JPH05105453A - Iron-based magnetic powder and its production - Google Patents

Iron-based magnetic powder and its production

Info

Publication number
JPH05105453A
JPH05105453A JP3271547A JP27154791A JPH05105453A JP H05105453 A JPH05105453 A JP H05105453A JP 3271547 A JP3271547 A JP 3271547A JP 27154791 A JP27154791 A JP 27154791A JP H05105453 A JPH05105453 A JP H05105453A
Authority
JP
Japan
Prior art keywords
iron
magnetic
powder
magnetic field
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3271547A
Other languages
Japanese (ja)
Inventor
Yoshishige Koma
佳茂 駒
Sayoko Kano
さよ子 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP3271547A priority Critical patent/JPH05105453A/en
Publication of JPH05105453A publication Critical patent/JPH05105453A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/09Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce iron-based magnetic powder having high saturation magnetic flux density in a low magnetic field and suitable for use as magnetic powder for a magnetic toner. CONSTITUTION:Cubic, spherical or polyhedral particles of iron oxide, magnetite or iron oxide hydrate are reduced at 500-700 deg.C in reducing gas and the resulting metallic iron particles are oxidized at 350-500 deg.C in oxygen-contg. gas to form ferric oxide in the surface layers of the iron particles. Magnetite layers are then formed in the surface layers of the iron particles by re-reduction in reducing gas at 300-450 deg.C and the iron particles are further treated with an inert gas accompanied by steam to produce iron-based magnetic powder whose saturation magnetic flux density is >=38 emu/g in a low magnetic field having 0.5kOe and >=65 emu/g in a low magnetic field having 1.0kOe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低磁場における飽和磁
束密度が高い、鉄を主成分とする磁性粒子粉末及びその
製法に関するもので、本発明の磁性粒子粉末は、1成分
系若しくは1.5成分系現像剤又は磁性トナーなどに使
用される磁性材料として特に有用なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic particle powder containing iron as a main component and having a high saturation magnetic flux density in a low magnetic field and a method for producing the same. The magnetic particle powder of the present invention is a one-component system or 1. It is particularly useful as a magnetic material used for a five-component developer or magnetic toner.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】1成分
系若しくは1.5成分系現像剤又はカプセルトナーなど
を使用する現像方式における磁性トナーの主原料は、通
常、磁性粉とバインダー樹脂であり、この他に必要に応
じて染料、顔料、導電性材料などが添加物として使用さ
れている。この磁性トナー用磁性粉としては、従来、酸
化鉄粉末あるいはフェライト粉末が使用されて来たが、
高速化及び高画質化並びに高解像力化の要求が高まり、
マグネタイト粉末が使用されて来ている。マグネタイト
粉末が使用される理由は、その飽和磁化が高く且つ保磁
力が低いことによるが、現状のマグネタイト粉末では未
だ高速化及び高画質化等の要求に充分応えるには至って
いないのが現状である。
2. Description of the Related Art The main raw materials of a magnetic toner in a developing system using a one-component type or a 1.5-component type developer or a capsule toner are usually magnetic powder and a binder resin. In addition to these, dyes, pigments, conductive materials and the like are used as additives as required. Iron oxide powder or ferrite powder has been conventionally used as the magnetic powder for the magnetic toner.
The demand for higher speed, higher image quality and higher resolution has increased,
Magnetite powder has been used. The reason why magnetite powder is used is that its saturation magnetization is high and its coercive force is low, but current magnetite powder has not yet fully met the demands for higher speed and higher image quality. ..

【0003】例えば、磁性トナー用磁性粉の重要な要求
条件として、測定磁場1KOeでの飽和磁束密度が出来
るだけ高いことが挙げられる。この理由は磁気ブラシと
しての穂立てを改善し高めることが出来るからである。
しかし、現状のマグネタイト粉末は、飽和磁束密度が、
測定磁場0.5KOeで34e.m.u./g前後、測定磁場
1.0KOeで60e.m.u./g前後であって充分高いと
は言えない。
For example, an important requirement for magnetic powder for magnetic toner is that the saturation magnetic flux density at a measuring magnetic field of 1 KOe is as high as possible. The reason for this is that the brushing as a magnetic brush can be improved and enhanced.
However, the current magnetite powder has a saturated magnetic flux density
The measured magnetic field is about 34 e.mu/g at 0.5 KOe, and the measured magnetic field is about 60 e.mu/g at 1.0 KOe, which is not sufficiently high.

【0004】また、磁性トナーの小径化をはかり見掛密
度を大きくして帯電量を多くすることも、画像の高品位
化及び高速化のためには必要である。即ち、現状におけ
る磁性トナーの平均粒径は11〜12μであるが、解像
度をさらに向上させるためには、磁性トナーの平均粒径
を、当面8μ、さらには5〜6μへとすることが目標と
されている。
Further, it is necessary to increase the apparent density and increase the charge amount by reducing the diameter of the magnetic toner in order to improve the quality and speed of the image. That is, the average particle size of the magnetic toner at present is 11 to 12 μ, but in order to further improve the resolution, the target is to set the average particle size of the magnetic toner to 8 μ for the time being, further to 5 to 6 μ. Has been done.

【0005】しかし、従来の磁性粉では低磁場での飽和
磁束密度が低く、そのために樹脂でトナー化をして理想
的な飽和磁束密度を有する磁性トナーを得ようとする
と、磁性粉の粒径を大きくする必要があり、必然的に磁
性トナーの粒径が大きくなってしまう。従って、本発明
の目的は、低磁場における飽和磁束密度が高く、磁性ト
ナー用磁性粉として適した鉄を主成分とする磁性粒子粉
末及びその製法を提供することにある。
However, the conventional magnetic powder has a low saturation magnetic flux density in a low magnetic field. Therefore, when a toner is made of resin to obtain a magnetic toner having an ideal saturation magnetic flux density, the particle size of the magnetic powder is reduced. Must be increased, which inevitably increases the particle size of the magnetic toner. Therefore, an object of the present invention is to provide a magnetic particle powder containing iron as a main component, which has a high saturation magnetic flux density in a low magnetic field and is suitable as a magnetic powder for a magnetic toner, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明は、低磁場におけ
る飽和磁束密度が、測定磁場0.5KOeで38e.m.u.
/g以上、且つ測定磁場1.0KOeで65e.m.u./g
以上である、鉄を主成分とする磁性粒子粉末を提供する
ことにより上記目的を達成したものである。また、本発
明は、上記の本発明の磁性粒子粉末の製法として、立方
状、球状又は多面体状の、酸化鉄粒子、マグネタイト粒
子又は含水酸化鉄粒子を、還元性ガス中、500〜70
0℃の温度で還元して金属鉄粒子とした後、酸素を含有
するガス中、350〜500℃で酸化して金属鉄粒子表
面層に酸化第二鉄を形成させ、次いで300〜450℃
の還元ガス中で再還元して上記金属鉄粒子表面層にマグ
ネタイト層を形成させ、さらに水蒸気を同伴した不活性
ガスで処理することを特徴とする低磁場における飽和磁
束密度が高い、鉄を主成分とする磁性粒子粉末の製法を
提供するものである。
According to the present invention, the saturation magnetic flux density in a low magnetic field is 38 e.mu at a measurement magnetic field of 0.5 KOe.
/ G or more and 65e.mu/g at a measuring magnetic field of 1.0KOe
The above object has been achieved by providing the magnetic particle powder containing iron as the main component. The present invention also provides, as a method for producing the magnetic particle powder of the present invention, cubic, spherical or polyhedral iron oxide particles, magnetite particles or hydrous iron oxide particles in a reducing gas at 500 to 70.
After reducing at a temperature of 0 ° C. to form metallic iron particles, it is oxidized at 350 to 500 ° C. in a gas containing oxygen to form ferric oxide in the metallic iron particle surface layer, and then at 300 to 450 ° C.
Is reduced in a reducing gas to form a magnetite layer on the surface layer of the metallic iron particles, and further treated with an inert gas accompanied by water vapor, which has a high saturation magnetic flux density in a low magnetic field. The present invention provides a method for producing magnetic particle powder as a component.

【0007】以下、本発明の磁性粒子粉末及びその製法
について詳述する。本発明の鉄を主成分とする磁性粒子
粉末は、低磁場における飽和磁束密度が高いため、その
平均粒径を0.1〜6μ程度とすることができ、充分ト
ナーの小径化の要求に適合し、また磁性トナーとして混
練する量を少なくすることができ、磁場へのなじみの時
間が早くなるので高速化の要求にも充分応えることがで
きるものである。
The magnetic particle powder of the present invention and the method for producing the same will be described in detail below. Since the magnetic particle powder containing iron as a main component of the present invention has a high saturation magnetic flux density in a low magnetic field, the average particle diameter thereof can be set to about 0.1 to 6 μ, which sufficiently meets the requirement for toner size reduction. In addition, the amount of kneading as a magnetic toner can be reduced, and the time to familiarize with the magnetic field is shortened, so that it is possible to sufficiently meet the demand for higher speed.

【0008】また、本発明の磁性粒子粉末を用いること
により、磁性トナーの粒径を小さくすることができるた
め、見掛密度が大きくなり、トナー同士の摩擦による摩
擦帯電が高くなり帯電性も安定するので解像力が高くな
る。本発明の鉄を主成分とする磁性粒子粉末は、次のよ
うにして製造される。立方状、球状又は多面体状の、酸
化鉄粒子、マグネタイト粒子又は含水酸化鉄粒子を原料
とし、先ず、該原料を、水素などの還元性ガス中、50
0〜700℃の温度で還元をする。この還元により、酸
化鉄粒子、マグネタイト粒子又は含水酸化鉄粒子の主成
分が金属鉄になるようにする。還元温度を500〜70
0℃とすることにより、生成した個々の鉄粒子が焼結し
た状態になり密度が大きくなる。この還元温度が500
℃未満では還元速度が遅い上に、鉄粒子個々の焼結が充
分でなくなり、また700℃を超えると粒子同士の焼結
が生ずる。
Further, by using the magnetic particle powder of the present invention, the particle size of the magnetic toner can be reduced, so that the apparent density is increased, frictional charging due to friction between the toners is increased, and the charging property is stable. Therefore, the resolution is high. The magnetic particle powder containing iron as a main component of the present invention is manufactured as follows. Cubic, spherical or polyhedral iron oxide particles, magnetite particles or hydrous iron oxide particles are used as raw materials, and the raw materials are first mixed in a reducing gas such as hydrogen at 50
The reduction is carried out at a temperature of 0 to 700 ° C. By this reduction, the main component of the iron oxide particles, the magnetite particles or the iron oxide hydroxide particles is made to be metallic iron. Reduce temperature to 500-70
By setting the temperature to 0 ° C., the individual iron particles produced become in a sintered state and the density increases. This reduction temperature is 500
If the temperature is lower than ℃, the reduction rate is slow, and the iron particles are not sufficiently sintered, and if the temperature is higher than 700 ° C, the particles are sintered with each other.

【0009】次いで、上記金属鉄粒子を、酸素を含有す
るガス中、例えば空気中、350〜500℃で酸化して
金属鉄粒子表面層に酸化第二鉄を形成させる。さらにこ
れを300〜450℃の水素などの還元ガス中で再還元
して上記金属鉄粒子表面層にマグネタイト層を形成させ
る。再還元温度を300〜450℃に限定する理由は、
300℃未満の温度では還元が充分に進行せず、磁性粉
の黒色度が不足してしまうためであり、また450℃を
超えるとマグネタイト層が形成されず、金属鉄が生成す
るからである。
Next, the metal iron particles are oxidized in a gas containing oxygen, for example, in air at 350 to 500 ° C. to form ferric oxide on the surface layer of the metal iron particles. Further, this is re-reduced in a reducing gas such as hydrogen at 300 to 450 ° C. to form a magnetite layer on the surface layer of the metallic iron particles. The reason for limiting the re-reduction temperature to 300 to 450 ° C is
This is because the reduction does not proceed sufficiently at a temperature lower than 300 ° C and the blackness of the magnetic powder becomes insufficient, and when the temperature exceeds 450 ° C, the magnetite layer is not formed and metallic iron is generated.

【0010】以上の工程により、低磁場における飽和磁
束密度が、測定磁場0.5KOeで38e.m.u./g以
上、且つ測定磁場1.0KOeで65e.m.u./g以上で
ある鉄を主成分とする磁性粉を製造できるが、対酸化性
及び対湿性を付与するために、水蒸気を同伴した不活性
ガスで磁性粉を処理する。この処理の一例としては、不
活性ガスとして窒素を使用し、該窒素ガスを300℃程
度に加熱し、これを水中を通過させることにより水蒸気
を同伴させた後、反応器中で該ガスを磁性粉と接触させ
ることにより極く薄い酸化皮膜を磁性粉表面に形成させ
る方法を挙げることができる。この場合、不活性ガス中
の水蒸気量が充分でないと安定な皮膜形成が出来ないの
で、不活性ガスの温度は少なくとも100℃である必要
がある。また、磁性粉と不活性ガスとの接触時間は30
分間程度が好ましく、30分間を超えると酸化皮膜が厚
くなりすぎ、磁気特性が低下する惧れがある。
Through the above steps, iron having a saturation magnetic flux density in a low magnetic field of 38 e.mu/g or more at a measurement magnetic field of 0.5 KOe and 65 e.mu/g or more at a measurement magnetic field of 1.0 KOe is used as a main component. Although magnetic powder can be produced, the magnetic powder is treated with an inert gas accompanied by water vapor in order to impart resistance to oxidation and humidity. As an example of this treatment, nitrogen is used as an inert gas, the nitrogen gas is heated to about 300 ° C., and this gas is passed through water to entrain water vapor, and then the gas is magnetized in a reactor. A method of forming an extremely thin oxide film on the surface of the magnetic powder by bringing it into contact with the powder can be mentioned. In this case, if the amount of water vapor in the inert gas is not sufficient, a stable film cannot be formed, so the temperature of the inert gas must be at least 100 ° C. The contact time between the magnetic powder and the inert gas is 30
About 30 minutes is preferable, and if it exceeds 30 minutes, the oxide film becomes too thick, and the magnetic properties may deteriorate.

【0011】[0011]

【実施例】以下に実施例及び比較例によって本発明をよ
り具体的に説明する。 実施例1 平均粒径0.3μの多面体状マグネタイト粉末20gを
還元反応器に入れ、該反応器に600℃で1リットル/
minの水素を60分間流し、上記マグネタイト粉末を
還元した。その後、窒素ガスを1ml/minの速度で
仕込み400℃迄冷却した後、空気を1ml/minの
速度で流して30分間酸化反応を行い、更に380℃で
水素気流中で還元をし、鉄が主成分である磁性粉とし
た。次いで、300℃に加熱した1リットル/minの
窒素気流を20℃の水中にバブリングさせた後、水蒸気
を同伴させたまま上記反応器に入れ、上記磁性粉を30
分間安定化処理をした。得られた鉄を主成分とする磁性
粒子粉末は、粒径が0.5〜1μであり、低磁場におけ
る飽和磁束密度が、測定磁場0.5KOeで39e.m.u.
/g、且つ測定磁場1.0KOeで70e.m.u./gであ
った。
EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples. Example 1 20 g of polyhedral magnetite powder having an average particle size of 0.3 μ was placed in a reduction reactor, and 1 liter / 600 liters was added to the reactor at 600 ° C.
A min of hydrogen was flowed for 60 minutes to reduce the magnetite powder. After that, nitrogen gas was charged at a rate of 1 ml / min and cooled to 400 ° C., then air was flowed at a rate of 1 ml / min to carry out an oxidation reaction for 30 minutes, and further reduced at 380 ° C. in a hydrogen stream to reduce iron. The main component was magnetic powder. Next, after bubbling a 1 liter / min nitrogen stream heated to 300 ° C. into water at 20 ° C., the mixture was put into the reactor with water vapor entrained therein, and the magnetic powder was mixed with 30
Stabilization was performed for a minute. The obtained magnetic particle powder containing iron as a main component has a particle size of 0.5 to 1 μm, and the saturation magnetic flux density in a low magnetic field is 39 e.mu at a measurement magnetic field of 0.5 KOe.
/ G, and 70 e.mu/g at a measurement magnetic field of 1.0 KOe.

【0012】実施例2 平均粒径0.3μの球状マグネタイト粉末20gを還元
反応器に入れ、該反応器に500℃で1リットル/mi
nの水素を60分間流し、上記マグネタイト粉末を還元
した。その後、窒素ガスを1ml/minの速度で仕込
み400℃迄冷却した後、空気を1ml/minの速度
で流して30分間酸化反応を行い、更に380℃で水素
気流中で還元をし、鉄が主成分である磁性粉とした。次
いで、300℃に加熱した1リットル/minの窒素気
流を20℃の水中にバブリングさせた後、水蒸気を同伴
させたまま上記反応器に入れ、上記磁性粉を30分間安
定化処理をした。得られた鉄を主成分とする磁性粒子粉
末は、平均粒径が0.5μであり、低磁場における飽和
磁束密度が、測定磁場0.5KOeで38e.m.u./g、
且つ測定磁場1.0KOeで68e.m.u./gであった。
Example 2 20 g of spherical magnetite powder having an average particle size of 0.3 μ was placed in a reduction reactor, and the reactor was heated at 500 ° C. to 1 liter / mi.
n of hydrogen was flowed for 60 minutes to reduce the magnetite powder. After that, nitrogen gas was charged at a rate of 1 ml / min and cooled to 400 ° C., then air was flowed at a rate of 1 ml / min to carry out an oxidation reaction for 30 minutes, and further reduced at 380 ° C. in a hydrogen stream to reduce iron. The main component was magnetic powder. Then, a 1 liter / min nitrogen stream heated to 300 ° C. was bubbled into water at 20 ° C., and then the magnetic powder was put into the reactor with water vapor entrained therein and the magnetic powder was stabilized for 30 minutes. The obtained magnetic particle powder containing iron as the main component has an average particle diameter of 0.5 μ and a saturation magnetic flux density in a low magnetic field of 38 e.mu/g at a measurement magnetic field of 0.5 KOe.
Moreover, it was 68 e.mu/g at a measured magnetic field of 1.0 KOe.

【0013】実施例3 平均粒径0.3μの多面体状マグネタイト粉末20gを
還元反応器に入れ、該反応器に600℃で1リットル/
minの水素を60分間流し、上記マグネタイト粉末を
還元した。その後、窒素ガスを1ml/minの速度で
仕込み380℃迄冷却した後、空気を1ml/minの
速度で流して60分間酸化反応を行い、更に380℃で
水素気流中で還元をし、鉄が主成分である磁性粉とし
た。次いで、300℃に加熱した1リットル/minの
窒素気流を20℃の水中にバブリングさせた後、水蒸気
を同伴させたまま上記反応器に入れ、上記磁性粉を30
分間安定化処理をした。得られた鉄を主成分とする磁性
粒子粉末は、平均粒径が0.8μであり、低磁場におけ
る飽和磁束密度が、測定磁場0.5KOeで38e.m.u.
/g、且つ測定磁場1.0KOeで66e.m.u./gであ
った。
Example 3 20 g of polyhedral magnetite powder having an average particle diameter of 0.3 μ was placed in a reduction reactor, and 1 liter / 600 liters was added to the reactor.
A min of hydrogen was flowed for 60 minutes to reduce the magnetite powder. After that, nitrogen gas was charged at a rate of 1 ml / min and cooled to 380 ° C., then air was flowed at a rate of 1 ml / min to carry out an oxidation reaction for 60 minutes, and further reduced at 380 ° C. in a hydrogen stream to reduce iron. The main component was magnetic powder. Next, after bubbling a 1 liter / min nitrogen stream heated to 300 ° C. into water at 20 ° C., the mixture was put into the reactor with water vapor entrained therein, and the magnetic powder was mixed with 30
Stabilization was performed for a minute. The obtained magnetic particle powder containing iron as the main component has an average particle diameter of 0.8 μ and a saturation magnetic flux density in a low magnetic field of 38 e.mu at a measurement magnetic field of 0.5 KOe.
/ G, and 66 e.mu/g at a measuring magnetic field of 1.0 KOe.

【0014】実施例4 平均粒径0.3μの多面体状マグネタイト粉末20gを
還元反応器に入れ、該反応器に600℃で1リットル/
minの水素を60分間流し、上記マグネタイト粉末を
還元した。その後、窒素ガスを1ml/minの速度で
仕込み380℃迄冷却した後、空気を2ml/minの
速度で30分間流し酸化反応を行い、更に380℃で水
素気流中で還元をし、鉄が主成分である磁性粉とした。
次いで、300℃に加熱した1リットル/minの窒素
気流を20℃の水中にバブリングさせた後、水蒸気を同
伴させたまま上記反応器に入れ、上記磁性粉を30分間
安定化処理をした。得られた鉄を主成分とする磁性粒子
粉末は、平均粒径が0.5μであり、低磁場における飽
和磁束密度が、測定磁場0.5KOeで39e.m.u./
g、且つ測定磁場1.0KOeで68e.m.u./gであっ
た。
Example 4 20 g of polyhedral magnetite powder having an average particle size of 0.3 μ was placed in a reduction reactor, and 1 liter / 600 liters was added to the reactor at 600 ° C.
A min of hydrogen was flowed for 60 minutes to reduce the magnetite powder. After that, nitrogen gas was charged at a rate of 1 ml / min and cooled to 380 ° C., then air was flowed at a rate of 2 ml / min for 30 minutes to carry out an oxidation reaction, and further reduced in a hydrogen stream at 380 ° C. Magnetic powder was used as the component.
Next, a 1 liter / min nitrogen stream heated to 300 ° C. was bubbled into water at 20 ° C., and then the magnetic powder was put into the reactor while being accompanied by steam, and the magnetic powder was stabilized for 30 minutes. The obtained iron-based magnetic particle powder has an average particle diameter of 0.5 μ and a saturation magnetic flux density in a low magnetic field of 39 e.mu/in a measured magnetic field of 0.5 KOe.
g and 68 e.mu/g at a measuring magnetic field of 1.0 KOe.

【0015】比較例1 平均粒径0.3μの八面体マグネタイト粉末20gを反
応器に入れ、該反応器に600℃で1リットル/min
の空気を60分間流して酸化反応を行い、その後、窒素
ガスを1ml/minの速度で仕込み380℃迄冷却し
た後、1ml/minの水素気流中で60分間還元し
た。次いで、300℃に加熱した1ml/minの窒素
気流を20℃の水中にバブリングさせた後、水蒸気を同
伴させたまま上記反応器に入れ、30分間安定化処理を
した。得られた磁性粉は、低磁場における飽和磁束密度
が、測定磁場0.5KOeで32e.m.u./g、且つ測定
磁場1.0KOeで56e.m.u./gであった。
Comparative Example 1 20 g of octahedral magnetite powder having an average particle size of 0.3 μ was put in a reactor, and the reactor was heated at 600 ° C. to 1 liter / min.
The air was flowed for 60 minutes to carry out the oxidation reaction, then nitrogen gas was charged at a rate of 1 ml / min to cool to 380 ° C., and then reduced in a hydrogen flow of 1 ml / min for 60 minutes. Next, after bubbling a 1 ml / min nitrogen stream heated to 300 ° C. into water at 20 ° C., the mixture was put into the reactor with water vapor entrained therein and stabilized for 30 minutes. The obtained magnetic powder had a saturation magnetic flux density in a low magnetic field of 32 e.mu/g at a measurement magnetic field of 0.5 KOe and 56 e.mu/g at a measurement magnetic field of 1.0 KOe.

【0016】比較例2 平均粒径0.3μの八面体マグネタイト粉末20gを反
応器に入れ、該反応器に600℃で1リットル/min
の窒素を60分間流した。その後、窒素ガスを1ml/
minの速度で仕込み400℃迄冷却した後、空気を1
ml/minの速度で流して30分間酸化反応を行い、
更に380℃で水素気流中で還元をした。次いで、30
0℃に加熱した1リットル/minの窒素気流を20℃
の水中にバブリングさせた後、水蒸気を同伴させたまま
上記反応器に入れ、30分間安定化処理をした。得られ
た磁性粉は、低磁場における飽和磁束密度が、測定磁場
0.5KOeで37e.m.u./g、且つ測定磁場1.0K
Oeで62e.m.u./gであった。
Comparative Example 2 20 g of octahedral magnetite powder having an average particle size of 0.3 μ was placed in a reactor, and the reactor was heated at 600 ° C. to 1 liter / min.
Flushed with nitrogen for 60 minutes. Then, 1 ml of nitrogen gas /
Charge at a speed of min and cool to 400 ° C, then add air to 1
Flow at a speed of ml / min to carry out oxidation reaction for 30 minutes,
Further reduction was carried out at 380 ° C. in a hydrogen stream. Then 30
A nitrogen stream of 1 liter / min heated to 0 ° C is applied to 20 ° C.
After bubbling in water, the water was entrained in the reactor with water vapor entrained therein and stabilized for 30 minutes. The obtained magnetic powder has a saturation magnetic flux density in a low magnetic field of 37 e.mu/g at a measurement magnetic field of 0.5 KOe and a measurement magnetic field of 1.0 K.
It was 62 e.mu/g in Oe.

【0017】[0017]

【発明の効果】本発明の鉄を主成分とする磁性粒子粉末
は、低磁場における飽和磁束密度が高く、磁性トナー用
磁性粉として特に有用なものである。また、本発明の磁
性粒子粉末の製法によれば、上記の本発明の磁性粒子粉
末を得ることができる。
INDUSTRIAL APPLICABILITY The magnetic particle powder containing iron as a main component of the present invention has a high saturation magnetic flux density in a low magnetic field and is particularly useful as a magnetic powder for magnetic toner. Further, according to the method for producing the magnetic particle powder of the present invention, the magnetic particle powder of the present invention can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 低磁場における飽和磁束密度が、測定磁
場0.5KOeで38e.m.u./g以上、且つ測定磁場
1.0KOeで65e.m.u./g以上である、鉄を主成分
とする磁性粒子粉末。
1. A magnetic particle containing iron as a main component, which has a saturation magnetic flux density of 38 e.mu/g or more at a measuring magnetic field of 0.5 KOe and 65 e.mu/g or more at a measuring magnetic field of 1.0 KOe. Powder.
【請求項2】 立方状、球状又は多面体状の、酸化鉄粒
子、マグネタイト粒子又は含水酸化鉄粒子を、還元性ガ
ス中、500〜700℃の温度で還元して金属鉄粒子と
した後、酸素を含有するガス中、350〜500℃で酸
化して金属鉄粒子表面層に酸化第二鉄を形成させ、次い
で300〜450℃の還元ガス中で再還元して上記金属
鉄粒子表面層にマグネタイト層を形成させ、さらに水蒸
気を同伴した不活性ガスで処理することを特徴とする低
磁場における飽和磁束密度が高い、鉄を主成分とする磁
性粒子粉末の製法。
2. Cubic, spherical or polyhedral iron oxide particles, magnetite particles or hydrous iron oxide particles are reduced in a reducing gas at a temperature of 500 to 700 ° C. to form metallic iron particles, and then oxygen. In a gas containing at least 350 to 500 ° C. to form ferric oxide on the metallic iron particle surface layer, and then re-reduced in a reducing gas at 300 to 450 ° C. to make the metallic iron particle surface layer magnetite. A method for producing magnetic particle powder containing iron as a main component, which has a high saturation magnetic flux density in a low magnetic field, characterized by forming a layer and further treating it with an inert gas accompanied by water vapor.
JP3271547A 1991-10-19 1991-10-19 Iron-based magnetic powder and its production Pending JPH05105453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3271547A JPH05105453A (en) 1991-10-19 1991-10-19 Iron-based magnetic powder and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3271547A JPH05105453A (en) 1991-10-19 1991-10-19 Iron-based magnetic powder and its production

Publications (1)

Publication Number Publication Date
JPH05105453A true JPH05105453A (en) 1993-04-27

Family

ID=17501590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3271547A Pending JPH05105453A (en) 1991-10-19 1991-10-19 Iron-based magnetic powder and its production

Country Status (1)

Country Link
JP (1) JPH05105453A (en)

Similar Documents

Publication Publication Date Title
US3702270A (en) Method of making a magnetic powder
EP0160496B1 (en) Magnetic iron oxide particles
JPH05105453A (en) Iron-based magnetic powder and its production
JP3473003B2 (en) Black magnetic iron oxide particle powder
JPH0352500B2 (en)
JP2937211B2 (en) Method for producing acicular magnetic iron oxide particles
US4437881A (en) Acicular ferromagnetic alloy particles and process for producing said particles
US4535047A (en) Ferromagnetic amorphous metal carrier particles for electrophotographic toners
JPH04168703A (en) Manufacture of needle-shaped magnetic iron oxide particle and powder for magnetic recording
JPH0143683B2 (en)
JPS60212821A (en) Magnetic recording medium
JP2885253B2 (en) Method of producing spindle-shaped goethite particles
JP3242102B2 (en) Magnetic powder and method for producing the same
JP3428197B2 (en) Acicular magnetic iron oxide particles and method for producing the same
JP2827190B2 (en) Method for producing acicular iron alloy magnetic particles for magnetic recording
JP2897794B2 (en) Method for producing cobalt-coated magnetic iron oxide particles
JPH01115827A (en) Spindle-shaped goethite particle power and production thereof
KR830002389B1 (en) Cobalt Modified Magnetic Oxide Particles
JP3031383B2 (en) Method for producing ferromagnetic iron oxide particles containing cobalt
JPH03199301A (en) Magnetic metallic powder and production thereof and magnetic recording medium
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JPH0755831B2 (en) Magnetic particle powder and method for producing the same
JP2013131643A (en) Nitride magnetic material and manufacturing method of the same
JPH0755827B2 (en) Manufacturing method of spindle-shaped iron-based metallic magnetic particle powder
JPH11229005A (en) Production of acicular iron alloy magnetic particle powder for magnetic recording

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040817