JPH0510549B2 - - Google Patents

Info

Publication number
JPH0510549B2
JPH0510549B2 JP15242484A JP15242484A JPH0510549B2 JP H0510549 B2 JPH0510549 B2 JP H0510549B2 JP 15242484 A JP15242484 A JP 15242484A JP 15242484 A JP15242484 A JP 15242484A JP H0510549 B2 JPH0510549 B2 JP H0510549B2
Authority
JP
Japan
Prior art keywords
proportional valve
electromagnetic proportional
current
coil
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15242484A
Other languages
Japanese (ja)
Other versions
JPS6131779A (en
Inventor
Masaji Nakamura
Shigeru Shirai
Tomohide Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15242484A priority Critical patent/JPS6131779A/en
Publication of JPS6131779A publication Critical patent/JPS6131779A/en
Publication of JPH0510549B2 publication Critical patent/JPH0510549B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/14Control of position or direction using feedback using an analogue comparing device
    • G05D3/18Control of position or direction using feedback using an analogue comparing device delivering a series of pulses

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電流に応じて流体流量を制御する電磁
比例弁制御装置に関し、特に小さく良好なヒステ
リシスでかつ安定した流量特性となるように作動
させることが可能な電磁比例弁制御装置の構成に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electromagnetic proportional valve control device that controls fluid flow rate according to current, and in particular can be operated to have small and good hysteresis and stable flow characteristics. The present invention relates to a possible configuration of an electromagnetic proportional valve control device.

従来例の構成とその問題点 電磁比例弁はガス湯沸器やガス暖房器、ガス調
理器などにおいて、制御すべき温度負荷に対応し
てバーナへのガス供給量を制御するものであり、
電流の変化に対して比例的に流量を変化させるこ
とが要求される。ところが、電磁プランジヤ摺動
式の前記弁にあつては、プランジヤの摺動部分に
摩擦力が発生するため、電流を変化させても静摩
擦力により流量が変化しない、いわゆる不感帯が
発生し、さらにヒステリシスが大きくなることな
どにより、比例弁コイルの電流に対して正確で再
現性の高い流量制御ができない。そこで、従来は
不感帯をなくしヒステリシスを小さくするために
次のような制御装置がある。
Conventional structure and its problems Electromagnetic proportional valves are used in gas water heaters, gas heaters, gas cookers, etc. to control the amount of gas supplied to the burner in response to the temperature load to be controlled.
It is required to change the flow rate proportionally to the change in current. However, in the electromagnetic plunger sliding type valve, frictional force is generated in the sliding part of the plunger, so a so-called dead zone occurs in which the flow rate does not change due to static frictional force even if the current is changed, and furthermore, hysteresis occurs. As a result, accurate and highly reproducible flow rate control of the proportional valve coil current cannot be performed. Therefore, the following control devices have conventionally been used to eliminate the dead zone and reduce hysteresis.

この場合の制御回路は第1図に示されるが、交
流電源1を整流器2によつて全波整流した後、電
磁比例弁のコイル3と、トランジスタ増幅器4お
よび抵抗5からなる直列回路に脈流の直流電流を
通電させて、プランジヤを微振動させながら所定
の制御をするようにしたものである。
The control circuit in this case is shown in FIG. 1. After the AC power source 1 is full-wave rectified by a rectifier 2, a pulsating current flows through a series circuit consisting of a coil 3 of an electromagnetic proportional valve, a transistor amplifier 4, and a resistor 5. A direct current is applied to the plunger, causing the plunger to vibrate in a predetermined manner.

そして、比例弁コイル3に流す電流の平均値を
変えるためには、第2図に示すように、全波整流
の直流をそのまま加える最大電流値(第2図イ参
照)から設定レベル以上の波高部分をカツトして
得られる所望値(第2図ロ,ハ参照)の範囲内
で、電流制御を行わせており、この制御を電流調
整回路6によつて無段階的に成している。
In order to change the average value of the current flowing through the proportional valve coil 3, as shown in Figure 2, the wave height above the set level must be increased from the maximum current value (see Figure 2 A) to which full-wave rectified direct current is applied as is. Current control is performed within the range of the desired value obtained by cutting the portion (see Figure 2 B and C), and this control is performed steplessly by the current adjustment circuit 6.

この他に、サイリスタ利用による位相制御方式
によつて電流制御する形態のものもある。
In addition, there is also a type in which current is controlled by a phase control method using a thyristor.

ところが上記従来方式のものでは、デイザ効果
が弱くなつて初期の目的を達成し難い問題があ
り、この欠点は特に低電流域において顕著に現わ
れるため、電磁比例弁の性能が十分に発揮されな
かつた。
However, with the conventional method described above, the dither effect weakens, making it difficult to achieve the initial purpose.This drawback is particularly noticeable in the low current range, and the performance of the electromagnetic proportional valve is not fully demonstrated. .

上記欠点を補うべく他の従来例として次のよう
な制御装置が公知である。
In order to compensate for the above drawbacks, the following control device is known as another conventional example.

この場合の制御回路は第3図に示すように、直
流電源7にトランジスタ増幅器4と電磁比例弁の
コイル3を直列接続し、トランジスタ増幅器4の
ベース端子に方形波信号発生回路8を接続した構
成で、方形波信号発生回路8は第4図ニ,ホ,へ
のように方形波の波高値(振幅)および周期は一
定で、オンとオフとの時間比(デユーテイ)を変
化させて、平均電圧値xの異なる出力信号を出さ
せるものである。なお電磁比例弁3と並列に抵抗
5とダイオード9とを直列にして接続しているの
は、弁コイル3のサージ電圧を吸収するためであ
る。
As shown in FIG. 3, the control circuit in this case has a configuration in which a transistor amplifier 4 and a coil 3 of an electromagnetic proportional valve are connected in series to a DC power supply 7, and a square wave signal generating circuit 8 is connected to the base terminal of the transistor amplifier 4. As shown in FIG. This outputs output signals with different voltage values x. The reason why a resistor 5 and a diode 9 are connected in series in parallel with the electromagnetic proportional valve 3 is to absorb the surge voltage of the valve coil 3.

上記の従来例においては、電磁比例弁のコイル
3に断続方形波電圧が印加され、弁コイル3の電
圧および電流波形が第5図のように急な立上り、
立下りとなるために、電磁比例弁のプランジヤお
よび弁体の不規則な振動を誘発し、第6図のよう
に正常な流量特性トからずれ、チのような乱れた
流量特性になつたりする、いわゆる特性乱れを発
生しやすい問題があつた。この従来方式のように
一定周期と一定振幅の条件において、立上り、立
下りが緩やかになるようにしようとすると、周期
を長くしなければならず、そうすると最初の従来
例と同様に十分なデイザ効果が得られなくなつて
しまう。また商用電源を整流し、完全平滑しない
で脈流成分を残した直流を電磁比例弁のコイル3
とトランジスタ増幅器4に直列に接続し、脈流成
分をデイザ効果として利用する方式も公知である
が、十分なデイザ効果を得ることができなかつ
た。
In the above conventional example, an intermittent square wave voltage is applied to the coil 3 of the electromagnetic proportional valve, and the voltage and current waveforms of the valve coil 3 rise sharply as shown in FIG.
This causes irregular vibrations in the plunger and valve body of the electromagnetic proportional valve, causing the flow rate to deviate from the normal flow rate as shown in Figure 6, and become turbulent as shown in Figure 6. However, there was a problem in that so-called characteristic disturbances were likely to occur. If you try to make the rise and fall gradual under the conditions of a constant period and constant amplitude as in this conventional method, the period must be made longer, and in this case, the dither effect will be sufficient as in the first conventional example. It becomes impossible to obtain it. In addition, the commercial power supply is rectified, and the direct current, which is not completely smoothed and has pulsating components, is transferred to the coil 3 of the electromagnetic proportional valve.
A method is also known in which the ripple current component is connected in series with the transistor amplifier 4 and the ripple current component is used as a dither effect, but it has not been possible to obtain a sufficient dither effect.

発明の目的 本発明はかかる従来の問題を解消するもので、
十分なデイザ効果を得ることができ、かつ不規則
な弁振動を起こしにくく、良好なヒステリシスで
安定した流量特性になるよう作動させる電磁比例
弁鮮魚装置を得ることを目的とする。
Purpose of the invention The present invention solves such conventional problems,
The purpose of the present invention is to obtain an electromagnetic proportional valve fresh fish device that can obtain a sufficient dither effect, is less likely to cause irregular valve vibrations, and is operated so as to have stable flow characteristics with good hysteresis.

発明の構成 この目的を達成するために本発明は、直流電源
に商用電源と等しい周波数のデイザ信号を発生す
るトランス2次側巻線と、電磁比例弁のコイルと
電流制御回路により作動するトランジスタ増幅器
とを直列に接続し、前記トランス2次側巻線と電
磁比例弁のコイルの直列部分の両端に、逆起電圧
防止用ダイオードを並列接続し、さらにコンデン
サと抵抗を直列に接続したものを並列接続してい
る。
Structure of the Invention To achieve this object, the present invention includes a transformer secondary winding that generates a dither signal of the same frequency as a commercial power supply in a DC power supply, a transistor amplifier operated by a coil of an electromagnetic proportional valve, and a current control circuit. are connected in series, a back electromotive force prevention diode is connected in parallel to both ends of the series part of the transformer secondary winding and the coil of the electromagnetic proportional valve, and a capacitor and a resistor are connected in series. Connected.

この構成によつて、電磁比例弁のコイルには、
トランス2次側巻線から供給される商用周波数の
正弦波のデイザ信号と、トランジスタ増幅器に流
れる直流電源とが合成される。そして、トランジ
スタ増幅器を流れる直流電流は電気制御回路によ
り可変できる。そして、電磁比例弁のコイルに流
れる電流はデイザ効果上、最も好ましい一定周
期・振幅でかつ緩やかな立上り・立下りの電流波
形となる。
With this configuration, the coil of the electromagnetic proportional valve has
A commercial frequency sine wave dither signal supplied from the transformer secondary winding and a DC power supply flowing to the transistor amplifier are combined. The direct current flowing through the transistor amplifier can be varied by an electrical control circuit. Due to the dither effect, the current flowing through the coil of the electromagnetic proportional valve has a current waveform with the most preferable constant period and amplitude and gradual rises and falls.

実施例の説明 以下本発明の一実施例を第7図を用いて説明す
る。第7図において直流電源10にトランスの2
次側巻線11と、電磁比例弁のコイル12と、電
流制御器13により作動するトランジスタ増幅器
14を直列に接続し、前記トランス2次側巻線1
1と電磁比例弁のコイル12の直列部分の両端
に、逆起電圧防止用ダイオード15を並列接続
し、さらに抵抗16とコンデンサ17を直列に接
続したものを並列接続している。18はトランジ
スタ増幅器14のエミツタ抵抗である。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. In Fig. 7, transformer 2 is connected to the DC power supply 10.
The secondary winding 11 of the transformer, the coil 12 of the electromagnetic proportional valve, and the transistor amplifier 14 operated by the current controller 13 are connected in series.
A diode 15 for preventing back electromotive force is connected in parallel to both ends of the series portion of the coil 12 of the electromagnetic proportional valve, and a resistor 16 and a capacitor 17 connected in series are also connected in parallel. 18 is an emitter resistor of the transistor amplifier 14.

上記構成において、トランス2次側巻線で発生
する数vの商用周波の交流電圧は、電磁比例弁の
コイル12と、ダイオード15と、抵抗16とコ
ンデンサ17で形成される回路に印加され、電磁
比例弁のコイル12にデイザ信号となつて、第8
図リのような正弦波の電流が流れる。しかし、ト
ランジスタ増幅器14には流れない。そして、電
流制御回路13の信号により、トランジスタ増幅
器14に流れる直流電流が流れ出すと、前記デイ
ザ信号は、トランジスタ増幅器14の電流と合成
されて、第8図ヌのように直流分に重畳された形
で、電磁比例弁のコイル12を流れる。第9図は
このときのエミツタ抵抗18を流れるエミツタ電
流である。したがつて、デイザ信号は、トランジ
スタ増幅器の直流電流のレベルにかかわらず、常
に一定の周波数・振幅であり、安定したデイザ効
果を有し常に安定した流量特性が得られる。な
お、本発明の実施例では、デイザ信号を発生する
トランス2次側巻線を専用のトランスから得てい
るが、一般的には、直流電源10を交流電源より
整流平滑して得る場合が多く、このような場合に
は前記直流電源10の電源トランスにデイザ信号
発生用の二次側巻線を、重ね巻きして、1台のト
ランスとしてもよい。この場合、別個のデイザ信
号用トランスを設ける必要がないので、コンンパ
クトなスペースで、同様のデイザ効果が得られ
る。又、電源トランスのコアが共用で使用できる
ため、コストアツプも巻線コストのみとなり、低
コストで効果が得られる。
In the above configuration, the commercial frequency AC voltage of several volts generated in the secondary winding of the transformer is applied to the circuit formed by the coil 12 of the electromagnetic proportional valve, the diode 15, the resistor 16, and the capacitor 17, and the electromagnetic A dither signal is sent to the proportional valve coil 12, and the eighth
A sinusoidal current flows as shown in the diagram. However, it does not flow to transistor amplifier 14. Then, when a DC current flows into the transistor amplifier 14 due to the signal from the current control circuit 13, the dither signal is combined with the current of the transistor amplifier 14, and the dither signal is superimposed on the DC component as shown in FIG. Then, it flows through the coil 12 of the electromagnetic proportional valve. FIG. 9 shows the emitter current flowing through the emitter resistor 18 at this time. Therefore, the dither signal always has a constant frequency and amplitude regardless of the level of the direct current of the transistor amplifier, has a stable dither effect, and always provides stable flow characteristics. In the embodiment of the present invention, the secondary winding of the transformer that generates the dither signal is obtained from a dedicated transformer, but in general, the DC power source 10 is often obtained by rectifying and smoothing the AC power source. In such a case, a secondary winding for generating a dither signal may be wound over the power transformer of the DC power supply 10 to form one transformer. In this case, since there is no need to provide a separate dither signal transformer, the same dither effect can be obtained in a compact space. In addition, since the core of the power transformer can be used in common, the cost increase is reduced to only the winding cost, and the effect can be obtained at low cost.

発明の効果 以上のように本発明の電磁比例弁制御装置によ
れば次の効果が得られる。
Effects of the Invention As described above, the electromagnetic proportional valve control device of the present invention provides the following effects.

(1) トランス2次側巻線から供給される商用周波
の正弦波電流により電磁比例弁にデイザ効果を
与える構成であるため、弁コイルの電流は緩や
かな立上り・立下りの波形であるので、有効な
デイザ効果を発揮しながら不都合な弁振動を誘
起しないため、小さく良好なヒステリシスでか
つ安定した流量特性となるように電磁比例弁を
作動させることができる効果がある。
(1) Since the configuration is such that a dither effect is applied to the electromagnetic proportional valve by the commercial frequency sine wave current supplied from the secondary winding of the transformer, the current in the valve coil has a waveform of gradual rises and falls. Since no undesirable valve vibration is induced while exhibiting an effective dither effect, the electromagnetic proportional valve can be operated with small and good hysteresis and stable flow characteristics.

(2) 低電流時から高電流時まで、常に一定した周
期・振幅のデイザ波形で作動する方式であるた
め電磁比例弁の作動位置および流量位置がどこ
にあつても、常に最適な一定のデイザ効果が得
られ、常に安定した特性を得ることができる。
(2) Since the system operates with a dither waveform with a constant period and amplitude from low current to high current, no matter where the electromagnetic proportional valve's operating position or flow rate position is, the optimal constant dither effect is always achieved. is obtained, and stable characteristics can always be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電磁比例弁制御装置の一例を示
す基本回路図、第2図イ,ロ,ハは第1図に示す
装置による弁コイルの電流波形線図、第3図は他
の従来の電磁比例弁制御装置の一例を示す基本回
路図、第4図ニ,ホ,ヘは第3図に示す装置の方
形波発生回路の出力波形線図、第5図は第3図に
示す装置の弁コイルの電圧・電流波形線図、第6
図は第3図に示す装置による電磁比例弁流量特性
図、第7図は本発明の一実施例を示す電磁比例弁
制御装置の基本回路図、第8図は第7図に示す装
置の電磁比例弁のコイルの電流波形線図、第9図
は第7図に示す装置のエミツタ抵抗に流れる電流
波形線図である。 10……直流電源、11……トランス2次側巻
線、12……電磁比例弁のコイル、13……電流
制御回路、14……トランジスタ増幅器、15…
…逆起電圧防止用ダイオード、16……抵抗、1
7……コンデンサ。
Fig. 1 is a basic circuit diagram showing an example of a conventional electromagnetic proportional valve control device, Fig. 2 A, B, and C are current waveform diagrams of the valve coil according to the device shown in Fig. 1, and Fig. 3 is another conventional electromagnetic proportional valve control device. A basic circuit diagram showing an example of an electromagnetic proportional valve control device, Figure 4 D, E, and F are output waveform diagrams of the square wave generation circuit of the device shown in FIG. 3, and FIG. Voltage/current waveform diagram of the valve coil, No. 6
The figure is a flow characteristic diagram of the electromagnetic proportional valve using the device shown in FIG. 3, FIG. 7 is a basic circuit diagram of the electromagnetic proportional valve control device showing an embodiment of the present invention, and FIG. 9 is a current waveform diagram of the coil of the proportional valve; FIG. 9 is a current waveform diagram of the current flowing through the emitter resistor of the device shown in FIG. 7. 10... DC power supply, 11... Transformer secondary winding, 12... Coil of electromagnetic proportional valve, 13... Current control circuit, 14... Transistor amplifier, 15...
... Diode for preventing back electromotive force, 16 ... Resistor, 1
7... Capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 直流電源に、商用電源と等しい周波数のデイ
ザ信号を発生するトランス2次側巻線と、電磁比
例弁のコイルと、電流制御回路により作動するト
ランジスタ増幅器とを直列に接続し、前記トラン
ス2次側巻線と電磁比例弁のコイルの直列部分の
両端に、逆起電圧防止用ダイオードを並列接続
し、さらに、コンデンサを並列接続した電磁比例
弁制御装置。
1 A transformer secondary winding that generates a dither signal with a frequency equal to that of a commercial power supply, a coil of an electromagnetic proportional valve, and a transistor amplifier operated by a current control circuit are connected in series to a DC power supply, and the transformer secondary winding is connected in series to a DC power supply. An electromagnetic proportional valve control device in which a back electromotive voltage prevention diode is connected in parallel to both ends of the series part of the side winding and the electromagnetic proportional valve coil, and a capacitor is also connected in parallel.
JP15242484A 1984-07-23 1984-07-23 Control device of solenoid proportional valve Granted JPS6131779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15242484A JPS6131779A (en) 1984-07-23 1984-07-23 Control device of solenoid proportional valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15242484A JPS6131779A (en) 1984-07-23 1984-07-23 Control device of solenoid proportional valve

Publications (2)

Publication Number Publication Date
JPS6131779A JPS6131779A (en) 1986-02-14
JPH0510549B2 true JPH0510549B2 (en) 1993-02-10

Family

ID=15540210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15242484A Granted JPS6131779A (en) 1984-07-23 1984-07-23 Control device of solenoid proportional valve

Country Status (1)

Country Link
JP (1) JPS6131779A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391774U (en) * 1986-12-03 1988-06-14

Also Published As

Publication number Publication date
JPS6131779A (en) 1986-02-14

Similar Documents

Publication Publication Date Title
JP3359141B2 (en) Power control device
JP2874928B2 (en) Circuit arrangement for self-excited blocking transformer-type switching regulator.
US5216585A (en) Switching power source device
US5329100A (en) Circuit for compensating for output of high frequency induction heating cooker
JPH0510549B2 (en)
JPH0330031B2 (en)
JPS60104874A (en) Control device of proportional solenoid valve
JPS6327210Y2 (en)
JPH0832182B2 (en) Power supply
JP2540251B2 (en) Proportional valve drive
JPH0544623Y2 (en)
JPS61293165A (en) Overcurrent protection circuit
JP2774895B2 (en) Switching regulator
JPS6249084A (en) Electromagnetic proportional valve control device
JP2961851B2 (en) Power supply circuit using piezoelectric transformer
JPH074791Y2 (en) High frequency heating device
JPS6112638B2 (en)
JPS6112636B2 (en)
JP2714328B2 (en) High frequency heating equipment
JP2916720B2 (en) Induction heating cooker
JPS648914B2 (en)
JPH0127439Y2 (en)
JPH05111251A (en) Stabilized power source
JPH0121700B2 (en)
JPH0416916B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term