JPH0330031B2 - - Google Patents

Info

Publication number
JPH0330031B2
JPH0330031B2 JP59051426A JP5142684A JPH0330031B2 JP H0330031 B2 JPH0330031 B2 JP H0330031B2 JP 59051426 A JP59051426 A JP 59051426A JP 5142684 A JP5142684 A JP 5142684A JP H0330031 B2 JPH0330031 B2 JP H0330031B2
Authority
JP
Japan
Prior art keywords
current
circuit
waveform
dither
electromagnetic proportional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59051426A
Other languages
Japanese (ja)
Other versions
JPS60196412A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5142684A priority Critical patent/JPS60196412A/en
Publication of JPS60196412A publication Critical patent/JPS60196412A/en
Publication of JPH0330031B2 publication Critical patent/JPH0330031B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Servomotors (AREA)
  • Magnetically Actuated Valves (AREA)
  • Feedback Control In General (AREA)
  • Flow Control (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電流に応じて流体流量を制御する電磁
比例弁制御装置に関し、特に小さく良好なヒステ
リシスでかつ安定した流量特性となるように作動
させることが可能な制御装置の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electromagnetic proportional valve control device that controls fluid flow rate according to current, and in particular can be operated to have small and good hysteresis and stable flow characteristics. Concerning possible control device configurations.

従来例の構成とその問題点 電磁比例弁はガス湯沸器やガス暖房器・ガス調
理器などにおいて、制御すべき温度負荷に対応し
てバーナへのガス供給量を制御するものである
が、電磁プランジヤ摺動式の前記弁にあつては、
弁体の動き始めは静摩擦力に打ち勝つ力が発生す
るまで動かず、弁体が止まる時は動摩擦力と駆動
力が一致した時点で止まつてしまい、摩擦力に見
合うだけの誤差や、プランジヤやヨークの残留磁
気によるヒステリシスなどで、比例弁コイルの電
流に対し、正確で再現性の高い流量制御ができな
い。そこで従来ヒステリシス特性等を良好ならし
めるために、次のような制御装置が公知である。
Conventional structure and its problems Electromagnetic proportional valves are used in gas water heaters, gas heaters, gas cookers, etc. to control the amount of gas supplied to the burner in response to the temperature load to be controlled. In the case of the electromagnetic plunger sliding type valve,
When the valve body starts to move, it does not move until a force is generated that overcomes the static friction force, and when the valve body stops, it stops when the dynamic friction force and the driving force match, and there is an error that is commensurate with the friction force, and the plunger and yoke Due to hysteresis caused by residual magnetism, accurate and highly reproducible flow rate control of the proportional valve coil current cannot be performed. Conventionally, the following control device is known in order to improve the hysteresis characteristics and the like.

この場合の制御回路は第1図に示されるが、交
流電源1を整流器2によつて全波整流した後、電
磁比例弁のコイル3とトランジスタ増幅器4およ
び抵抗5からなる直列回路に脈流の直流電流を流
通させて、プランジヤを微振動させながら所定の
制御をするようにしたものである。
The control circuit in this case is shown in Fig. 1. After the AC power source 1 is full-wave rectified by a rectifier 2, a pulsating current is sent to a series circuit consisting of a coil 3 of an electromagnetic proportional valve, a transistor amplifier 4, and a resistor 5. A direct current is passed through the plunger, causing the plunger to vibrate in a predetermined manner.

そして比例弁コイル3に流す電流の平均値を変
えるためには、第2図に示すように、全波整流の
直流をそのまま加える最大電流値(第2図a参
照)から設定レベル以上の波高部分をカツトして
得られる所望値(第2図b,c参照)の範囲内で
電流制御を行わせており、この制御を電流調整回
路6によつて無段階的に成している。
In order to change the average value of the current flowing through the proportional valve coil 3, as shown in Figure 2, the wave height part above the set level is calculated from the maximum current value (see Figure 2 a) where full-wave rectified direct current is applied as is. The current is controlled within the range of the desired value obtained by cutting the current (see FIGS. 2b and 2c), and this control is performed steplessly by the current adjustment circuit 6.

この他に、サイリスタ利用による位相制御方式
によつて電流制御する形態のものもある。
In addition, there is also a type in which current is controlled by a phase control method using a thyristor.

ところが上記従来方式によつたのでは、デイザ
(出力電流波形)効果が弱くなつて初期の目的を
達成し難い問題があり、この欠点は特に低電流域
において顕著に現れるため、電磁比例弁の性能が
十分に発揮されなかつた。
However, with the above conventional method, there is a problem that the dither (output current waveform) effect becomes weak and it is difficult to achieve the initial purpose.This drawback is especially noticeable in the low current range, so the performance of the electromagnetic proportional valve is affected. I wasn't able to perform to my full potential.

上記欠点を補うべく他の従来例として次のよう
な制御装置が公知である。
In order to compensate for the above drawbacks, the following control device is known as another conventional example.

この場合の制御回路は第3図に示すように、直
流電源7にトランジスタ増幅器4と電磁比例弁の
コイル3を直列接続し、トランジスタ増幅器4の
ベース端子に方形波信号発生回路8を接続した構
成で、方形波信号発生回路8は第4図a,b,
c、のように方形波の波高値(振幅)および周期
は一定で、オンとオフとの時間比(デユーテイ)
を変化させて、平均電圧値の異なる出力信号を
出させるものである。なお電磁比例弁3と並列に
抵抗5とダイオート9とを直列にして接続してい
るのは、弁コイル3のサージ電圧を吸収するため
である。
As shown in FIG. 3, the control circuit in this case has a configuration in which a transistor amplifier 4 and a coil 3 of an electromagnetic proportional valve are connected in series to a DC power supply 7, and a square wave signal generating circuit 8 is connected to the base terminal of the transistor amplifier 4. The square wave signal generation circuit 8 is shown in FIG. 4a, b,
As shown in c, the peak value (amplitude) and period of the square wave are constant, and the time ratio between on and off (duty) is constant.
is changed to produce output signals with different average voltage values. The reason why a resistor 5 and a diode 9 are connected in series in parallel with the electromagnetic proportional valve 3 is to absorb the surge voltage of the valve coil 3.

上記の従来例においては、電磁比例弁のコイル
3に断続方形波電圧が印加され、弁コイル3の電
圧および電流波形が第5図のように急な立上り・
立下りとなるために、電磁比例弁のプランジヤお
よび弁体の不規則な振動を誘発し、第6図のよう
に正常な流量特性aからずれ、bのような乱れた
流量特性になつたりする、いわゆる特性乱れを発
生しやすい問題があつた。この従来方式のように
一定周期と一定振幅の条件において、立上り・立
下りが緩やかになるようにしようとすると、周期
を長くしなければならず、そうすると最初の従来
例と同様に十分なデイザ効果が得られなくなつて
しまう。また商用電源を整流し完全平滑しないで
脈流成分を残した直流を、電磁比例弁のコイル3
とトランジスタ増幅器4に直列に接続し、脈流成
分をデイザ効果として利用しようとする方式も公
知であるが、脈流周波数が50Hzもしくは60Hzに限
定され、やはり十分なデイザ効果を得ることがで
きなかつた。
In the above conventional example, an intermittent square wave voltage is applied to the coil 3 of the electromagnetic proportional valve, and the voltage and current waveforms of the valve coil 3 have a sudden rise and rise as shown in FIG.
This causes irregular vibrations in the plunger and valve body of the electromagnetic proportional valve, causing the flow rate to deviate from the normal flow rate characteristic a as shown in Figure 6, and become a disordered flow rate characteristic as shown in b. However, there was a problem in that so-called characteristic disturbances were likely to occur. If you try to make the rise and fall gradual under the conditions of constant period and constant amplitude as in this conventional method, the period must be made longer, and then, as in the first conventional example, a sufficient dither effect cannot be achieved. It becomes impossible to obtain it. In addition, the direct current that is not completely smoothed by rectifying the commercial power supply and has a pulsating component is removed from the coil 3 of the electromagnetic proportional valve.
A method is also known in which the ripple current component is connected in series to the transistor amplifier 4 and used as a dither effect, but the ripple frequency is limited to 50 Hz or 60 Hz, and it is still not possible to obtain a sufficient dither effect. Ta.

発明の目的 本発明はかかる従来の問題を解消するもので、
十分なデイザ効果を得ることができ、かつ不規則
な弁振動を起きしにくい、良好なヒステリシスで
安定した流量特性になるよう作動させる電磁比例
弁制御装置を得ることを目的とする。
Purpose of the invention The present invention solves such conventional problems,
It is an object of the present invention to provide an electromagnetic proportional valve control device that can obtain a sufficient dither effect, is less likely to cause irregular valve vibrations, and is operated so as to have stable flow characteristics with good hysteresis.

発明の構成 この目的を達成するために本発明は、直流電源
に弁コイルとトランジスタ増幅器を直列接続し、
一定の周期・振幅の略三角波あるいは略正弦波の
電圧波形を発生するデイザ発生回路と、直流電圧
レベルを可変する電流制御回路と、前記デイザ発
生回路と電流制御回路との信号を加算する加算回
路とから構成したものである。
Structure of the Invention In order to achieve this object, the present invention connects a valve coil and a transistor amplifier in series to a DC power supply,
A dither generation circuit that generates a voltage waveform of a substantially triangular wave or a substantially sine wave with a constant period and amplitude, a current control circuit that varies the DC voltage level, and an adder circuit that adds signals from the dither generation circuit and the current control circuit. It is composed of.

この構成によつて電磁比例弁コイルに流れる平
均電流レベルを変化させた場合において、弁コイ
ルの電流はデイザ効果上、最も好ましい一定周
期・振幅でかつ緩やかな立上り・立下りの電流波
形となるよう作用する。
With this configuration, when the average current level flowing through the electromagnetic proportional valve coil is changed, the current in the valve coil has a current waveform with a constant period, amplitude, and gradual rises and falls that is most preferable due to the dither effect. act.

実施例の説明 以下、本発明の一実施例を第7図〜第9図を用
いて説明する。第7図において直流電源10に電
磁比例弁のコイル11とトランジスタ増幅器12
と抵抗13を直列接続し、弁コイル11と並列に
ダイオード14を接続し、一定の周期・振幅の略
三角波あるいは略正弦波の電圧波形を発生するデ
イザ発生回路15と電流制御回路16の出力を加
算回路17に入力するように接続し、かつ加算回
路17の出力端子をトランジスタ12のベース端
子に接続されている。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 7 to 9. In FIG. 7, a DC power supply 10 includes a solenoid proportional valve coil 11 and a transistor amplifier 12.
and a resistor 13 are connected in series, a diode 14 is connected in parallel with the valve coil 11, and the outputs of a dither generating circuit 15 and a current control circuit 16, which generate a voltage waveform of a substantially triangular wave or a substantially sine wave with a constant period and amplitude, are connected in series. It is connected to be input to an adder circuit 17, and the output terminal of the adder circuit 17 is connected to the base terminal of the transistor 12.

上記構成のうち、デイザ発生回路15の一回路
例を第8図に示す。この図は三角波の電圧波形を
発生するデイザ回路で、オペアンプ18の出力端
子とオペアンプ19のマイナス端子との間に抵抗
20,21を直列接続し、抵抗20,21の接続
点23とオペアンプ18のプラス端子間に抵抗2
4を、またアペアンプ19の出力端子とオペアン
プ18のプラス端子間に抵抗25をそれぞれ接続
し、オペアンプ18のマイナス端子とオペアンプ
19のプラス端子をそれぞれ接地し、抵抗20と
抵抗21との接続点23にはシエナーダイオード
26,27を接続し他端を接地し、オペアンプ1
9のマイナス端子と出力端子間に、コンデンサ2
8を接続している。この回路で接続点23には方
形波があらわれ、オペアンプ19の出力端子に三
角波を発生するが、接続点23の飽和電圧をV
1、抵抗24,25の抵抗値をそれぞれR24
R25とすると、三角波のピーク電圧Vpは、 Vp=R25/R25・V1 で抵抗24によつて三角波の振幅を制御でき、ま
た接続点23の電圧V1から抵抗21を介して、
コンデンサ28を直線的に充電するので、三角波
の周期を抵抗21によつて制御できる。
Among the above configurations, one circuit example of the dither generating circuit 15 is shown in FIG. This figure shows a dither circuit that generates a triangular voltage waveform, in which resistors 20 and 21 are connected in series between the output terminal of an operational amplifier 18 and the negative terminal of an operational amplifier 19, and the connecting point 23 of the resistors 20 and 21 and the operational amplifier 18 are connected in series. Resistor 2 between the positive terminals
4, a resistor 25 is connected between the output terminal of the operational amplifier 19 and the positive terminal of the operational amplifier 18, and the negative terminal of the operational amplifier 18 and the positive terminal of the operational amplifier 19 are respectively grounded. Connect Sienar diodes 26 and 27 to and ground the other end, and connect the operational amplifier 1
Connect capacitor 2 between the negative terminal of 9 and the output terminal.
8 is connected. In this circuit, a square wave appears at the connection point 23, and a triangular wave is generated at the output terminal of the operational amplifier 19, but the saturation voltage at the connection point 23 is set to V
1. The resistance values of resistors 24 and 25 are R 24 and
Assuming R 25 , the peak voltage V p of the triangular wave is V p = R 25 /R 25 · V1, and the amplitude of the triangular wave can be controlled by the resistor 24, and from the voltage V1 at the connection point 23 via the resistor 21,
Since the capacitor 28 is charged linearly, the cycle of the triangular wave can be controlled by the resistor 21.

上記第7図、第8図に示した構成において、デ
イザ発生回路15で発生する電圧波形は、従来例
のように方形波電圧で急激な電圧の立上り立下り
による弁振動などの不都合を生じることのないよ
うに、緩やかに利上り立下る三角波の電圧波形
で、かつ電磁比例弁にとつてヒステリシスを小さ
くでき最適な一定周期一定振幅に設定し、このデ
イザ発生回路15の信号と電流制御回路16の直
流電圧信号が加算回路17で加算され、トランジ
スタ12のベース電流波形は第9図のように大き
い平均電流IHのときと、小さい平均電流ILのとき
と周期・振幅は変化せず一定となるよう作用す
る。このとき、電磁比例弁のコイル11の電流波
形も第9図のベース電流波形同様に大きい平均電
流IHのときと、小さい平均電流ILのときと周期・
振幅は変化せず一定となるよう作用し、緩やかに
立上り立下る略三角波の電流波形であるため、弁
振動がなく、かつ優れたデイザ効果でヒステリシ
スの小さい安定した流量特性を得られる効果があ
る。
In the configuration shown in FIGS. 7 and 8 above, the voltage waveform generated by the dither generation circuit 15 is a square wave voltage as in the conventional example, and does not cause problems such as valve vibration due to sudden rises and falls of the voltage. The signal of the dither generation circuit 15 and the current control circuit 16 are set to have a triangular voltage waveform with a gradual rise and fall, and a constant period and constant amplitude, which is optimal for the electromagnetic proportional valve and can reduce hysteresis. The DC voltage signals of are added in the adding circuit 17, and the base current waveform of the transistor 12 has a constant period and amplitude when the average current I H is large and when the average current I L is small, as shown in Figure 9. It acts so that At this time, the current waveform of the coil 11 of the electromagnetic proportional valve also changes in period when the average current I H is large and when the average current I L is small, similar to the base current waveform in FIG.
The current waveform is approximately a triangular wave with a constant amplitude that does not change and rises and falls slowly, so there is no valve vibration and the excellent dither effect provides stable flow characteristics with low hysteresis. .

デイサ発生回路15については第8図では三角
波発生回路を例に説明したが、方形波のように急
激な立上り立下り波形でなく、緩やかな立上り立
下り波形であればノコギリ波のような略三角波形
や、台形のような略三角波形、あるいは正弦波ま
たはそれがやや歪んだ略正弦波形などの電圧波形
を発生するデイザ発生回路であれば、いずれも前
記の三角波発生回路と同様の効果が得られる。
The dither generation circuit 15 has been explained using a triangular wave generation circuit as an example in FIG. 8, but if the waveform is not a sharp rise and fall waveform like a square wave, but a gradual rise and fall waveform, it can be a substantially triangular waveform like a sawtooth wave. Any dither generating circuit that generates a voltage waveform such as a waveform, a substantially triangular waveform such as a trapezoid, a sine wave, or a slightly distorted substantially sine waveform can achieve the same effect as the triangular wave generating circuit described above. It will be done.

また電磁比例弁はプランジヤ摺動式に限らず、
ほかにガス湯沸器に一般によく使用されているム
ービングマグネツト式やムービングコイル式の方
式の電磁比例弁の場合においても同様の効果が得
られる。
In addition, electromagnetic proportional valves are not limited to the plunger sliding type.
Similar effects can also be obtained with moving magnet type or moving coil type electromagnetic proportional valves that are commonly used in gas water heaters.

発明の効果 以上のように本発明の電磁比例弁制御装置によ
れば次の効果が得られる。
Effects of the Invention As described above, the electromagnetic proportional valve control device of the present invention provides the following effects.

(1) 緩やかに立上り立下る一定周期・振幅の電圧
波形を発生するデイザ発生回路と電流制御回路
との信号を加算回路で加算し、弁コイルと直流
電源と直列接続したトランジスタ増幅器のベー
ス端子に入力する構成としているので、弁コイ
ルの電流は緩やかな立上り立下りでかつ一定の
周期・振幅の波形のデイザ電流が流れるように
作用し、有効なデイザ効果を発揮しながら、不
都合な弁振動を誘起しないため、小さく良好な
ヒステリシスでかつ安定した流量特性となるよ
う電磁比例弁を作動させることができる効果が
ある。
(1) The signals from the dither generation circuit and the current control circuit, which generate a voltage waveform with a constant period and amplitude that slowly rises and falls, are added together in an adder circuit, and the signals are added to the base terminal of the transistor amplifier connected in series with the valve coil and the DC power supply. Since the input is configured so that the current in the valve coil acts as a dither current with a waveform of gentle rise and fall and a constant period and amplitude, it produces an effective dither effect while suppressing undesirable valve vibration. Since no induction occurs, the electromagnetic proportional valve can be operated with small and good hysteresis and stable flow characteristics.

(2) デイザ発生回路によるデイザ信号と、電流制
御回路による直流信号とを加算し、弁コイルと
直列接続のトランジスタベース端子に入力する
構成であるから、デイザ波形および周期・振幅
を任意にかつ最適なものに設定ができ、各種の
電磁比例弁に対応できる。電磁比例弁の可動
部・弁体などの形態や重量などにより、最もデ
イザ効果を発揮できる波形および周期・振幅は
それぞれ条件が異なる場合が多い。また不都合
な弁振動を生じる条件についても同様であり、
上記の本発明の構成によれば、それらを最適な
条件で作動させることが可能となる。
(2) Since the dither signal from the dither generation circuit and the DC signal from the current control circuit are added together and input to the transistor base terminal connected in series with the valve coil, the dither waveform, period, and amplitude can be adjusted arbitrarily and optimally. It can be set to various types of electromagnetic proportional valves. Depending on the shape and weight of the movable parts and valve body of the electromagnetic proportional valve, the conditions for the waveform, period, and amplitude that can best exhibit the dither effect often vary. The same applies to conditions that cause undesirable valve vibration.
According to the configuration of the present invention described above, it becomes possible to operate them under optimal conditions.

(3) 低電流時から高電流時まで、常に一定の周期
振幅のデイザ波形で作動する方式であるため、
電磁比例弁の作動位置および流量位置がどこに
あつても、常に最適な一定のデイザ効果が得ら
れ、常に安定した特性を得ることができる。
(3) Since the method operates with a dither waveform with a constant periodic amplitude from low current to high current,
No matter where the operating position and flow rate position of the electromagnetic proportional valve are, a certain optimum dither effect can always be obtained, and stable characteristics can always be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電磁比例弁制御装置の一例を示
す基本回路図、第2図a,b,cは第1図に示す
装置による弁コイルの電流波形線図、第3図は他
の従来の電磁比例弁制御装置の一例を示す基本回
路図、第4図a,b,cは第3図に示す装置の方
形波発生回路の出力波形線図、第5図は第3図に
示す装置の弁コイルの電圧・電流波形線図、第6
図は第3図に示す装置による電磁比例弁流量特性
図、第7図は本発明の一実施例を示す電磁比例制
御装置の基本回路図、第8図は第7図のデイザ発
生回路の一例を示す回路図、第9図は第7図に示
す装置のトランジスタベース電流波形線図および
弁コイル電流波形線図である。 10……直流電源、11……弁コイル、12…
…トランジスタ増幅器、15……デイザ発生回
路、16……電流制御回路、17……加算回路。
Fig. 1 is a basic circuit diagram showing an example of a conventional electromagnetic proportional valve control device, Fig. 2 a, b, and c are current waveform diagrams of the valve coil according to the device shown in Fig. 1, and Fig. 3 is another conventional electromagnetic proportional valve control device. A basic circuit diagram showing an example of an electromagnetic proportional valve control device, FIG. 4 a, b, and c are output waveform diagrams of the square wave generation circuit of the device shown in FIG. 3, and FIG. 5 is an output waveform diagram of the device shown in FIG. 3. Voltage/current waveform diagram of the valve coil, No. 6
The figure is a flow characteristic diagram of an electromagnetic proportional valve using the device shown in Fig. 3, Fig. 7 is a basic circuit diagram of an electromagnetic proportional control device showing an embodiment of the present invention, and Fig. 8 is an example of the dither generation circuit shown in Fig. 7. FIG. 9 is a transistor base current waveform diagram and a valve coil current waveform diagram of the device shown in FIG. 7. 10...DC power supply, 11...Valve coil, 12...
...Transistor amplifier, 15...Dither generation circuit, 16...Current control circuit, 17...Addition circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 直流電源に弁コイルとトランジスタ増幅器を
直列接続し、一定の周期・増幅の略三角波あるい
は略正弦波の電圧波形を発生するデイザ発生回路
と、直流電圧レベルを可変する電流制御回路と、
前記デイザ発生回路と電流制御回路との信号を加
算する加算回路とからなる電磁比例弁制御装置。
1. A dither generation circuit that connects a valve coil and a transistor amplifier in series to a DC power source and generates a voltage waveform of a substantially triangular wave or a substantially sine wave with a constant period and amplification, and a current control circuit that varies the DC voltage level.
An electromagnetic proportional valve control device comprising an addition circuit that adds signals from the dither generation circuit and the current control circuit.
JP5142684A 1984-03-16 1984-03-16 Solenoid-operated proportional valve controller Granted JPS60196412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5142684A JPS60196412A (en) 1984-03-16 1984-03-16 Solenoid-operated proportional valve controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5142684A JPS60196412A (en) 1984-03-16 1984-03-16 Solenoid-operated proportional valve controller

Publications (2)

Publication Number Publication Date
JPS60196412A JPS60196412A (en) 1985-10-04
JPH0330031B2 true JPH0330031B2 (en) 1991-04-26

Family

ID=12886597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5142684A Granted JPS60196412A (en) 1984-03-16 1984-03-16 Solenoid-operated proportional valve controller

Country Status (1)

Country Link
JP (1) JPS60196412A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4679585A (en) * 1986-01-10 1987-07-14 Mks Instruments, Inc. Flowmeter-controlled valving
US4777383A (en) * 1987-06-01 1988-10-11 Ldi Pneutronics Corp. Electrically controlled variable pressure pneumatic circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371759A (en) * 1976-12-08 1978-06-26 Shinko Electric Co Ltd Changing method of valve characteristic

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170Y2 (en) * 1980-05-23 1987-01-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371759A (en) * 1976-12-08 1978-06-26 Shinko Electric Co Ltd Changing method of valve characteristic

Also Published As

Publication number Publication date
JPS60196412A (en) 1985-10-04

Similar Documents

Publication Publication Date Title
Habetler et al. Acoustic noise reduction in sinusoidal PWM drives using a randomly modulated carrier
EP0096370A1 (en) Power supply device
KR950035034A (en) Brushless DC Motor Control System with Minimal Torque Ripple
JP2981835B2 (en) Drive control device for electromagnetic proportional control valve and drive control method therefor
JPH03190557A (en) Maximum duty cycle controller of pulse width modulator
MXPA04009647A (en) Line frequency switching regulator.
JPS5825965B2 (en) Denjiri Yuryokei
JPH0330031B2 (en)
US3970909A (en) Constant speed regulator for DC motor
US4460955A (en) Stabilizing power supply apparatus
JPH022028B2 (en)
JPS6213349Y2 (en)
JPH0510549B2 (en)
JPH0433193B2 (en)
EP0196543A2 (en) Current control of an inductive load
JP2540251B2 (en) Proportional valve drive
JPS6249084A (en) Electromagnetic proportional valve control device
JPS6327210Y2 (en)
US3590360A (en) High efficiency ac voltage regulator
JPS6222389A (en) Electromagnetic cooker
JPH0544623Y2 (en)
JP2986577B2 (en) Electromagnetic control valve controller
KR20010060202A (en) 2 level switching power transform apparatus
SU1728947A2 (en) Stabilized single-step voltage converter
JPH0359677B2 (en)