JPH01115827A - Spindle-shaped goethite particle power and production thereof - Google Patents

Spindle-shaped goethite particle power and production thereof

Info

Publication number
JPH01115827A
JPH01115827A JP27252287A JP27252287A JPH01115827A JP H01115827 A JPH01115827 A JP H01115827A JP 27252287 A JP27252287 A JP 27252287A JP 27252287 A JP27252287 A JP 27252287A JP H01115827 A JPH01115827 A JP H01115827A
Authority
JP
Japan
Prior art keywords
axis diameter
aqueous solution
particles
spindle
major axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27252287A
Other languages
Japanese (ja)
Other versions
JP2640817B2 (en
Inventor
Mamoru Tanihara
谷原 守
Hiroshi Kawasaki
浩史 川崎
Yoshiro Okuda
奥田 嘉郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP62272522A priority Critical patent/JP2640817B2/en
Publication of JPH01115827A publication Critical patent/JPH01115827A/en
Application granted granted Critical
Publication of JP2640817B2 publication Critical patent/JP2640817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the title powder suitable as a magnetic material particle powder for high recording density, sensitivity and output, having uniform particle size and large axis ratio and containing no tree branch-shaped particle, by aging a FeCO3containing aqueous solution obtained from an excess amount of alkali carbonate and an aqueous solution of iron(II) salt in prescribed conditions and oxidizing the aged aqueous solution. CONSTITUTION:A FeCO3-containing aqueous solution obtained by reacting an aqueous solution of iron(II) salt such as FeSO4 or FeCl2 with an alkali carbonate such as Na2CO3, K2CO3 or (NH4)2CO3 having 1.5-3.5 times equivalent based on Fe in the above-mentioned aqueous solution is aged under non-oxidizing atmosphere (e.g., N2 gas) at 40-60 deg.C for 50-100min. Then the aged FeCO3- containing aqueous solution, adjusted to 40-60 deg.C and pH7-11, is oxidized by passing an oxygen-containing gas (e.g., air) into the solution to provide the titled powder having 0.05-0.8mu long axis diameter and >=11 axis ratio (long axis diameter/short axis diameter).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気記録用磁性材料粒子粉末を製造する際の
出発原料として好適な軸比(長軸径/短軸径)が大きい
紡錘形を呈したゲータイト粒子わ)末及びその製造法に
関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a spindle-shaped material with a large axial ratio (major axis diameter/minor axis diameter) suitable as a starting material for producing magnetic material particles for magnetic recording. The present invention relates to the presented goethite particle powder and its manufacturing method.

〔従来の技術〕[Conventional technology]

近年、磁気記録再生用機器の小型軽暖化が進むにつれて
、磁気テープ、磁気ディスク等の記録媒体に対する高性
能化の必要性が益々生じてきている。
In recent years, as magnetic recording and reproducing equipment has become smaller and lighter, there has been an increasing need for higher performance recording media such as magnetic tapes and magnetic disks.

即ち、高記録密度、高感度特性及び高出力特性等が要求
される。
That is, high recording density, high sensitivity characteristics, high output characteristics, etc. are required.

磁気記録媒体に対する上記のような要求を満足させる為
に要求される磁性材料粒子粉末の特性は、高い保磁力と
優れた分散性を有することである。
In order to satisfy the above-mentioned requirements for magnetic recording media, the characteristics required for magnetic material particles are high coercive force and excellent dispersibility.

即ち、磁気記録媒体の高感度化及び高出力化の為には、
磁性粒子粉末が出来るだけ高い保磁力を有することが必
要であり、この事実は、例えば、株式会社総合技術セン
ター発行「磁性材料の開発と磁粉の高分散化技術J  
(1982年)の第310頁の「磁気テープ性能の向上
指向は、高感度化と高出力化・・・・にあったから、針
状r −Fetch粒子粉末の高保磁力化・・・・を重
点とするものであった。」なる記載から明らかである。
In other words, in order to increase the sensitivity and output of magnetic recording media,
It is necessary for the magnetic particles to have as high a coercive force as possible, and this fact can be seen, for example, in "Development of Magnetic Materials and Highly Dispersed Magnetic Powder Technology J.
(1982), p. 310, ``Since the aim of improving magnetic tape performance was to increase sensitivity and output, emphasis was placed on increasing the coercive force of the acicular r-Fetch particle powder.'' This is clear from the statement "It was intended to be."

また、磁気記録媒体の高記録密度の為には、前出「磁性
材料の開発と磁粉の高分散化技術」第312頁の[塗布
型テープにおける高密度記録のための条件は、短波長信
号に対して、低ノイズで高出力特性を保持できることで
あるが、その為には保磁力11cと残留磁化B「が共に
大きいことと塗布膜の厚みがより薄いことが必要である
。」なる記載の通り、磁気記録媒体が高い保磁力と大き
な残留磁化Brを有することが必要であり、その為には
磁性粒子粉末が高い保磁力を有し、ビークル中での分散
性、塗膜中での配向性及び充填性が優れていることが要
求される。
In addition, in order to achieve high recording density in magnetic recording media, the conditions for high-density recording in coated tapes are On the other hand, it is possible to maintain high output characteristics with low noise, but in order to do so, it is necessary that both coercive force 11c and residual magnetization B are large and that the thickness of the coating film is thinner. As mentioned above, it is necessary for the magnetic recording medium to have a high coercive force and a large residual magnetization Br, and for that purpose, the magnetic particles must have a high coercive force, have good dispersibility in the vehicle, and have good remanence in the coating film. Excellent orientation and filling properties are required.

磁気記録媒体の残留磁化Brは、磁性粒子粉末のビーク
ル中での分散性、塗膜中での配向性及び充填性に依存し
ており、これら特性の向−ヒの為には、ビークル中に分
散させる磁性粒子粉末ができるだけ大きな軸比(長軸径
/短軸径)を有し、しかも粒度が均斉であって、樹枝状
粒子が混在していないことが要求される。
The residual magnetization Br of a magnetic recording medium depends on the dispersibility of the magnetic particles in the vehicle, the orientation and filling properties in the coating film, and in order to improve these characteristics, it is necessary to It is required that the magnetic particles to be dispersed have as large an axial ratio (major axis diameter/minor axis diameter) as possible, have uniform particle size, and do not contain dendritic particles.

また周知のごとく、磁性粒子粉末の保磁力の大きさは、
形状異方性、結晶異方性、歪異方性及び交換異方性のい
ずれか、若しくはそれらの相互作用に依存している。
Also, as is well known, the magnitude of the coercive force of magnetic particles is
It depends on shape anisotropy, crystal anisotropy, strain anisotropy, exchange anisotropy, or their interaction.

現在、磁気記録用磁性粒子粉末として使用されている針
状晶マグネタイト粒子粉末、又は、針状晶マグヘマイト
粒子粉末は、その形状に由来する異方性を利用すること
、即ち、軸比(長軸径/短軸径)を大きくすることによ
って比較的高い保磁力を得ている。
Currently, acicular magnetite particles or acicular maghemite particles, which are currently used as magnetic particles for magnetic recording, utilize the anisotropy derived from their shape, that is, the axial ratio (long axis A relatively high coercive force is obtained by increasing the diameter (diameter/short axis diameter).

これら既知の針状晶マグネタイト粒子粉末、又は、針状
晶マグヘマイト粒子粉末は、出発原料であるゲータイト
粒子を、水素等還元性ガス中300〜400℃で還元し
てマグネタイト粒子とし、または次いでこれを、空気中
200〜300℃で酸化してマグヘマイト粒子とするこ
とにより得られている。
These known acicular crystal magnetite particles or acicular crystal maghemite particles are obtained by reducing goethite particles as a starting material at 300 to 400°C in a reducing gas such as hydrogen to obtain magnetite particles, or by reducing the starting material to magnetite particles. It is obtained by oxidizing it in air at 200 to 300°C to form maghemite particles.

上述した通り、粒度が均斉であって、樹枝状粒子が混在
しておらず、しかも軸比(長軸径/短軸径)が大きい磁
性粒子粉末は、現在、最も要求されているところであり
、このような特性を備えた磁性粒子粉末を得るためには
、出発原料であるゲータイト粒子粉末の粒度が均斉であ
って、樹枝状粒子が混在しておらず、しかも、軸比(長
軸径/短軸径)が大きいことが必要である。
As mentioned above, magnetic particle powders with uniform particle size, no dendritic particles mixed in, and a large axial ratio (major axis diameter/minor axis diameter) are currently in greatest demand. In order to obtain magnetic particles with such characteristics, the particle size of the starting material, goethite particles, must be uniform, dendritic particles are not mixed, and the axial ratio (major axis diameter / It is necessary that the short axis diameter) be large.

従来、出発原料であるゲータイト粒子粉末を製造する方
法としては、第一鉄塩溶液に当量以上のアルカリ溶液を
加えて得られる水酸化第一6粒子を含む溶液をpH11
以上にて80℃以下の温度で酸素台をガスを通気して酸
化反応を行うことにより針状ゲータイト粒子を生成させ
る方法、及び、第一鉄塩水溶液と炭酸アルカリとを反応
させて得られたFeCO5を含む水溶液に酸素含有ガス
を通気して酸化反応を行うことにより紡錘状を呈したゲ
ータイト粒子を生成させる方法等が知られている。
Conventionally, the method for producing goethite particle powder, which is a starting material, is to add an equivalent or more alkaline solution to a ferrous salt solution, and then add a solution containing hydroxide 6 particles to pH 11.
As described above, there is a method for producing acicular goethite particles by performing an oxidation reaction by passing gas through an oxygen table at a temperature of 80° C. or lower, and a method for producing acicular goethite particles by reacting an aqueous ferrous salt solution with an alkali carbonate. A method is known in which spindle-shaped goethite particles are produced by passing an oxygen-containing gas through an aqueous solution containing FeCO5 to perform an oxidation reaction.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

粒度が均斉であって、樹枝状粒子が混在しておらず、し
かも軸比(長軸径/短軸径)の大きい磁性粒子粉末は、
現在、最も要求されているところであるが、出発原料で
あるゲータイト粒子粉末を製造する前述公知方法のうち
前者の方法による場合には、軸比(長軸径/短軸径)の
大きな殊に、10以上の針状晶ゲータイト粒子が生成す
るが、樹枝状粒子が混在しており、また、粒度から言え
ば、均斉な粒度を有した粒子とは言い難い。
Magnetic particle powder with uniform particle size, no dendritic particles mixed in, and a large axial ratio (major axis diameter/minor axis diameter) is
Currently, the former method of producing goethite particles as a starting material is the most demanded method, especially when the axial ratio (major axis diameter/minor axis diameter) is large. Although 10 or more acicular goethite particles are produced, dendritic particles are mixed therein, and in terms of particle size, it is difficult to say that the particles have a uniform particle size.

前述公知方法のうら後者の方法による場合には、粒度が
均斉であり、また、樹枝状粒子が混在していない紡錘形
を呈した粒子が生成するが、一方、軸比(長軸径/短軸
径)は高々7程度であり、軸比(長軸径/短軸径)の大
きな粒子が生成し難いという欠点があり、殊に、この現
象は生成粒子の長軸径が小さくなる程顕著になるという
傾向にある。
In contrast to the above-mentioned known methods, the latter method produces spindle-shaped particles with uniform particle size and no dendritic particles; The diameter) is about 7 at most, and there is a drawback that it is difficult to generate particles with a large axial ratio (major axis diameter / minor axis diameter), and this phenomenon is especially noticeable as the major axis diameter of the generated particles becomes smaller. There is a tendency to become.

従来、紡錘形を呈したゲータイト粒子の軸比(長軸径/
短軸径)を大きくする方法は種々試みられており、例え
ば特開昭59−232922号公報に開示されている第
一鉄塩水溶液と炭酸アルカリとを反応させて得られたF
eC0+を含む水溶液に酸素含有ガスを通気するにあた
り、酸素含有ガスの通気速度を0.1〜2.0cm/s
ec程度に遅くするという方法がある。この方法による
ときには、0.5μ−程度の場合における軸比(長軸径
/短軸径)は10程度、長軸径0.3μ−程度の場合に
おける軸比(長軸径/短軸径)は8程度であり、更に長
軸径が小さくなって0.057711程度になると軸比
(長軸径/短軸径)は5程度と小さくなってしまい、未
だ軸比(長軸径/短軸径)が十分大きなものとは言い難
い。
Conventionally, the axial ratio (major axis diameter/
Various methods have been tried to increase the short axis diameter (short axis diameter).For example, F
When aerating an oxygen-containing gas into an aqueous solution containing eC0+, the aeration rate of the oxygen-containing gas is set to 0.1 to 2.0 cm/s.
There is a way to slow it down to about ec. When using this method, the axial ratio (major axis diameter/minor axis diameter) is about 10 when the long axis diameter is about 0.5μ, and the axial ratio (major axis diameter / short axis diameter) when the long axis diameter is about 0.3μ. is about 8, and when the major axis diameter further decreases to about 0.057711, the axial ratio (major axis diameter / minor axis diameter) becomes small to about 5, and the axial ratio (major axis diameter / minor axis diameter) is still small. It is difficult to say that the diameter) is sufficiently large.

また、特開昭62〜158801号公報の実施例におい
て、軸比(長軸径/短軸径)が10の紡錘形を呈したゲ
ータイト粒子が得られているが、これは、鉄濃凌を0.
2 mol/ j!程度と薄くす番ことにより得られた
ものであり、未だ軸比(長軸径/短軸径)が十分大きな
ものとは言い難い。
In addition, in the examples of JP-A-62-158801, spindle-shaped goethite particles with an axial ratio (major axis diameter/minor axis diameter) of 10 are obtained, which exceeds iron concentration by 0. ..
2 mol/j! This was obtained by adjusting the thickness and thickness of the grain, and it is still difficult to say that the axial ratio (major axis diameter/minor axis diameter) is sufficiently large.

そこで、粒度が均斉であって、樹枝状粒子が混在してお
らず、しかも、軸比(長軸径/短軸径)が大きい紡錘形
を呈したゲータイト粒子粉末を得る為の技術手段の確立
が強く要求されている。
Therefore, it was necessary to establish a technical means to obtain goethite powder with uniform particle size, no dendritic particles mixed therein, and spindle-shaped powder with a large axis ratio (major axis diameter/minor axis diameter). strongly requested.

C問題点を解決する為の手段〕 本発明者は、粒度が均斉であって、樹枝状粒子が混在し
ておらず、しかも、軸比(長軸径/短軸径)が大きい紡
錘形を呈したゲータイト粒子粉末を得るべく種々検討を
重ねた結果、本発明に到達してのである。
Means for Solving Problem C] The present inventor has developed a material that has uniform particle size, does not contain dendritic particles, and has a spindle shape with a large axial ratio (major axis diameter/minor axis diameter). As a result of various studies to obtain goethite particles, the present invention was achieved.

即ら、本発明は、長軸径がO,OS〜0.8μ−であっ
て、軸比(長軸径/短軸径)が11以上である紡錘形を
呈したゲータイト粒子からなるゲータイト粒子粉末及び
炭酸アルカリと第一鉄塩水溶液とを反応させて得られた
FeC01を含む水溶液を非酸化製雰囲気下においモ熟
成した後、該FeCO5を含む水溶液中に酸素含有ガス
を通気して酸化することにより紡錘形を呈したゲータイ
ト粒子粉末を生成させる方法において、前記炭酸アルカ
リの班を前記第一鉄塩水溶液中のFeに対し1.5〜3
.5倍当量とするとともに、前記熟成における熟成温度
を40〜60℃且つ熟成時間を50〜100分間とする
ことからなる長軸径が0.05〜0.8μmであって、
軸比(長軸径/短軸径)が11以上である紡錘形を呈し
たゲータイト粒子からなるゲータイト粒子粉末の製造法
である。
That is, the present invention provides goethite particle powder consisting of spindle-shaped goethite particles having a major axis diameter of O,OS~0.8μ- and an axial ratio (major axis diameter/minor axis diameter) of 11 or more. and an aqueous solution containing FeCO1 obtained by reacting an alkali carbonate with an aqueous ferrous salt solution is aged in a non-oxidizing atmosphere, and then oxidized by passing an oxygen-containing gas into the aqueous solution containing FeCO5. In the method of producing goethite particles exhibiting a spindle shape, the alkali carbonate particles are mixed with Fe in the ferrous salt aqueous solution at a ratio of 1.5 to 3.
.. 5 times equivalent, and the long axis diameter is 0.05 to 0.8 μm due to the aging temperature of 40 to 60 ° C. and the aging time of 50 to 100 minutes,
This is a method for producing goethite particle powder consisting of spindle-shaped goethite particles having an axial ratio (major axis diameter/minor axis diameter) of 11 or more.

〔作  用〕[For production]

先ず、本発明において最も重要な点は、炭酸アルカリと
第一鉄塩水溶液とを反応させて得られたFeCO3を含
む水溶液を非酸化性雰囲気において熟成した後、該Fe
C0tを含む水溶液中に酸素含有ガスを通気して酸化す
ることにより紡錘形を呈したゲータイト粒子粉末を生成
させる方法において、前記炭酸アルカリの量を前記第一
鉄塩水溶液中のFeに対し1.5〜3゜5倍当量とする
とともに、前記熟成における熟成温度を40〜60℃且
つ熟成時間を50〜100分間とした場合には、軸比(
長軸径/短軸径)が11以上、殊に、12以上を存する
紡錘形を呈したゲータイト粒子粉末が得られる点である
ゆ尚、FeCO5を含む水溶液を非酸化性雰囲気下で熟
成するものとして、例えば、特公昭59−48768号
公報に開示されている方法があるが、この方法は、炭酸
アルカリの量をFeに対し1.06倍量として生成した
FeCO3を含む水溶液を非酸化性雰囲気下、室温にお
いて120〜240分間処理することにより粒度の均斉
な紡錘状を呈したゲータイト粒子粉末を得るものであり
、軸比(長軸径/短軸径)の大きい紡錘形を呈したゲー
タイト粒子粉末を得ることを目的とする本発明とは全く
相違するものである。
First, the most important point in the present invention is that after aging an aqueous solution containing FeCO3 obtained by reacting an alkali carbonate and an aqueous ferrous salt solution in a non-oxidizing atmosphere,
In the method of producing spindle-shaped goethite particles by passing an oxygen-containing gas into an aqueous solution containing C0t for oxidation, the amount of the alkali carbonate is 1.5 to Fe in the ferrous salt aqueous solution. When the axial ratio (
A spindle-shaped goethite particle powder having a long axis diameter/minor axis diameter) of 11 or more, especially 12 or more can be obtained. For example, there is a method disclosed in Japanese Patent Publication No. 59-48768. In this method, an aqueous solution containing FeCO3 produced with an amount of alkali carbonate 1.06 times the amount of Fe is heated in a non-oxidizing atmosphere. , by processing at room temperature for 120 to 240 minutes, a spindle-shaped goethite particle powder with uniform particle size is obtained. This is completely different from the present invention, which aims to obtain the same.

因に、特公昭59−48768号公報に記載の方法によ
って得られる紡錘形を呈したゲータイト粒子粉末の軸比
(長軸径/短軸径)は、「実施例1」及び「実施例2」
の各実施例において、4程度である。
Incidentally, the axis ratio (major axis diameter/minor axis diameter) of the spindle-shaped goethite particles obtained by the method described in Japanese Patent Publication No. 59-48768 is that of "Example 1" and "Example 2".
In each example, it is about 4.

次に、本発明方法実施にあたっての諸条件について述べ
る。
Next, various conditions for implementing the method of the present invention will be described.

本発明において使用される第一鉄塩水溶液としては、硫
酸第一鉄水溶液、塩化第−鉄水溶液等がある。
Examples of the ferrous salt aqueous solution used in the present invention include a ferrous sulfate aqueous solution and a ferrous chloride aqueous solution.

本発明において使用される炭酸アルカリとしては、炭酸
ナトリウム、炭酸カリウム、炭酸アンモニウム等を使用
することができる。
As the alkali carbonate used in the present invention, sodium carbonate, potassium carbonate, ammonium carbonate, etc. can be used.

本発明において使用する炭酸アルカリ土類金属第−鉄塩
水溶液中のFeに対し1.5〜3.5倍当量である。1
.5倍当量以下の場合には、得られる紡錘形を呈したゲ
ータイト粒子粉末の粒度が不均斉となり、また、粒子相
互がからみあって凝集粒子を構成し、分散性の悪いもの
となる。3.5倍当量以上の場合には、添加量の増加に
伴って軸比(長軸径/短軸径)が小さくなる傾向にあり
、本発明の目的とする軸比(長軸径/短軸径)の大きい
紡錘形を呈したゲータイト粒子粉末が得られにくくなり
、また、高価な炭酸アルカリの使用量が多くなり、経済
的ではない。
The amount is 1.5 to 3.5 times equivalent to Fe in the aqueous solution of alkaline earth metal ferrous carbonate used in the present invention. 1
.. If the amount is less than 5 times the equivalent, the resulting spindle-shaped goethite particles will have asymmetric particle sizes, and the particles will become entangled with each other to form aggregated particles, resulting in poor dispersibility. In the case of 3.5 times equivalent or more, the axial ratio (major axis diameter/short axis diameter) tends to decrease as the amount added increases, and the axial ratio (major axis diameter/short axis diameter) targeted by the present invention tends to decrease. It becomes difficult to obtain spindle-shaped goethite particles with a large axis diameter, and the amount of expensive alkali carbonate used increases, making it uneconomical.

本発明における熟成は、N!ガス等の不活性ガスを液中
に通気することにより不活性雰囲気下において行い、ま
た、当該通気ガスや機械的操作等により攪拌しながら行
う。
Aging in the present invention is N! The reaction is carried out in an inert atmosphere by bubbling an inert gas such as a gas into the liquid, and is carried out while stirring using the aerating gas or mechanical operation.

本発明におけるFeCO3を含む水溶液の熟成温度は4
0〜60℃である。40℃以下の場合には、軸比(長軸
径/短軸径)が小さくなり、本発明の目的とする軸比(
長軸径/短軸径)の大きい紡錘形を呈したゲータイト粒
子粉末が得られない。60℃以上の場合でも、本発明の
目的とする軸比(長軸径/短軸径)の大きい紡錘形を呈
したゲータイト粒子粉末を得ることができるが、必要以
上に熟成温度を上げる意味がない。
The aging temperature of the aqueous solution containing FeCO3 in the present invention is 4
The temperature is 0 to 60°C. When the temperature is below 40°C, the axial ratio (major axis diameter/minor axis diameter) becomes small, and the axial ratio (
Goethite particles having a spindle shape with a large diameter (major axis diameter/minor axis diameter) cannot be obtained. Even when the temperature is 60°C or higher, it is possible to obtain spindle-shaped goethite particles with a large axial ratio (major axis diameter/minor axis diameter), which is the objective of the present invention, but there is no point in raising the aging temperature more than necessary. .

本発明におけるFeCO3を含む水溶液の熟成時間は、
50〜100分間である。50分以下の場合には、本発
明の目的とする軸比(長軸径/短軸径)の大きい紡錘形
を呈したゲータイト粒子粉末を得ることができない、 
100分以上の場合にも本発明の目的とする軸比(長軸
径/短軸径)の大きい紡錘形を呈したゲータイト粒子粉
末を得ることができるが必要以上に長時間とする意味が
ない。
The aging time of the aqueous solution containing FeCO3 in the present invention is
The duration is 50 to 100 minutes. If the time is 50 minutes or less, it is not possible to obtain goethite particles having a spindle shape with a large axial ratio (major axis diameter/minor axis diameter), which is the objective of the present invention.
Although it is possible to obtain spindle-shaped goethite particles with a large axial ratio (major axis diameter/minor axis diameter), which is the objective of the present invention, if the heating time is longer than 100 minutes, there is no point in making the heating time longer than necessary.

本発明の酸化時における反応温度は、40〜70℃であ
る。 40℃以下である場合には、本発明の目的とする
紡錘形を呈したゲータイト粒子粉末を得ることができな
い、70℃以上である場合には、紡錘形を呈したゲータ
イト粒子中に粒状へマタイト粒子粉末が混在してくる。
The reaction temperature during oxidation of the present invention is 40 to 70°C. If the temperature is below 40°C, it is not possible to obtain the spindle-shaped goethite particles that are the object of the present invention, and if the temperature is above 70°C, granular hematite particles cannot be obtained in the spindle-shaped goethite particles. are mixed.

本発明におけるpl+は7〜11である。7以下、又は
11以上で゛ある場合には、紡錘形を呈したゲータイト
粒子を得ることができない。
pl+ in the present invention is 7-11. If it is less than 7 or more than 11, it is impossible to obtain spindle-shaped goethite particles.

本発明における酸化手段は、酸素合音ガス(例えば空気
)を液中に通気することにより行い、また、当該通気ガ
スや機械的操作等により攪拌しながら行う。
The oxidation means in the present invention is carried out by aerating an oxygen synthesis gas (for example, air) into the liquid, and is carried out while stirring with the aerated gas or mechanical operation.

本発明においては、従来から磁性酸化鉄粒子粉末の各種
特性の向上の為に、出発原料ゲータイト粒子の生成に際
し、通常添加されるCO,、Ni、 Cr。
In the present invention, in order to improve various properties of magnetic iron oxide particles, CO, Ni, and Cr are conventionally added when producing goethite particles as a starting material.

Zn、 AI、Mn等のFe以外の異種金属を添加する
ことができ、この場合にも、本発明の目的とする軸比(
長軸径/Fi軸径)の大きい紡錘形を呈したゲータイト
粒子粉末を得ることができる。
Different metals other than Fe such as Zn, AI, Mn, etc. can be added, and in this case as well, the axial ratio (
Goethite particles having a spindle shape with a large diameter (major axis diameter/Fi axis diameter) can be obtained.

〔実施例〕〔Example〕

次に、実施例並びに比較例により、本発明を説明する。 Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、以下の実施例並びに比較例における粒子の長軸径、
軸比(長軸径/短軸径)は、いずれも電子顕微鏡写真か
ら測定した数値の平均値で示した。
In addition, the major axis diameter of the particles in the following examples and comparative examples,
The axial ratio (major axis diameter/minor axis diameter) was expressed as an average value of values measured from electron micrographs.

実施例1 毎秒3.4c+mの割合でN2ガスを流すことによって
非酸化性雰囲気に保持された反応容器中に、■、16s
+ol/lのNILICo、水溶液7041を添加した
後、p e ! +1.35s+ol/ lを含む硫酸
第一鉄水溶液2961を添加、混合(NazCOzff
iは、Feに対し2.0倍当量に該当する。)し、温度
47℃においてPeC0,の生成を行った。
Example 1 In a reaction vessel maintained in a non-oxidizing atmosphere by flowing N2 gas at a rate of 3.4 c+m/s,
After adding +ol/l of NILICo, aqueous solution 7041, p e ! Add and mix ferrous sulfate aqueous solution 2961 containing +1.35s+ol/l (NazCOzff
i corresponds to 2.0 times equivalent to Fe. ), and PeC0, was generated at a temperature of 47°C.

上記FeCQsを含む水溶液中に、引き続きN2ガスを
毎秒3.4cm+の割合で吹き込みながら、温度47℃
で70分間保持した後、当該FeCO5を含む水溶液中
に、温度47℃において毎秒2.8cmの空気を5.0
時間通気して黄褐色沈澱粒子を生成させた。尚、空気通
気中におけるpHは8.5〜9.5であった。
While continuously blowing N2 gas into the FeCQs-containing aqueous solution at a rate of 3.4 cm+ per second, the temperature was increased to 47°C.
After holding the FeCO5-containing aqueous solution for 70 minutes at
Aerate for a period of time to form yellow brown precipitated particles. Note that the pH during air ventilation was 8.5 to 9.5.

黄褐色沈澱粒子は、常法により、炉別、水洗、乾燥、粉
砕した。
The yellow-brown precipitated particles were separated in a furnace, washed with water, dried, and pulverized by a conventional method.

得られた黄褐色粒子粉末は、X線回折の結果、ゲータイ
トであり、図1に示す電子顕微鏡写真(X 30000
)から明らかな通り、平均値で長軸径0゜30μ剛、軸
比(長軸径/短軸径) 12.6の紡錘形を呈した粒子
からなり、粒度が均斉で樹枝状粒子が混在しないもので
あった。
As a result of X-ray diffraction, the obtained yellow-brown particles were found to be goethite, and the electron micrograph shown in Figure 1 (X 30,000
), it consists of spindle-shaped particles with an average major axis diameter of 0° and a stiffness of 30μ, and an axial ratio (major axis diameter/minor axis diameter) of 12.6, and the particle size is uniform and dendritic particles are not mixed. It was something.

実施例2〜6、比較例1〜4 FeCO3の生成反応におけるN、ガス流量、炭酸アル
カリの種類、濃度、使用量及び混合v1合、Fe 2 
+水溶液の濃度及び使用量、温度、熟成工程におけるN
2ガス流V、温度及び時間並びに酸化工程における温度
、空気流量及び反応時間を種々変化させた以外は、実施
例1と同様にして紡錘形を呈したゲータイト粒子粉末を
得た。
Examples 2 to 6, Comparative Examples 1 to 4 N, gas flow rate, type of alkali carbonate, concentration, amount used, and mixture v1 in the FeCO3 production reaction, Fe2
+ Concentration and amount of aqueous solution used, temperature, N in the aging process
Goethite particles having a spindle shape were obtained in the same manner as in Example 1, except that the two gas flows V, temperature and time, and the temperature, air flow rate and reaction time in the oxidation step were varied.

この時の主要製造条件及び緒特性を表1に示す。Table 1 shows the main manufacturing conditions and characteristics at this time.

実施例2〜6で得られた紡錘形を呈したゲータイト粒子
粉末は、いずれも粒度が均斉で樹枝状粒子が混在しない
ものであった0図2及び図3は、それぞれ、実施例4及
び実施例6で得られた紡錘形を呈したゲータイト粒子粉
末の電子顕微鏡写真(x 30000)である。
The spindle-shaped goethite particles obtained in Examples 2 to 6 all had uniform particle sizes and did not contain any dendritic particles. Figures 2 and 3 show examples 4 and 3, respectively. 6 is an electron micrograph (x 30,000) of the spindle-shaped goethite particles obtained in step 6.

尚、実施例5において、は、PeCO5の生成反応にあ
たり、NiSO4をNi/Fe換算で0.5原子%添加
することにより紡錘形を呈したNi含有ゲータイト粒子
粉末(Ni含有量はNi/Fe換算で0.49原子%)
を生成させた。
In Example 5, Ni-containing goethite particle powder exhibiting a spindle shape was obtained by adding 0.5 atomic % of NiSO4 in terms of Ni/Fe (Ni content is in terms of Ni/Fe) in the production reaction of PeCO5. 0.49 atomic%)
was generated.

また、比較例1で得られた紡錘形を呈したゲータイト粒
子粉末は図4の電子顕微鏡写真(X 30000)に示
される通り、粒度が不均斉であり、且つ、粒子相互がか
らみあって凝集粒子を構成していた。
Furthermore, as shown in the electron micrograph (X 30000) of FIG. 4, the spindle-shaped goethite particles obtained in Comparative Example 1 have asymmetric particle sizes, and the particles are entangled with each other to form aggregated particles. Was.

〔発明の効果〕〔Effect of the invention〕

本発明に係る紡錘形を呈したゲークィト粒子わ)末は、
前出実施例に示した通り、粒度が均斉であって、樹技伏
粒子が混在しておらず、しかも、軸比(長軸径/短軸径
)が大きい粒子粉末である。
The spindle-shaped Gequit particles according to the present invention are
As shown in the previous example, the particle size is uniform, there are no mixed grains, and the axial ratio (major axis diameter/minor axis diameter) is large.

本発明に係る紡錘形を呈したゲークィト粒子↑5)末を
出発原料とし、加熱還元、又は、更に、酸化して得られ
た紡錘形を呈したマグネタイト粒子粉末及び紡錘形を呈
したマグヘマイト粒子粉末もまた、粒度が均斉であって
、樹枝状粒子がγ昆在しておらず、しかも軸比(長軸径
/短軸径)が大きい粒子であるので、現在、最も要求さ
れている高記録密度、高感度及び高出力用磁性材料粒子
t5)末として好適である。
A spindle-shaped magnetite particle powder and a spindle-shaped maghemite particle powder obtained by thermally reducing or further oxidizing the spindle-shaped geekite particles ↑5) powder according to the present invention are also used as a starting material. The particle size is uniform, there are no dendritic particles, and the axial ratio (major axis diameter/minor axis diameter) is large. It is suitable as a magnetic material particle t5) powder for sensitivity and high output.

【図面の簡単な説明】[Brief explanation of the drawing]

図1乃至図4は、それぞれ、実施例1、実施例4、実施
例6及び比較例1で得られた紡錘形を呈したゲータイト
粒子粉末の電子顕微鏡写真である。
1 to 4 are electron micrographs of spindle-shaped goethite particles obtained in Example 1, Example 4, Example 6, and Comparative Example 1, respectively.

Claims (2)

【特許請求の範囲】[Claims] (1)長軸径が0.05〜0.8μmであって、軸比(
長軸径/短軸径)が11以上である紡錘形を呈したゲー
タイト粒子からなるゲータイト粒子粉末。
(1) The major axis diameter is 0.05 to 0.8 μm, and the axial ratio (
A goethite particle powder consisting of spindle-shaped goethite particles having a ratio of 11 or more (major axis diameter/minor axis diameter).
(2)炭酸アルカリと第一鉄塩水溶液とを反応させて得
られたFeCO_3を含む水溶液を非酸化性雰囲気下に
おいて熟成した後、該FeCO_3を含む水溶液中に酸
素含有ガスを通気して酸化することにより紡錘形を呈し
たゲータイト粒子粉末を生成させる方法において、前記
炭酸アルカリの量を前記第一鉄塩水溶液中のFeに対し
1.5〜3.5倍当量とするとともに、前記熟成におけ
る熟成温度を40〜60℃且つ熟成時間を50〜100
分間とすることを特徴とする長軸径が0.05〜0.8
μmであって、軸比(長軸径/短軸径)が11以上であ
る紡錘形を呈したゲータイト粒子からなるゲータイト粒
子粉末の製造法。
(2) After aging an aqueous solution containing FeCO_3 obtained by reacting an alkali carbonate and an aqueous ferrous salt solution in a non-oxidizing atmosphere, oxygen-containing gas is passed through the aqueous solution containing FeCO_3 to oxidize it. In the method of producing spindle-shaped goethite particles, the amount of the alkali carbonate is 1.5 to 3.5 times equivalent to Fe in the ferrous salt aqueous solution, and the aging temperature in the aging is 40~60℃ and aging time 50~100℃
The major axis diameter is 0.05 to 0.8.
A method for producing goethite particle powder comprising spindle-shaped goethite particles having a diameter of μm and an axial ratio (major axis diameter/minor axis diameter) of 11 or more.
JP62272522A 1987-10-27 1987-10-27 Spindle-shaped goethite particles and method for producing the same Expired - Fee Related JP2640817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62272522A JP2640817B2 (en) 1987-10-27 1987-10-27 Spindle-shaped goethite particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62272522A JP2640817B2 (en) 1987-10-27 1987-10-27 Spindle-shaped goethite particles and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01115827A true JPH01115827A (en) 1989-05-09
JP2640817B2 JP2640817B2 (en) 1997-08-13

Family

ID=17515068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62272522A Expired - Fee Related JP2640817B2 (en) 1987-10-27 1987-10-27 Spindle-shaped goethite particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP2640817B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995012548A1 (en) * 1993-11-01 1995-05-11 Minnesota Mining And Manufacturing Company Process for making goethite
JP2010255511A (en) * 2009-04-24 2010-11-11 Toyota Motor Corp Exhaust pipe structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3144683B2 (en) 1990-06-29 2001-03-12 戸田工業株式会社 Spindle-shaped iron-based metal magnetic particle powder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232922A (en) * 1983-06-15 1984-12-27 Dainippon Ink & Chem Inc Manufacture of spindle-shaped goethite having high axial ratio
JPS61106420A (en) * 1984-10-30 1986-05-24 Ube Ind Ltd Preparation of acicular goethite
JPS61141627A (en) * 1984-12-12 1986-06-28 Sumitomo Alum Smelt Co Ltd Production of alpha-feooh needles
JPS61186224A (en) * 1985-02-12 1986-08-19 Toyo Soda Mfg Co Ltd Acicular goethite and production thereof
JPS6321806A (en) * 1986-07-15 1988-01-29 Kobe Steel Ltd Preparation of acicular crystal alpha-feooh for magnetic recording material
JPS63134523A (en) * 1986-11-22 1988-06-07 Chisso Corp Production of needle-like iron alpha-oxyhydroxide particulate powder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232922A (en) * 1983-06-15 1984-12-27 Dainippon Ink & Chem Inc Manufacture of spindle-shaped goethite having high axial ratio
JPS61106420A (en) * 1984-10-30 1986-05-24 Ube Ind Ltd Preparation of acicular goethite
JPS61141627A (en) * 1984-12-12 1986-06-28 Sumitomo Alum Smelt Co Ltd Production of alpha-feooh needles
JPS61186224A (en) * 1985-02-12 1986-08-19 Toyo Soda Mfg Co Ltd Acicular goethite and production thereof
JPS6321806A (en) * 1986-07-15 1988-01-29 Kobe Steel Ltd Preparation of acicular crystal alpha-feooh for magnetic recording material
JPS63134523A (en) * 1986-11-22 1988-06-07 Chisso Corp Production of needle-like iron alpha-oxyhydroxide particulate powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995012548A1 (en) * 1993-11-01 1995-05-11 Minnesota Mining And Manufacturing Company Process for making goethite
US5650131A (en) * 1993-11-01 1997-07-22 Minnesota Mining And Manufacturing Company Process for making goethite
JP2010255511A (en) * 2009-04-24 2010-11-11 Toyota Motor Corp Exhaust pipe structure

Also Published As

Publication number Publication date
JP2640817B2 (en) 1997-08-13

Similar Documents

Publication Publication Date Title
JPH01115827A (en) Spindle-shaped goethite particle power and production thereof
JPH04357119A (en) Production of needle-like iron oxide particle powder
JP2704525B2 (en) Method for producing spindle-shaped goethite particles
JP2704537B2 (en) Method for producing spindle-shaped goethite particles
JP2852460B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP2743000B2 (en) Spindle-shaped goethite particles and method for producing the same
JP2704539B2 (en) Method for producing spindle-shaped goethite particles
JP2885253B2 (en) Method of producing spindle-shaped goethite particles
JP2925561B2 (en) Spindle-shaped magnetic iron oxide particles
JPS6278119A (en) Production of fusiform goethite particle powder
JP2704540B2 (en) Manufacturing method of spindle-shaped magnetic iron oxide particles
JP2840779B2 (en) Method for producing acicular goethite particle powder
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP2970705B2 (en) Method for producing acicular magnetic iron oxide particles
JP3141907B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JP3166780B2 (en) Method for producing spindle-shaped goethite particles
JP2704544B2 (en) Manufacturing method of spindle-shaped magnetic iron oxide particles
JP2743007B2 (en) Spindle-shaped magnetic iron oxide particles and method for producing the same
JP3003777B2 (en) Method for producing spindle-shaped magnetic iron oxide particles
JPS62128931A (en) Production of magnetic iron oxide grain powder having spindle type
JP2852459B2 (en) Method for producing spindle-shaped iron-based metal magnetic particle powder
JPH0532421A (en) Production of needlelike magnetic iron oxide grain powder
JPS63242930A (en) Production of fusiform magnetic metal particle powder composed mainly of iron
JPS62128926A (en) Production of magnetic iron oxide grain powder having spindle type

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees