JP2850165B2/en
Publication of JPH04310728A publication Critical patent/JPH04310728A/en
Application granted granted Critical
Publication of JP2850165B2 publication Critical patent/JP2850165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、曲げ強度の高い炭素繊
維強化複合材料(CFRP)の成形体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molded article of carbon fiber reinforced composite material (CFRP) having high bending strength.

【0002】[0002]

【従来の技術】CFRPはその軽量性、高剛性等の特徴
を生かし、ゴルフシャフト、テニスラケットなどのスポ
ーツ・レジャー用品、宇宙・航空機の構造材および工業
材料等の用途において、産業上広く用いられている。
2. Description of the Related Art CFRP is widely used industrially in its applications such as golf shafts, tennis rackets and other sports / leisure articles, space / aircraft structural materials and industrial materials, etc., taking advantage of its features such as light weight and high rigidity. ing.

【0003】中でもピッチ系炭素繊維を用いたCFRP
は、引張荷重下においては高強度、高弾性率を発揮する
ものの、曲げおよび圧縮荷重下においては圧縮負荷側の
強度が十分ではないという問題がある。
[0003] Among them, CFRP using pitch-based carbon fiber
Although they exhibit high strength and high elastic modulus under a tensile load, there is a problem that the strength on the compressive load side is not sufficient under a bending or compressive load.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは、このよ
うな状況に鑑み、スポーツ用品、宇宙・航空機等の構造
材、工業材料用途を対象として、ピッチ系炭素繊維複合
材料の弾性率を保持しつつ、高曲げ強度を達成するよう
検討を行った。本発明の目的はピッチ系炭素繊維プリプ
レグと高強度炭素繊維プリプレグとを共積層、共硬化す
ることによる曲げ強化法およびその成形体の提供にあ
る。
SUMMARY OF THE INVENTION In view of such circumstances, the present inventors have developed an elastic modulus of a pitch-based carbon fiber composite material for use in sports goods, structural materials such as space and aircraft, and industrial materials. While maintaining, it was examined to achieve high bending strength. An object of the present invention is to provide a bending strengthening method by co-laminating and co-curing a pitch-based carbon fiber prepreg and a high-strength carbon fiber prepreg, and to provide a molded article thereof.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記の目
的に沿って鋭意検討した結果、ピッチ系炭素繊維プリプ
レグに、高圧縮強度を有する炭素繊維プリプレグを表面
層に実質的に少量配置し、積層、硬化することにより高
弾性率かつ高強度な複合材料が得られることを見いだ
し、本発明に達した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in view of the above-mentioned object, and as a result, have arranged a substantially small amount of carbon fiber prepreg having high compressive strength on the surface layer of the pitch-based carbon fiber prepreg. The inventors have found that a composite material having a high elastic modulus and a high strength can be obtained by laminating and curing, and the present invention has been achieved.

【0006】すなわち、本発明は、(A)ストランドの
引張強度250Kg f/mm以上、引張弾性率20
ton f/mm以上を有するピッチ系炭素繊維(以
下、「ピッチ系炭素繊維(a’)」という。)を強化繊
維に含み、Vf(繊維含有率)60vol%のCFRP
にしたときの圧縮強度が引張強度の1/2以下であるプ
リプレグ(以下、「プリプレグ(a)」という。)を曲
げ荷重下における引張支配側に積層し、(B) ストラ
ンドの引張強度120Kg f/mm以上、引張弾性
率15ton f/mm以上を有する炭素繊維(以
下、「炭素繊維(b’)」という。)を強化繊維に含
み、Vf60vol%のCFRPにしたときの圧縮強度
が引張強度の1/2より大きいプリプレグ(以下、「プ
リプレグ(b)」という。)を曲げ荷重下における応力
負荷される片面または両面の表層に積層すると共に、プ
リプレグ(a)対プリプレグ(b)の体積比を100:
2〜25としてなる複合材料成形体に関する。
That is, the present invention relates to (A) a strand having a tensile strength of 250 kgf / mm 2 or more and a tensile modulus of 20
CFRP having a pitch-based carbon fiber having a ton f / mm 2 or more (hereinafter referred to as “pitch-based carbon fiber (a ′)”) in a reinforcing fiber and having a Vf (fiber content) of 60 vol%.
A prepreg (hereinafter referred to as “prepreg (a)”) having a compressive strength equal to or less than の of the tensile strength at the time of (b) is laminated on the tensile control side under a bending load, and (B) the tensile strength of the strand is 120 kgf. / mm 2 or more, a tensile modulus of 15 ton f / mm carbon fiber having two or more (hereinafter, referred to as "carbon fibers (b ')".) the include reinforcing fibers, the compressive strength when formed into a Vf60vol% of CFRP tensile A prepreg (hereinafter, referred to as “prepreg (b)”) having a strength larger than 1 / of the strength is laminated on one or both surface layers subjected to stress under a bending load, and a volume of the prepreg (a) versus the prepreg (b). The ratio is 100:
2 to 25.

【0007】以下、本発明を更に詳細に説明する。Hereinafter, the present invention will be described in more detail.

【0008】本発明に用いられるピッチ系炭素繊維
(a’)は、そのストランドの引張強度250Kg f
/mm以上、例えば250〜550Kg f/m
、好ましくは280〜500Kg f/mm、引
張弾性率20ton f/mm以上、例えば20〜8
5ton f/mm、好ましくは25〜80ton
f/mmであって、Vf60vol%のCFRPにし
たときの圧縮強度がvf60vol%のCFRPにした
ときの引張強度の1/2以下、好ましくは0.5〜0.
2、より好ましくは0.45〜0.25であるものが用
いられる。
[0008] The pitch-based carbon fiber (a ') used in the present invention has a strand tensile strength of 250 kgf.
/ Mm 2 or more, for example, 250 to 550 Kg f / m
m 2 , preferably 280 to 500 kg f / mm 2 , and a tensile elastic modulus of 20 ton f / mm 2 or more, for example, 20 to 8
5 ton f / mm 2 , preferably 25 to 80 ton
f / mm 2 , and the compressive strength when converted to Vf60 vol% CFRP is 以下 or less of the tensile strength when converted to vf60 vol% CFRP, preferably 0.5 to 0.1%.
2, more preferably 0.45 to 0.25.

【0009】上記引張強度、上記引張弾性率および圧縮
強度等の条件を満たすピッチ系炭素繊維であれば特に種
類は限定されず、例えば石油ピッチ系、石炭ピッチ系、
タール系等炭素繊維が挙げられるが、特に光学異方性ピ
ッチから製造したピッチ系炭素繊維が最も好ましい。該
ピッチ系炭素繊維を製造する方法としては、例えば軟化
点100〜400℃、好ましくは150〜350℃を有
する石炭系あるいは石油系のピッチのうち、光学的に等
方性なピッチあるいは異方性のピッチ、好ましくは光学
異方性相の含有量が60〜100vol%、特に80〜
100vol%である光学異方性ピッチを用い、まず上
記ピッチを公知の方法で溶融紡糸してピッチ繊維とした
後、酸化性ガス雰囲気下、通常50〜400℃、好まし
くは100〜350℃で不融化処理を行い、次いで不活
性ガス雰囲気下、通常800〜3,000℃で炭化処理
を行い炭素繊維とすることができる。該酸化性ガスとし
ては例えば空気、酸素、酸化窒素、酸化イオウ、ハロゲ
ンあるいはこれらの混合物が挙げられる。また該不活性
ガスとしては例えばAr,He,Xe,Nガス等が挙
げられる。
The type of the carbon fiber is not particularly limited as long as it is a pitch-based carbon fiber satisfying conditions such as the tensile strength, the tensile modulus and the compressive strength.
Tar-based carbon fibers can be mentioned, but pitch-based carbon fibers produced from optically anisotropic pitch are particularly preferred. As a method for producing the pitch-based carbon fiber, for example, among coal-based or petroleum-based pitches having a softening point of 100 to 400 ° C, preferably 150 to 350 ° C, optically isotropic pitch or anisotropic pitch is used. Pitch, preferably the content of the optically anisotropic phase is 60 to 100 vol%, particularly 80 to 100 vol%.
Using an optically anisotropic pitch of 100 vol%, the pitch is first melt-spun into a pitch fiber by a well-known method, and then, under an oxidizing gas atmosphere, usually 50 to 400 ° C., preferably 100 to 350 ° C. A fusion treatment is performed, and then a carbonization treatment is performed at 800 to 3,000 ° C. in an inert gas atmosphere to obtain carbon fibers. Examples of the oxidizing gas include air, oxygen, nitrogen oxide, sulfur oxide, halogen, and a mixture thereof. As the inert gas, for example Ar, He, Xe, N 2 gas, and the like.

【0010】本発明に用いられる炭素繊維(b’)は、
そのストランドが引張強度120Kg f/mm
上、例えば120〜550Kg f/mm、好ましく
は150〜500Kg f/mm、引張弾性率15
on f/mm以上、例えば15〜85ton f/
mm、好ましくは17〜80ton f/mmを有
し、Vf60vol%のCFRPにしたときの圧縮強度
がVf60vol%のCFRPにしたときの引張強度の
1/2より大きいもの、好ましくは0.5より大きく
0.9以下、より好ましくは0.55より大きく0.8
5以下であるものであって、この条件を満たすものであ
れば特に種類は限定されない。具体的には例えばPAN
系炭素繊維、レーヨン系炭素繊維、あるいはピッチ系炭
素繊維等のうち、上記条件を満たすものが挙げられる。
[0010] The carbon fiber (b ') used in the present invention comprises:
The strand tensile strength 120 kg f / mm 2 or more, for example 120~550Kg f / mm 2, preferably 150~500Kg f / mm 2, tensile modulus 15 t
on f / mm 2 or more, for example, 15 to 85 ton f /
mm 2 , preferably 17 to 80 ton f / mm 2 , and the compression strength when converted to 60 vol% CFRP is greater than 1 / of the tensile strength when converted to 60 vol% CFRP, preferably 0.5 Greater than 0.9 and more preferably greater than 0.55 and 0.8
The type is not particularly limited as long as it is 5 or less and the condition is satisfied. Specifically, for example, PAN
Among the carbon fibers, rayon-based carbon fibers, pitch-based carbon fibers, and the like, those satisfying the above-mentioned conditions are exemplified.

【0011】ここで、プリプレグ(a)に用いるピッチ
系炭素繊維(a’)の弾性率と、プリプレグ(b)に用
いる炭素繊維(b’)の弾性率が近いものを選択する
と、得られる成形体の弾性率が比較的高く、かつ材料の
設計がしやすいために好ましい。
[0011] Here, if the elastic modulus of the pitch-based carbon fiber (a ') used for the prepreg (a) and the elastic modulus of the carbon fiber (b') used for the prepreg (b) are selected to be close to each other, the resulting molding is obtained. This is preferable because the elastic modulus of the body is relatively high and the material can be easily designed.

【0012】さらに、ピッチ系炭素繊維(a’)および
/または炭素繊維(b’)には、アラミド繊維、ボロン
繊維、ポリエチレン織維等を、通常50vol%以下、
好ましくは40vol%以下の範囲で併用することもで
きる。
Further, the pitch-based carbon fiber (a ′) and / or the carbon fiber (b ′) may contain aramid fiber, boron fiber, polyethylene fiber or the like, usually 50 vol% or less.
Preferably, they can be used together in a range of 40 vol% or less.

【0013】例えばプリプレグ(a)中の強化繊維の形
態としてはピッチ系炭素繊維/ガラス繊維、ピッチ系炭
素繊維/アラミド繊維、ピッチ系炭素繊維/ボロン繊
維、ピッチ系炭素繊維/ポリエチレン繊維等の一方向お
よびクロスのハイブリッドが挙げられる。またプリプレ
グ(b)の形態としては、例えば炭素繊維/ガラス繊
維、炭素繊維/アラミド繊維、炭素繊維/ボロン繊維、
炭素繊維/ポリエチレン繊維等の一方向およびクロスの
ハイブリッドも用いることができる。
For example, the form of the reinforcing fiber in the prepreg (a) may be one of pitch-based carbon fiber / glass fiber, pitch-based carbon fiber / aramid fiber, pitch-based carbon fiber / boron fiber, pitch-based carbon fiber / polyethylene fiber, etc. Directional and cross hybrids. Examples of the form of the prepreg (b) include, for example, carbon fiber / glass fiber, carbon fiber / aramid fiber, carbon fiber / boron fiber,
Unidirectional and cloth hybrids such as carbon fiber / polyethylene fiber can also be used.

【0014】本発明のプリプレグ(a)はピッチ系炭素
繊維(a’)を強化繊維に含むプリプレグであり、また
プリプレグ(b)は炭素繊維(b’)を強化繊維に含む
プリプレグである。
The prepreg (a) of the present invention is a prepreg containing pitch-based carbon fibers (a ') in reinforcing fibers, and the prepreg (b) is a prepreg containing carbon fibers (b') in reinforcing fibers.

【0015】プリプレグ(a)および/またはプリプレ
グ(b)に用いるマトリックス樹脂は特に限定されない
が例えばエポキシ樹脂、フェノール樹脂、不飽和ポリエ
ステル樹脂、ビニルエステル樹脂、ビスマレイミド樹
脂、ホリシアネート樹脂等の熱硬化性樹脂、ポリカーボ
ネート樹脂、ナイロン樹脂、PPO、PPS、PEEK
等の熱可塑性樹脂等が挙げられ、プリプレグ(a)とプ
リプレグ(b)に使用されるマトリックス樹脂は同じで
あっても異なっていも良い。
The matrix resin used for the prepreg (a) and / or the prepreg (b) is not particularly limited. For example, thermosetting of an epoxy resin, a phenol resin, an unsaturated polyester resin, a vinyl ester resin, a bismaleimide resin, a holocyanate resin, or the like. Resin, polycarbonate resin, nylon resin, PPO, PPS, PEEK
The matrix resin used for the prepreg (a) and the prepreg (b) may be the same or different.

【0016】また、強化繊維に上記マトリックス樹脂を
含浸させる方法は特に限定されず、例えば樹脂浴中に強
化繊維を導入する方法、強化繊維にハケで樹脂を塗って
含浸させるハンドレイアップ法、樹脂フィルムを用いる
ホットメルト法、レジンインジェクション法や、その他
の公知の方法で行うことができる。
The method of impregnating the reinforcing fiber with the above matrix resin is not particularly limited. For example, a method of introducing the reinforcing fiber into a resin bath, a hand lay-up method of applying a resin to the reinforcing fiber with a brush and impregnating the resin, It can be performed by a hot melt method using a film, a resin injection method, or other known methods.

【0017】強化繊維とマトリックス樹脂の割合は、目
的により適宜選択されるが、含浸物中の繊維含有率が通
常30〜75vol%、好ましくは40〜65vol%
となることが望ましい。
The ratio between the reinforcing fibers and the matrix resin is appropriately selected depending on the purpose, but the fiber content in the impregnated material is usually 30 to 75 vol%, preferably 40 to 65 vol%.
It is desirable that

【0018】プリプレグ(a)およびプリプレグ(b)
に含まれる強化繊維は、一方向に配向していることが望
ましい。
Prepreg (a) and prepreg (b)
Is desirably oriented in one direction.

【0019】かくしてプリプレグ(a)およびプリプレ
グ(b)が得られる。
Thus, prepreg (a) and prepreg (b) are obtained.

【0020】本発明の積層体は、プリプレグ(a)とプ
リプレグ(b)を積層、成形し、熱硬化性樹脂を用いる
場合にはさらに硬化することにより得られる。
The laminate of the present invention can be obtained by laminating and molding a prepreg (a) and a prepreg (b), and further curing when a thermosetting resin is used.

【0021】このとき、プリプレグ(a)は成形体の使
用時に曲げ荷重がかった場合に引張応力のかかる側(引
張支配側)に、またプリプレグ(b)は成形体の使用時
に曲げ荷重がかった場合に圧縮応力のかかる側(圧縮負
荷される部分)に積層する。
At this time, the prepreg (a) is on the side where a tensile stress is applied (tensile dominant side) when a bending load is applied during use of the molded article, and the prepreg (b) is on the side where the bending load is applied during use of the molded article. Are laminated on the side to which a compressive stress is applied (compressed load portion).

【0022】例えばプリプレグ(a)の片側、もしくは
両側、成形体の片側、両側、表面層、内層等が挙げられ
る。
For example, one side or both sides of the prepreg (a), one side, both sides of the molded body, a surface layer, an inner layer and the like can be mentioned.

【0023】プリプレグ(a)とプリプレグ(b)の割
合は、目的とする成形体の形状、特性、使用する強化繊
維の性質に応じ、通常積層枚数を加減することで適宜選
択されるが、体積比でプリプレグ(a)100に対しプ
リプレグ(b)の割合が2〜25、好ましくは4〜12
である。このときプリプレグ(b)の割合が2未満であ
ると、成形体の圧縮強度を改善する効果が不充分であ
る。
The proportion of the prepreg (a) and the prepreg (b) is appropriately selected usually by adjusting the number of laminations depending on the shape and properties of the target molded article and the properties of the reinforcing fibers to be used. The ratio of the prepreg (b) to the prepreg (a) 100 is 2 to 25, preferably 4 to 12 in a ratio.
It is. At this time, if the proportion of the prepreg (b) is less than 2, the effect of improving the compressive strength of the compact is insufficient.

【0024】積層方向は、特に制限はされないが、プリ
プレグ(a)に含まれる強化繊維の方向とプリプレグ
(b)に含まれる強化繊維の方向が同一となるような、
一方向積層が好ましい。その他0/90°積層、疑似等
方積層等の組合せがあるが、中でも一方向積層が最も効
果がみられる。
The laminating direction is not particularly limited. However, the laminating direction is such that the direction of the reinforcing fibers contained in the prepreg (a) is the same as the direction of the reinforcing fibers contained in the prepreg (b).
Unidirectional lamination is preferred. There are other combinations such as 0/90 ° lamination and quasi-isotropic lamination, among which unidirectional lamination is most effective.

【0025】成形体の形状は特に制限されず、成形体の
使用目的に応じて適宜選択されるが、例えば平板、曲
面、管、棒状、およびこれらを応用した形状等が挙げら
れる。
The shape of the molded article is not particularly limited and is appropriately selected according to the purpose of use of the molded article. Examples thereof include a flat plate, a curved surface, a tube, a rod, and a shape to which these are applied.

【0026】[0026]

【発明の効果】本発明によれば、ピッチ系高弾性炭素繊
維の有する高引張強度および高弾性率を保持しつつ、圧
縮強度が向上された成形体を得ることができる。
According to the present invention, it is possible to obtain a molded article having improved compressive strength while maintaining high tensile strength and high elastic modulus of the pitch-based high elastic carbon fiber.

【0027】[0027]

【実施例】以下、実施例および比較例により本発明を具
体的に説明するが本発明はこれらに制限されるものでは
ない。 実施例1〜3 ストランドの状態での引張強度が350Kg f/mm
、引張弾性率が50ton f/mmを有し、Vf
60vol%のCFRPにしたときの引張強度150K
g f/mm、引張弾性率が29ton f/m
、圧縮強度が45Kg f/mmのピッチ系炭素
繊維(a’)に250゜F硬化型エポキシ樹脂組成物を
含浸し、目付け75g/mmの一方向プリプレグを作
製した(Vf60vol%、以下、「プリプレグ
(a)」という。)。
EXAMPLES The present invention will now be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Examples 1 to 3 Tensile strength in the state of a strand was 350 kgf / mm.
2 , having a tensile modulus of 50 ton f / mm 2 and a Vf
Tensile strength 150K when made into 60 vol% CFRP
g f / mm 2 , tensile elastic modulus is 29 ton f / m
A pitch-based carbon fiber (a ′) having m 2 and a compressive strength of 45 Kg f / mm 2 was impregnated with a 250 ° F. curable epoxy resin composition to prepare a unidirectional prepreg having a basis weight of 75 g / mm 2 (Vf 60 vol%, Hereinafter, it is referred to as “prepreg (a)”.)

【0028】次にストランドの状態での引張強度が35
0Kg f/mm、引張弾性率が23ton f/m
を有し、Vf60vol%のCFRPにしたときの
引張度が170Kg f/mm、引張弾性率が13t
on f/mm、圧縮強度120Kg f/mm
PAN系炭素繊維(b’)に250°F硬化型エポキシ
樹脂組成物を含浸し、目付け75g/mmの一方向プ
リプレグを作製した(Vf60vol%、以下、「プリ
プレグ(b)」という。)。
Next, the tensile strength in the state of a strand is 35.
0Kg f / mm 2 , tensile modulus of 23 ton f / m
has m 2, tensile degree 170 kg f / mm 2 when the Vf60vol% of CFRP, the tensile modulus 13t
A PAN-based carbon fiber (b ') having an on f / mm 2 and a compressive strength of 120 kgf / mm 2 was impregnated with a 250 ° F. curable epoxy resin composition to prepare a unidirectional prepreg having a basis weight of 75 g / mm 2 (Vf60vol). %, Hereinafter referred to as “prepreg (b)”).

【0029】プリプレグ(a)を28〜32枚積層し、
その上にプリプレグ(b)を1〜4枚積層し、125℃
で1時間硬化した。プリプレグ(b)を積層した側を圧
縮荷重側にして、JISに準拠し、3点曲げ試験をし
た。これらの結果を表1に示す。 比較例1 実施例に使用したピッチ系炭素繊維(a’)のみを用い
積層、硬化し、3点曲げを測定した。結果を表1に示
す。 比較例2 実施例に使用した炭素繊維(b’)のみを用い同様に積
層、硬化し、3点曲げを測定した。結果を表1に示す。
28 to 32 prepregs (a) are laminated,
One to four prepregs (b) are laminated thereon, and
For 1 hour. A three-point bending test was performed according to JIS with the side on which the prepreg (b) was laminated being the compression load side. Table 1 shows the results. Comparative Example 1 Using only the pitch-based carbon fiber (a ') used in the example, lamination and curing were performed, and three-point bending was measured. Table 1 shows the results. Comparative Example 2 Using only the carbon fiber (b ') used in the example, lamination and curing were performed in the same manner, and three-point bending was measured. Table 1 shows the results.

【0030】[0030]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−135232(JP,A) 実開 昭60−145030(JP,U) (58)調査した分野(Int.Cl.6,DB名) B32B 1/00 - 35/00──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-135232 (JP, A) JP-A-60-145030 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) B32B 1/00-35/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (A)ストランドの引張強度250Kg
f/mm以上、引張弾性率20ton f/mm
以上を有するピッチ系炭素繊維を強化繊維に含み、Vf
(繊維含有率)60vol%のCFRPにしたときの圧
縮強度が引張強度の1/2以下であるプリプレグ(a)
を曲げ荷重下における引張支配側に積層し、(B) ス
トランドの引張強度120Kg f/mm 以上、引張
弾性率15ton f/mm以上を有する炭素繊維を
強化繊維に含み、Vf60vol%のCFRPにしたと
きの圧縮強度が引張強度の1/2より大きいプリプレグ
(b)を曲げ荷重下における応力負荷される片面または
両面の表層に積層すると共に、プリプレグ(a)対プリ
プレグ(b)の体積比を100:2〜25としたことを
特徴とするピッチ系炭素繊維強化複合材料成形体。
1. The tensile strength of a strand (A) is 250 kg.
f / mm 2 or more, tensile elastic modulus 20 ton f / mm 2
The pitch-based carbon fiber having the above is contained in a reinforcing fiber, and Vf
(Fiber content) Pre-preg (a) having a compression strength of not more than の of the tensile strength when made into 60 vol% CFRP
Is laminated on the tensile control side under a bending load, and (B) a carbon fiber having a strand tensile strength of 120 kgf / mm 2 or more and a tensile elastic modulus of 15 ton f / mm 2 or more is included in the reinforcing fiber, and the CFRP having a Vf of 60 vol% is formed. The prepreg (b) having a compressive strength greater than 引 張 of the tensile strength when laminated is laminated on one or both surface layers subjected to stress under a bending load, and the volume ratio of the prepreg (a) to the prepreg (b) is adjusted. 100: A pitch-based carbon fiber reinforced composite material molded body characterized by having a ratio of 2 to 25.
【請求項2】 プリプレグ(a)に含まれる強化繊維
と、プリプレグ(b)に含まれる強化繊維が、同一方向
となるように積層したことを特徴とする請求項1に記載
の成形体。
2. The molded article according to claim 1, wherein the reinforcing fibers contained in the prepreg (a) and the reinforcing fibers contained in the prepreg (b) are laminated in the same direction.
JP3160188A 1991-04-08 1991-04-08 Pitch based carbon fiber reinforced composite molding Expired - Lifetime JP2850165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3160188A JP2850165B2 (en) 1991-04-08 1991-04-08 Pitch based carbon fiber reinforced composite molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3160188A JP2850165B2 (en) 1991-04-08 1991-04-08 Pitch based carbon fiber reinforced composite molding

Publications (2)

Publication Number Publication Date
JPH04310728A JPH04310728A (en) 1992-11-02
JP2850165B2 true JP2850165B2 (en) 1999-01-27

Family

ID=15709727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3160188A Expired - Lifetime JP2850165B2 (en) 1991-04-08 1991-04-08 Pitch based carbon fiber reinforced composite molding

Country Status (1)

Country Link
JP (1) JP2850165B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6397205B2 (en) * 2014-04-01 2018-09-26 Jxtgエネルギー株式会社 Prepreg, carbon fiber reinforced composite material, robot hand member and raw material resin composition thereof

Also Published As

Publication number Publication date
JPH04310728A (en) 1992-11-02

Similar Documents

Publication Publication Date Title
JPS627737A (en) Hybrid fiber-reinforced plastic composite material
JPH05502256A (en) Prepreg articles with long shelf life and their manufacturing methods
JP2003201388A (en) Epoxy resin composition, resin cured product, prepreg and fiber reinforced composite
JP4107475B2 (en) Reinforcing fibers for fiber reinforced composites
JP2850165B2 (en) Pitch based carbon fiber reinforced composite molding
EP0326409A1 (en) Hybrid yarn, unidirectional hybrid prepreg and laminated material thereof
KR20190037124A (en) Aramid woven fabric with excellent tensile strength and adhesive property for polyurethane matrix resin, method of manufacturing for the same, aramid woven fabric prepreg comprizing the same and aramid woven fabric/thermoplastic polyurethane matrix resin composite comprizing the same
JP2002327374A (en) Carbon fiber for fiber reinforced plastic and fiber reinforced plastic
JPH05105773A (en) Plate-like fiber-reinforced composite molded product
JP2554821B2 (en) Carbon fiber reinforced resin composite material and method for producing the same
JPH08301982A (en) Epoxy resin composition for fiber-reinforced composite, prepreg, and composite
JPH04292909A (en) Prepreg
JPH025979A (en) Golf club
JP3137671B2 (en) Prepreg
JP3864751B2 (en) Resin composition for carbon fiber reinforced composite material, prepreg, and carbon fiber reinforced composite material
JPH01148545A (en) Interlaminar hybrid laminated material
JPS62189124A (en) Manufacture of three-dimensional fiber reinforced resin composite material
JP2001031781A (en) Prepreg and fiber-reinforced composite material
Maikuma et al. Bearing Strength of PAN-Based and Pitch-Based Carbon Fiber Composite Materials
JPH09268221A (en) Resin composition for prepreg
JP3137670B2 (en) Composite material
JP3571775B2 (en) Prepreg
JP2002347148A (en) Tubular body made of fiber-reinforced composite material and golf club shaft constituted by using the same
JP3301142B2 (en) Prepreg
JPH0342242A (en) Lightweight composite material