JPS60104874A - Control device of proportional solenoid valve - Google Patents

Control device of proportional solenoid valve

Info

Publication number
JPS60104874A
JPS60104874A JP21272283A JP21272283A JPS60104874A JP S60104874 A JPS60104874 A JP S60104874A JP 21272283 A JP21272283 A JP 21272283A JP 21272283 A JP21272283 A JP 21272283A JP S60104874 A JPS60104874 A JP S60104874A
Authority
JP
Japan
Prior art keywords
circuit
current
valve
transistor
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21272283A
Other languages
Japanese (ja)
Other versions
JPH022028B2 (en
Inventor
Shigeru Shirai
滋 白井
Masaji Nakamura
中村 正次
Tomohide Matsumoto
朋秀 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21272283A priority Critical patent/JPS60104874A/en
Publication of JPS60104874A publication Critical patent/JPS60104874A/en
Publication of JPH022028B2 publication Critical patent/JPH022028B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

PURPOSE:To prevent a valve from its irregular vibration and obtain a stable flow characteristic, by connecting the output terminal of a circuit, which adds signals of a dither generating circuit and a current control circuit, to the base terminal of a transistor parallelly connecting a capacitor. CONSTITUTION:A coil 11 of a proportional solenoid valve, transistor amplifier 12 and a resistor 13 are connected in series to a DC power supply 10. A diode 14 and a capacitor 15 are respectively connected in parallel to the valve coil 11 and the transistor 12. Further a dither generating circuit 16, current control circuit 17 and an adder circuit 18 are connected so as to input an output of the circuit 16, 17 to the circuit 18, still further an output terminal of the adder circuit 18 is connected to a base terminal of the transistor 12. By such circuit constitution, a current of the valve coil is shaped to almost a trapezoidal waveform with gentle leading and trailing edges, never inducing vibration of the valve.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電流に応じて流体流111:を制御する電磁比
例弁制御装置に関し、特に小さく良好なヒステリシスで
かつ安定した流1且特性となるように作動させることが
可能な制御装置の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electromagnetic proportional valve control device for controlling a fluid flow 111 according to current, and in particular to a solenoid proportional valve control device that controls a fluid flow 111 with small and good hysteresis and stable flow characteristics. The present invention relates to a configuration of a control device that can be operated.

従来例の構成さその問題点 電磁比例弁はガス湯沸器やガス暖房器・ガス調理器など
において、制御すべき温度負荷に対応してバーナへのガ
ス供給量を制御するものであるが、電磁プランジャ摺動
式の前記弁にあっては、弁体の動き始めは静摩擦力に打
ち勝つ力が発生するまで動かず、弁体が正寸る時は動摩
擦力上駆動力が一致した時点で止まってしまい、摩擦力
に見合うだけの誤差や、プランジャやヨークの残留磁気
によるヒステリシスなどで、比例弁コイルの電流に対し
、正確で再現性の高い流量制御ができない。
Problems with the structure of the conventional example The electromagnetic proportional valve is used in gas water heaters, gas heaters, gas cookers, etc. to control the amount of gas supplied to the burner in response to the temperature load to be controlled. In the electromagnetic plunger sliding type valve, when the valve body starts to move, it does not move until a force is generated that overcomes the static friction force, and when the valve body is adjusted to the correct size, it stops when the dynamic friction force and driving force match. Therefore, accurate and highly reproducible flow rate control of the proportional valve coil current cannot be performed due to errors commensurate with the frictional force and hysteresis due to residual magnetism in the plunger and yoke.

そこで従来ヒステリシス特性等を良好ならしめるために
、次のような制御装置か公知である。
Therefore, in order to improve the hysteresis characteristics, the following control device is conventionally known.

この場合の制御回路は第1図に示されるが、交流電源1
を整流器2によって全波整流した流、電磁比例弁のコイ
ル3とトランジスタ増幅器4および抵抗5からなる直列
回路に脈流の直流電流を流通させて、プランジャを微振
動させながら所定の制御をするようにしたものである。
The control circuit in this case is shown in FIG.
The current is full-wave rectified by a rectifier 2, and a pulsating direct current is passed through a series circuit consisting of a coil 3 of an electromagnetic proportional valve, a transistor amplifier 4, and a resistor 5, and a predetermined control is performed while slightly vibrating the plunger. This is what I did.

そして比例弁コイル3に流す電流の平均値を変えるため
には、第2図に示すように、全波整流の直流をそのま捷
加える最大電流値(第2図(イ)参照)から設定レベル
リ、−」二の波高部分をカッhして得られる所望値(第
2図仲)、(ハ)参照)の範囲内で電流制御を行わせて
おり、この制御を電流調整回路6によって無段階的に成
している。
In order to change the average value of the current flowing through the proportional valve coil 3, as shown in Figure 2, the setting level is adjusted from the maximum current value (see Figure 2 (a)) by directly switching the full-wave rectified direct current. , -'' The current is controlled within the range of the desired value obtained by cutting the second wave height (see Figure 2, middle) and (c)), and this control is performed steplessly by the current adjustment circuit 6. It is accomplished according to the purpose.

この他に、サイリスク利用による位相制御方式によって
電流制御する形態のものもある。
In addition to this, there is also a type in which the current is controlled by a phase control method using Cyrisk.

占ころか−に記従来力式によつゾこのでは、ティザ(出
力電流波形)効果が弱くなって初期の目的を達成し難い
問題かあり、この欠点は特に低電流域において顕著に現
れるため、電磁比例弁の性能か十分に発揮されなかった
According to the conventional power formula, the teaser (output current waveform) effect is weakened, making it difficult to achieve the initial purpose, and this drawback is particularly noticeable in the low current range. However, the performance of the electromagnetic proportional valve was not fully demonstrated.

上記欠点を補なうべく他の従来例として次のような制御
装置が公知である。
In order to compensate for the above drawbacks, the following control device is known as another conventional example.

この場合のti制御回路t:r第3図にメJξすJ:う
に、直流電隙7にトランジスタ増幅器4さ電磁比例弁の
コイル3を直列接続し、トランジスタ増幅器4のベース
端子に方形波信号発生回路8を接続した構成で、方形波
信号発生回路8は第4図に)、(ホ)、(へ)のように
方形波の波高値(振幅)および周期は一定で、オンとオ
フとの時間比(デユーティ)を変化させて、平均電圧値
7の異なる出力信号を出させるものである。なお電磁比
例弁3と並列に抵抗5とダイオード9とを直列にして接
続しているのは、弁コイル3のサージ電圧を吸収するた
めである。
In this case, the ti control circuit t:r is shown in Figure 3.The transistor amplifier 4 and the coil 3 of the electromagnetic proportional valve are connected in series to the DC electric gap 7, and a square wave signal is generated at the base terminal of the transistor amplifier 4. In the configuration in which the circuit 8 is connected, the square wave signal generating circuit 8 has a constant peak value (amplitude) and period of the square wave as shown in Fig. 4), (e), and (e), and has a constant on and off state. By changing the time ratio (duty), output signals with different average voltage values of 7 are output. The reason why a resistor 5 and a diode 9 are connected in series in parallel with the electromagnetic proportional valve 3 is to absorb the surge voltage of the valve coil 3.

」二記の従来例においては、電磁比例弁のコイル3に断
続方形波電圧が印加され、弁コイル3の電圧および電流
波形が第5図のように急な立」−り・立下りとなるため
に、電磁比例弁のプランジャおよび弁体の不規則な振動
を誘発し、第6図のように正常な流量特性(ト)からず
れ、(イ)のような乱れた流量特性になったりする、い
わゆる特性乱れを発生しやすい問題があった。この従来
方式のように一定周期と一定振幅の条件において、立」
ユリ・立下りが緩やかになるようにしようとすると、周
期を長くしなければならす、そうすると最初の従来例と
同様に十分なディザ効果が得られなくなってし丑う。捷
だ商用電源を整流し完全平滑しないで脈流成分を残した
直流を、電磁比例弁のコイル3とトランジスタ増幅器4
に直列に接わCし、脈流成分をディザ効果として利用し
よう、とする方式も公知であるか、脈流周波数か50 
Hzもしくけ60Hzに限定され、やはり十分なディザ
効果を得るこ々ができなかった。
In the conventional example described in ``2'', an intermittent square wave voltage is applied to the coil 3 of the electromagnetic proportional valve, and the voltage and current waveforms of the valve coil 3 rise and fall rapidly as shown in Fig. 5. This induces irregular vibrations in the plunger and valve body of the electromagnetic proportional valve, causing the flow rate characteristics to deviate from the normal flow characteristics (G) as shown in Figure 6 and become disordered flow characteristics as shown in (A). However, there was a problem in that so-called characteristic disturbances were likely to occur. As with this conventional method, under the conditions of constant period and constant amplitude,
If an attempt is made to make the rise and fall gradual, the period must be lengthened, and then, as in the first conventional example, a sufficient dither effect cannot be obtained. The DC current that is not completely smoothed by rectifying the shattered commercial power supply and has pulsating components left behind is transferred to the electromagnetic proportional valve coil 3 and the transistor amplifier 4.
There is also a known method in which the pulsating flow component is used as a dither effect by connecting C in series with the pulsating flow frequency.
The Hz was also limited to 60 Hz, and it was not possible to obtain a sufficient dither effect.

発明の目的 本発明はかかる従来の問題を解消するものて、十分なデ
ィザ効果を得ることができ、かつ不規則な非振OJを起
こしにくい、良好なヒステリシスで安疋し/こ流加1特
性になるよう作動させる電磁比例弁1till 伶11
装置を得ることを目的とする。
OBJECT OF THE INVENTION The present invention solves the problems of the conventional art, and provides a stable/coupled one characteristic with good hysteresis, which can obtain a sufficient dither effect, is less likely to cause irregular non-vibration OJ, and has good hysteresis. 1till 伶11
The purpose is to obtain equipment.

発明の構成 この]」的を達成するために本発明は、直流電源に弁コ
イルとトランジスタ増幅器を直列接続し、一定の周期・
振幅の電圧波形を発生ずるディザ発生回路と、直流電圧
レベルをjjj変する電流11ilJ御回路と、[]「
昆ILディサ発生回路と電流制御回路との信弓を加算す
る加算回路とを有し、該加算回路の出力端子を[j1]
記トランジスタ増幅器のベース端子に接続する吉ともに
、I]q記1−ランリスク増幅器と並列にコンデンサを
接続したものである。この構成によって電磁比例弁コイ
ルに流れる平均電流レベルを変化させた場合において、
弁コイルの電流はディザ効果」二、最も好ましい−’A
E周期・振幅でかつ緩やかな立」ユリ・立下りの電流波
形となるよう作用する。
Structure of the Invention In order to achieve this objective, the present invention connects a valve coil and a transistor amplifier in series to a DC power source, and
A dither generation circuit that generates a voltage waveform with an amplitude, a current control circuit that changes the DC voltage level, and
It has an adder circuit that adds the signals of the IL disa generating circuit and the current control circuit, and the output terminal of the adder circuit is connected to [j1].
A capacitor is connected in parallel with the base terminal of the transistor amplifier described above and the transistor amplifier described above. When changing the average current level flowing through the electromagnetic proportional valve coil with this configuration,
The current in the valve coil has a dither effect '2, the most preferred -'A
It acts so that the current waveform has an E period and amplitude and a gradual rise and fall.

実施例の説明 1.1下本発明の一実施例を第7図を用いて説明する。Description of examples 1.1 An embodiment of the present invention will be described below with reference to FIG.

第7図において直流電源10に電磁比例弁のコイル11
とトランジスタ増幅器12と抵抗13を直列接続し、弁
コイル11と並列にダ、イオード14を、トランジスタ
12と並列にコンデンサ15をそれぞね接続し、さらに
ディザ発生回路16さ電流制御回路17の出力を加算回
路18に入力するように接続し、かつ加算回路18の出
力端子をトランジスタ120ベース端子に接続されてい
る。
In FIG. 7, the coil 11 of the electromagnetic proportional valve is connected to the DC power supply 10.
A transistor amplifier 12 and a resistor 13 are connected in series, a diode 14 is connected in parallel with the valve coil 11, a capacitor 15 is connected in parallel with the transistor 12, and the output of a dither generating circuit 16 and a current control circuit 17 is connected in series. is connected to be input to the adder circuit 18, and the output terminal of the adder circuit 18 is connected to the base terminal of the transistor 120.

」二記昂1成においてディザ発生回路16で発生する電
圧波形は、電磁比例弁にとってヒステリシスを小さくで
き、かつ不都合な弁振動を生じない最適な一定周期一定
振幅に設定し、該ディザ発生回路16の信号と電流制御
回路17の直流電圧信号か加算回路18て加算され、ト
ランジスタ120ベース電流波形は第8図のように大き
い平均電流L のときと、小さい平均電流IBLのとき
とH 周期・振幅は変化せず一定となるよう作用する。
The voltage waveform generated by the dither generation circuit 16 in the second phase is set to an optimum constant period constant amplitude that can reduce hysteresis for the electromagnetic proportional valve and does not cause undesirable valve vibration. The signal and the DC voltage signal of the current control circuit 17 are added by the adder circuit 18, and the transistor 120 base current waveform is divided into three periods and amplitudes, as shown in FIG. acts so that it does not change and remains constant.

このとき、電磁比例弁のコイル11の電流波形は第9図
のように略台形波形になるように作用する。
At this time, the current waveform of the coil 11 of the electromagnetic proportional valve acts in a substantially trapezoidal waveform as shown in FIG.

理由を説明すると、捷すトランジスタ12のベース電流
か急に立下がると、トランリスク12のコレクターエミ
ツク聞の電気抵1)°Cか急に増大したのと同様に考え
ることができ、トランリスク12のコレクタ電流は急に
減少する。ところがトランジスタ12と並列にコンデン
サ15が接続しであるため、コンデンサ15に充電され
弁コイル11にはこの充電電流が流れる。このときコン
デンサ15に充電されていくにしたかつて次第に充電電
流は減少していく。以上のときからベース電流が急に立
下がった際、弁コイル11の電流は緩やかに減少してい
くことになる。逆にベース電流か立」二がる場合、コン
デンサ15に充電された電荷がトランジスタ12を経て
放電されるため、弁コイル11の電流はコンデンサ放電
電流の減少につれて増加することになり、緩やかに増大
することになる。したがって電磁比例弁のコイル11の
電流は、第9図のように略台形波形で変化するように作
用し、緩やかな立上り立下がりの電流変化のため不都合
な弁振動がなく、優れたディサ効果てヒステリシスの小
さい安定した比例流量特性を得られる効果がある。
To explain the reason, if the base current of the transistor 12 to be disconnected suddenly falls, it can be thought of as if the electric resistance between the collector emitter of the transformer 12 suddenly increases at 1) °C. The collector current of 12 suddenly decreases. However, since the capacitor 15 is connected in parallel with the transistor 12, the capacitor 15 is charged and this charging current flows through the valve coil 11. At this time, as the capacitor 15 is being charged, the charging current gradually decreases. From the above, when the base current suddenly falls, the current in the valve coil 11 will gradually decrease. Conversely, when the base current rises or falls, the electric charge charged in the capacitor 15 is discharged through the transistor 12, so the current in the valve coil 11 increases as the capacitor discharge current decreases, so it gradually increases. I will do it. Therefore, the current in the coil 11 of the electromagnetic proportional valve changes in a substantially trapezoidal waveform as shown in FIG. This has the effect of obtaining stable proportional flow characteristics with small hysteresis.

発明の効果 以上のように本発明の電磁比例弁制御装置によれは次の
効果が得られる。
Effects of the Invention As described above, the electromagnetic proportional valve control device of the present invention provides the following effects.

(1)一定周期・振幅の波形を発生するティザ発生回路
と電流制御回路との信号を加算回路で加算し、トランジ
スタベース端子に入力し、かつトランジスタと並列にコ
ンデンサを接続した構成としているので、弁コイルの電
流は緩やかな立上り立下がりの略台形波形となるよう作
用し、有効なティザ効果を発揮しながら不都合な弁振動
を誘起しないため、小さく良好なヒステリシスでかつ安
定した流ij−特性となるよう電磁比例弁を作動さぜる
ことかできる効果がある。
(1) The signals from the teaser generation circuit that generates a waveform with a constant period and amplitude and the current control circuit are added by an adder circuit, and the result is input to the transistor base terminal, and a capacitor is connected in parallel with the transistor. The current in the valve coil acts in a roughly trapezoidal waveform with gentle rises and falls, and while exhibiting an effective teaser effect, it does not induce undesirable valve vibration, resulting in stable flow characteristics with small and good hysteresis. There is an effect that can be achieved by operating a solenoid proportional valve.

(2) ディサ発生回路によるテイザイ―吟と、電流制
御回路による直流信号とを加算し、弁コイル々直列接ゎ
Rのトランジスタベース端子に人力する構成であるから
、ティザ波形および周fil・振幅を任意かつ最J囚な
もの(で設定かでき、各腫の電磁比例弁に対応できる。
(2) The teaser waveform, frequency, and amplitude are calculated by adding the teaser signal generated by the teaser generation circuit and the DC signal generated by the current control circuit, and manually inputting the signal to the transistor base terminal connected to the valve coils in series. It can be set arbitrarily and in the most convenient manner, and can be adapted to each type of electromagnetic proportional valve.

電磁比例弁の1月す1部・弁体なとの形部や重]1)な
どにより、最もティザ効lA!:を発揮できる波形およ
び周期・振幅はそれぞれ条件が異なる場合か多い。捷/
こ不都合な非振:!ilJ (!l−生じる条件につい
ても同様であり、1−1記の本発明の構成によ)1.は
、それらを最個な条件で作1lIJさせることが可能と
なるわけである。
Due to the shape and weight of the solenoid proportional valve's first part and valve body] 1), it has the most teaser effect! : The waveform, period, and amplitude that can exhibit this effect often have different conditions. Sword/
This inconvenient non-performance:! ilJ (!l-The same applies to the conditions that occur, according to the configuration of the present invention described in 1-1)1. This makes it possible to create them under the most suitable conditions.

(3)低電流時から11−」電流時1−C1常に一定の
周期振幅のディザ波形で作動する方式であるため、電磁
比例弁の作動イIr、 ii’コ1”および流量位置か
どこにあっても、常に最適な一定のディザ効果か?Uら
れ、常に安定した4:’を性を得ることができる。
(3) From low current to 11-" current 1-C1 is a method that always operates with a dither waveform with a constant periodic amplitude. Even if a constant dither effect is always optimal, a stable 4:' characteristic can always be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電磁比例弁制御装置の一例を示す基本回
路図、第2図(イ)〜(ハ)は第1図に示す装置による
弁コイルの電流波形線図、第3図は他の従来の電磁比例
弁制御装置の一例を示す基本回路図、第4図に)〜(へ
)は第3図に示す装置の方形波発生回路の出力波形線図
、第5図は第3図に示す装置の弁コイルの電圧・電流波
形線図、第6図は第3図に示す装置による電磁比例弁流
量特性図、第7図は本発明の電磁比fil弁制御装置の
一実施例を示す基本回路図、第8図(d第7図に示す装
置のトランシスクベース電流波形線図、第9図は第7図
に示す装置の弁コイル電流波形線図である。 10・・直流電源、11 弁コイル、12トランジスタ
増幅器、15 コンデンサ、16・・ティザ発生回路、
17 電流制御回路、18・・加算回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 (イ) (ロノ (ハ少 第3図 第4図 (二] (ホ) (ヘノ 平均電流I→
Fig. 1 is a basic circuit diagram showing an example of a conventional electromagnetic proportional valve control device, Fig. 2 (a) to (c) are current waveform diagrams of the valve coil according to the device shown in Fig. 1, and Fig. 3 is another example. A basic circuit diagram showing an example of a conventional electromagnetic proportional valve control device, Fig. 4) to (f) are output waveform diagrams of the square wave generation circuit of the device shown in Fig. 3, and Fig. FIG. 6 is a diagram of the voltage/current waveform diagram of the valve coil of the device shown in FIG. The basic circuit diagram shown in FIG. 8 (d) is a transisk base current waveform diagram of the device shown in FIG. 7, and FIG. 9 is a valve coil current waveform diagram of the device shown in FIG. 7. 10. DC power supply; 11 valve coil, 12 transistor amplifier, 15 capacitor, 16... teaser generation circuit,
17 Current control circuit, 18... Addition circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 (A) (Rono (C) Figure 3 Figure 4 (2) (E) (Heno average current I →

Claims (1)

【特許請求の範囲】[Claims] 直流電源に弁コイルとトランジスタ増幅器を直列接続し
、一定の周期・振幅の電圧波形を発生するディザ発生回
路と、曲流電圧レベルを可変する電流制御回路と、1]
[■記ディザ発生回路と電流制御回路との信号を加算す
る加算回路とを有し、前記加算回路の出力端子を前記ト
ランジスタ増幅器のベース端子に接続する吉ともに、1
)a記トランジスタ増幅器と並列にコンデンサを接続し
てなる電磁比例弁制御装置。
A dither generation circuit that connects a valve coil and a transistor amplifier in series to a DC power supply to generate a voltage waveform with a constant period and amplitude, and a current control circuit that varies the meandering voltage level; 1]
[1] An adder circuit for adding the signals of the dither generation circuit and the current control circuit described in (■), and an output terminal of the adder circuit connected to the base terminal of the transistor amplifier;
) An electromagnetic proportional valve control device comprising a transistor amplifier and a capacitor connected in parallel.
JP21272283A 1983-11-11 1983-11-11 Control device of proportional solenoid valve Granted JPS60104874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21272283A JPS60104874A (en) 1983-11-11 1983-11-11 Control device of proportional solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21272283A JPS60104874A (en) 1983-11-11 1983-11-11 Control device of proportional solenoid valve

Publications (2)

Publication Number Publication Date
JPS60104874A true JPS60104874A (en) 1985-06-10
JPH022028B2 JPH022028B2 (en) 1990-01-16

Family

ID=16627346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21272283A Granted JPS60104874A (en) 1983-11-11 1983-11-11 Control device of proportional solenoid valve

Country Status (1)

Country Link
JP (1) JPS60104874A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543301U (en) * 1977-06-09 1979-01-10
JPS5854283A (en) * 1981-09-26 1983-03-31 Omron Tateisi Electronics Co Driving circuit for proportional valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543301U (en) * 1977-06-09 1979-01-10
JPS5854283A (en) * 1981-09-26 1983-03-31 Omron Tateisi Electronics Co Driving circuit for proportional valve

Also Published As

Publication number Publication date
JPH022028B2 (en) 1990-01-16

Similar Documents

Publication Publication Date Title
JP3359141B2 (en) Power control device
EP0255326A2 (en) Current mode control arrangement with load dependent ramp signal added to sensed current waveform
US4147910A (en) Power adjustment with variable frequency and duty-cycle control for induction heating apparatus
JPS5928159B2 (en) Excitation adjustment device
JPS60104874A (en) Control device of proportional solenoid valve
JPH0330031B2 (en)
JPS6113244B2 (en)
JPH0510549B2 (en)
JPS6327210Y2 (en)
JPS60160592A (en) Induction heating cooking device
JPS6249084A (en) Electromagnetic proportional valve control device
JP2986577B2 (en) Electromagnetic control valve controller
GB2249849A (en) Motor speed control
JPS6142306Y2 (en)
JP2893865B2 (en) Variable output voltage method for switching power supply
JPS5914991B2 (en) Static power converter input/output variable device
JPS6347032Y2 (en)
JPH038077B2 (en)
JPH0795471B2 (en) Induction heating cooker
JPS6112636B2 (en)
JPS6131953B2 (en)
JPH0416916B2 (en)
JPS61173489A (en) Induction heating cooker
JPH0130269B2 (en)
JPH05109468A (en) Induction-heated cooking appliance