JPH05103467A - Dc-dc converter - Google Patents
Dc-dc converterInfo
- Publication number
- JPH05103467A JPH05103467A JP28378191A JP28378191A JPH05103467A JP H05103467 A JPH05103467 A JP H05103467A JP 28378191 A JP28378191 A JP 28378191A JP 28378191 A JP28378191 A JP 28378191A JP H05103467 A JPH05103467 A JP H05103467A
- Authority
- JP
- Japan
- Prior art keywords
- main
- current
- main switching
- switching
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
【0001】[0001]
【発明の属する分野】本発明は、二石式ダブルフォワ−
ド型コンバ−タ回路のスイッチング損失低減に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-stone double forwarder.
The present invention relates to reduction of switching loss of a de-type converter circuit.
【0002】[0002]
【従来の技術】図1は従来の二石式型ダブルフォワ−ド
型コンバ−タ回路、図2は前記図1の二石型ダブルフォ
ワ−ド型コンバ−タ回路の代表的な動作波形を例示す
る。図1においてQ1〜4は主スイッチ素子でFETを
例示している。C1〜C4及びD1〜D4は前記主スイッチ
素子FET Q1〜Q4に内蔵する寄生容量と(2)寄生
ダイオ−ドである。T1〜T2は変換用トランス、L1〜
L2は前記変換用トランスT1T2のもれインダクタン
ス、D5〜D8は前記主トランスをリセットするためのダ
イオ−ド、D9、D10は整流ダイオ−ド、L3は出力チョ
−ク、C5は平滑コンデンサ、D11は前記出力チョ−クL
3に蓄えられたエネルギ−を帰還するダイオ−ド、VCC
は直流電源を表している。図2の動作波形に於いて1は
前記主スイッチQ1、Q2の駆動信号、2は前記主スイッ
チ素子Q3、Q4の駆動信号、3、4は前記主スイッチ素
子Q1、Q2の電流、電圧波形、5、6は前記主スイッチ
素子Q3、Q4の電流、電圧波形を示している。7、8は
前記主スイッチQ1〜Q4の電流、電圧波形3〜6がスイ
ッチング時の重なり合う期間の損失を表している。従来
この種の回路は、 主スイッチ素子Q1〜Q4が導通、
しゃ断する時に図2の7、8で示した様な スイッチ
ング損失が発生する。又、高い周波数で動作させると主
スイッチ素 子Q1〜Q4の寄生容量C1〜C4からの充
放電時に損失が顕著になるため、高 効率での動作が
難しかった。又、前記主変換トランスT1のもれインダ
クタ ンス、L1、L2及び配線等に依る寄生インダク
タンスと寄生容量C1〜C4で 動作波形がスイッチン
グ時に振動等を起こしノイズの低減化も難しかった。2. Description of the Related Art FIG. 1 exemplifies a typical operation waveform of a conventional two-stone double forward type converter circuit, and FIG. 2 shows a typical operation waveform of the two-stone double forward type converter circuit of FIG. .. In FIG. 1, Q1 to Q4 are main switching elements, which are FETs. C1 to C4 and D1 to D4 are the parasitic capacitances built in the main switching element FETs Q1 to Q4 and (2) the parasitic diode. T1 to T2 are conversion transformers, L1 to
L2 is a leakage inductance of the converting transformer T1T2, D5 to D8 are diodes for resetting the main transformer, D9 and D10 are rectifying diodes, L3 is an output choke, C5 is a smoothing capacitor, and D11. Is the output choke L
Vcc, a diode that returns the energy stored in 3
Indicates a DC power supply. In the operation waveforms of FIG. 2, 1 is a drive signal of the main switches Q1 and Q2, 2 is a drive signal of the main switch elements Q3 and Q4, 3 and 4 are current and voltage waveforms of the main switch elements Q1 and Q2, Reference numerals 5 and 6 denote current and voltage waveforms of the main switching elements Q3 and Q4. Reference numerals 7 and 8 represent losses in the periods in which the current and voltage waveforms 3 to 6 of the main switches Q1 to Q4 overlap during switching. Conventionally, in this type of circuit, the main switching elements Q1 to Q4 are conducting,
When shutting off, switching loss as shown by 7 and 8 in FIG. 2 occurs. Further, when operated at a high frequency, the loss becomes remarkable at the time of charging / discharging from the parasitic capacitances C1 to C4 of the main switch elements Q1 to Q4, which makes it difficult to operate at high efficiency. Further, the parasitic inductances due to the leakage inductances L1, L2 and wirings of the main conversion transformer T1 and the parasitic capacitances C1 to C4 cause the operation waveform to vibrate at the time of switching and it is difficult to reduce noise.
【0003】[0003]
【発明の目的】従来回路での問題点を解決し、高周波
化、高効率化、低ノイズ化を実現させる為に本発明は成
された。又、従来の準共振型にみられる主スイッチ素子
の電圧、電流ストレス及び軽負荷時に於ける定電圧又は
定電流、定電力制御の難しさも軽減出来る。SUMMARY OF THE INVENTION The present invention has been made in order to solve the problems in the conventional circuit and to realize high frequency, high efficiency and low noise. Further, it is possible to reduce the difficulty in controlling the voltage and current stress of the main switching element and the constant voltage or current at the time of a light load, and the constant power control which are seen in the conventional quasi-resonant type.
【0004】本発明は、二石型ダブルフォワ−ド形コン
バ−タに関するものである。二石型ダブルフォワ−ド形
コンバ−タは一般に入力電圧が高く出力容量の大きいコ
ンバ−タに用いられている。二石型ダブルフォワ−ド形
コンバ−タは通常の二石型フォワ−ドコンバ−タを2組
用いるため、お互いに導通期間を18(3)0度ずらし
て行う。これにより出力平滑に用いられるチョ−クに
は、2倍の周波数が印加されるため小型化出来るし、主
トランスが偏励磁しにくい等のメリットがある。The present invention relates to a double-stone double forward type converter. The two-stone double forward type converter is generally used for a converter having a high input voltage and a large output capacity. Since the two-stone double-forward converter uses two sets of ordinary two-stone forward converters, the conduction periods are shifted from each other by 18 (3) 0 degrees. As a result, the choke used for smoothing the output has a merit in that it can be downsized because the frequency doubled is applied and the main transformer is less likely to be biased.
【0005】又、出力を安定化するためにパルス巾制御
(PWM方式)が用いられており、主スイッチのスイッ
チング損失は高周波になればなる程増大する傾向にあ
る。又、スイッチング電源は近年小型軽量化の方向にあ
り、スイッチング電源の高周波化が切望されている。し
かし前述した通りスイッチング損失が増大し、出力容量
の大きいコンバ−タではスイッチング周波数は50KHZ
〜100KHZが限度とされていた。又、高周波にすれば
発生するノイズも増加し、ノイズ対策も困難な状況であ
った。しかし近年、共振型コンバ−タの出現により高周
波化、低ノイズ高効率のスイッチング電源が実用化され
ているが、制御の難しさ、コストの増大等により実用化
されているのは極く一部にのみ使用されている状況であ
る。本発明は上記の点に鑑みてなされたもので、その目
的は高周波動作でもスイッチング損失が極めて少なくノ
イズも少ない二石型ダブルフォワ−ドコンバ−タ回路を
提供する事にある。Further, pulse width control (PWM method) is used to stabilize the output, and the switching loss of the main switch tends to increase as the frequency becomes higher. Further, the switching power supply has been in the direction of smaller size and lighter weight in recent years, and there is a strong demand for higher frequency of the switching power supply. However, as mentioned above, the switching loss increases and the switching frequency is 50KHZ in the converter with large output capacity.
The limit was ~ 100KHZ. Further, when the frequency is high, the noise generated increases, and it is difficult to take measures against noise. However, in recent years, with the advent of resonant converters, high-frequency, low-noise, high-efficiency switching power supplies have been put to practical use, but only a few have been put to practical use due to the difficulty of control, increased costs, etc. It is used only for. The present invention has been made in view of the above points, and an object of the present invention is to provide a two-stone double forward converter circuit that has extremely low switching loss and low noise even at high frequency operation.
【0006】[0006]
【本発明の手段】以下、本発明を図面を参照して説明す
る。図3は本発明の一実施例の二石型ダブルフォワ−ド
コンバ−タ回路の基本構成回路図、図4は前記図3の本
発明の二石型ダブルフォワ−ドコンバ−タの動作波形を
示し、図5は本発明の各動作モ−ドでの等価回路を表し
ている。図1、図3は両者の比較より明らかな様に、本
発明は、従来の二石型ダブルフォワ−ドコンバ−タ回路
の主トランスT1、T2の両端から直流電源の+、−に接
続していたダイオ−ドD5、D6、D7、D8の内2個を廃
止し、図3の様にダイオ−ドD5のアノ−ドを主スイッ
チ素子Q4のドレインに、又ダイオ−ドD6のカソ−ドを
主スイッチ素子Q3のソ−スにそれぞれ接続し、前記主
変換トランスT1、T2と主スイッチ素子Q1とQ3のソ−
ス間にチョ−クL1、(4)L2を接続する。又、従来主
スイッチ素子Q1〜Q4の動作タイミングは、図2に示し
ている如く主スイッチ素子Q1、Q2と主スイッチ素子Q
3、Q4の位相が180度ずれた関係で各々導通、しゃ断
の動作をくり返し、PWM制御で出力をコントロ−ルし
ていた。The present invention will be described below with reference to the drawings. FIG. 3 is a basic circuit diagram of a two-stone double forward converter circuit according to an embodiment of the present invention, and FIG. 4 shows operation waveforms of the two-stone double forward converter of the present invention shown in FIG. Reference numeral 5 represents an equivalent circuit in each operation mode of the present invention. As is clear from the comparison between the two in FIGS. 1 and 3, according to the present invention, the main transformers T1 and T2 of the conventional two-stone double forward converter circuit are connected to the + and-of the DC power source. Two of the diodes D5, D6, D7, and D8 are abolished, and the anode of the diode D5 is used as the drain of the main switching device Q4 and the cathode of the diode D6 as shown in FIG. The main conversion transformers T1 and T2 and the main switching devices Q1 and Q3 are connected to the sources of the main switching devices Q3, respectively.
Connect the choke L1 and (4) L2 between the terminals. The operation timings of the conventional main switching elements Q1 to Q4 are as shown in FIG.
Since the phases of 3 and Q4 are 180 degrees out of phase, the conduction and interruption operations are repeated, and the output is controlled by PWM control.
【0007】本発明では主スイッチ素子Q1〜Q4の動作
タイミングは図4のa〜dに示す如く、主スイッチ素子
Q1とQ4及びQ2、とQ3は互いに180度ずれた信号で
導通、しゃ断の動作を行う。又、出力を安定化するため
の制御は主スイッチ素子Q1とQ4(又は、Q2、Q3)の
位相を固定にして、主スイッチ素子Q2、Q3(又はQ1、
Q4)の位相をシフトする事に依り可能である。又、主
スイッチ素子Q1とQ4、Q2とQ3が導通からしゃ断(又
はしゃ断から導通)期間に休止期間を設け、この期間に
主スイッチ素子Q1〜Q4に並列な寄生容量C1〜C4とチ
ョ−クL1、L2及び主変換トランスT1の1次側からみ
たインダクタンスと共振動作を行わせる事により、主ス
イッチ素子Q1〜Q4の電圧と電流のスイッチ動作が急激
に変化しないソフトスイッチ動作を行わせ、かつ電圧、
電流が重なり合う時間を極めて短くして高周波動作でも
スイッチング損失を極めて少なくし、かつ低ノイズ動作
を行うことが出来る二石型ダブルフォワ−ドコンバ−タ
回路である。In the present invention, the operation timings of the main switch elements Q1 to Q4 are, as shown in a to d of FIG. 4, the main switch elements Q1, Q4 and Q2, and Q3, which conduct and cut off by signals shifted by 180 degrees from each other. I do. Further, the control for stabilizing the output is performed by fixing the phases of the main switching elements Q1 and Q4 (or Q2, Q3), and then the main switching elements Q2, Q3 (or Q1,
It is possible by shifting the phase of Q4). Further, a pause period is provided during a period in which the main switching elements Q1 and Q4 and Q2 and Q3 are turned off (or turned on), and parasitic capacitances C1 to C4 and chokes parallel to the main switching elements Q1 to Q4 are provided during this period. L1 and L2 and the inductance of the main conversion transformer T1 as viewed from the primary side cause resonance operation to cause soft switch operation in which the voltage and current switch operations of the main switch elements Q1 to Q4 do not change abruptly, and Voltage,
This is a two-stone double forward converter circuit capable of extremely reducing switching loss even in high frequency operation by extremely shortening the time when currents overlap with each other and performing low noise operation.
【0008】以下に本発明のニ石型ダブルフォワ−ドコ
ンバ−タ回路である図3及び動作波形を示した図4、及
び動作モ−ドを表す等価回路図5について詳細に説明す
る。図3に示す如く直流電源VCCの+、−側の両端に主
スイッチ素子Q1〜Q4(本例示ではFETを図示してい
る。)を接続し主スイッチ素子Q1及びQ3のソ−ス側か
ら直列にチョ−クコイルL1、L2の一端が接続される。
又、チョ−クコイルL1、L2のもう一方の側から直列に
主トランスT1、T2が接続され前記した主スイッチング
素子Q2、Q4のアノ−ドと主トランスT1T2のもう一方
の側が接続される。主トランスT1、T2の2次側には出
力ダイオ−ド(5)D7、D8及び出力チョ−クL3、出
力用平滑コンデンサC5、出力チョ−クL3に蓄えられた
エネルギ−を帰還するダイオ−ドD9によって構成さ
れ、出力OUTには負荷RLが接続されている。主スイ
ッチ素子Q1〜Q4ドレインソ−ス間に寄生容量C1〜C4
と寄生ダイオ−ドD1〜D4が並列に存在し、主スイッチ
素子Q4、Q2のドレインとQ1Q3のソ−ス間には、ダイ
オ−ドD5D6が接続される。又図には示していないが主
スイッチ素子Q1〜Q4のゲ−トには、主スイッチ素子Q
1〜Q4をON、OFF動作させるための駆動回路が接続
される。A detailed description will be given below of FIG. 3 which is a double-forward converter circuit of the present invention, FIG. 4 which shows operation waveforms, and an equivalent circuit diagram 5 which shows an operation mode. As shown in FIG. 3, main switch elements Q1 to Q4 (FETs are shown in this example) are connected to both + and-sides of the DC power supply VCC, and series connection is made from the source side of the main switch elements Q1 and Q3. One ends of choke coils L1 and L2 are connected to.
The main transformers T1 and T2 are connected in series from the other side of the choke coils L1 and L2, and the nodes of the main switching elements Q2 and Q4 described above are connected to the other side of the main transformer T1T2. The output diodes (5) D7, D8 and the output choke L3, the output smoothing capacitor C5, and the energy stored in the output choke L3 are fed back to the secondary side of the main transformers T1, T2. A load RL is connected to the output OUT. Parasitic capacitances C1 to C4 between the main switch elements Q1 to Q4 drain sources
And parasitic diodes D1 to D4 exist in parallel, and a diode D5D6 is connected between the drains of the main switching devices Q4 and Q2 and the source of Q1Q3. Although not shown in the figure, the main switching elements Q1 to Q4 are connected to the gates of the main switching elements Q1 to Q4.
A drive circuit for turning on and off 1 to Q4 is connected.
【0009】主スイッチ素子Q1〜Q4のゲ−トには、図
4に示したa〜dの記号が入力されるものとする。図4
は本発明の実施動作回路図3の各部の動作波形を示して
おり、a、b、c、dは各々主スイッチ素子Q1、Q2、
Q3、Q4のゲ−ト入力電圧波形、e、fは主スイッチ素
子Q4、Q1の電圧波形、g、g′は主スイッチ素子Q
1、Q4の電流波形、h、iはスイッチ素子Q2、Q3の電
圧波形、j、j′はスイッチ素子Q2、Q3の電流波形、
k、lは主スイッチ素子Q1、Q4の寄生容量、C1、C4
の充放電々流波形、m、nは主スイッチ素子Q2、Q3の
寄生容量、C2、C3の充放電々流波形、o、pは主スイ
ッチ素子Q1、Q4に内蔵する寄生ダイオ−ドD1、D4に
流れる電流波形、Q、Rは主スイッチ素子Q2、Q3に内
蔵する寄生ダイオ−ドD2、D3に流れる電流波形、X、Y
はダイオ−ドD5、D6に流れる電流波形、Zは主変換ト
ランスT1の電圧波形を示し、t1、t2、t3、t3′、
t4、t5、t6は本発明の動作を説明する上で重要な代
表的時間を表している。It is assumed that the symbols a to d shown in FIG. 4 are input to the gates of the main switching elements Q1 to Q4. Figure 4
Shows an operation waveform of each part of the operation circuit of the present invention, and a, b, c, d are main switching elements Q1, Q2,
Gate input voltage waveforms of Q3 and Q4, e and f are voltage waveforms of main switching elements Q4 and Q1, g and g'are main switching elements Q
1 and Q4 current waveform, h and i are switch element Q2 and Q3 voltage waveforms, j and j'are switch element Q2 and Q3 current waveforms,
k and l are the parasitic capacitances of the main switching elements Q1 and Q4, and C1 and C4.
Charge / discharge current waveform, m, n are parasitic capacitances of the main switching elements Q2, Q3, charge / discharge current waveforms of C2, C3, o, p are parasitic diode D1 built in the main switching elements Q1, Q4, Current waveforms flowing in D4, Q and R are current waveforms flowing in parasitic diodes D2 and D3 built in the main switch elements Q2 and Q3, and X and Y.
Represents the waveform of the current flowing in the diodes D5 and D6, Z represents the voltage waveform of the main conversion transformer T1, t1, t2, t3, t3 ',
t4, t5, and t6 represent representative times that are important in explaining the operation of the present invention.
【0010】次に図5の説明を行う。図5のMODE1
〜MODE5は本発明の実施例である図3を各期間毎に
等価回路により示したものである。図5でL1+LR1は
図3のチョ−クコイルL1のインダクタンスと主トラン
スT1のもれインダクタンスLR1の合計を表している。
LO′、LM1は図3の主トランスT1の1次側からみた
インダクタンス値と主変換トランスの励磁(6)インダ
クタンス値を表す。VO′は図3の主トランスT1の1次
側に発生する電圧を示し、ダイオ−ドD5、D6は図3に
示したダイオ−ドD5、D6と同じものである。又丸に矢
印記号で示した1〜3は前記したインダクタンスに発生
する定電流源を示しており、IM1、IO′は主トランス
T1の励磁インダクタンスLM1に流れる励磁電流と、
主トランスT1の二次側に流れる出力電流を1次側に換
算した電流を示す。又IPは前記励磁電流IM1と一次側
に変換した出力電流IO′の合計を表す。4は図3のも
う一方の側の二石型フォワ−ドコンバ−タの等価回路を
示すがこの説明の動作には関係ないため省略してある。
5、6のC4、C3、VCCは主スイッチQ3、Q4に並列に
接続されているコンデンサC3、C4を示しており、直流
電源VCCに充電されていることを表している。Next, FIG. 5 will be described. MODE1 in FIG.
3 to 5 are equivalent circuits of FIG. 3, which is an embodiment of the present invention, for each period. In FIG. 5, L1 + LR1 represents the sum of the inductance of the choke coil L1 of FIG. 3 and the leakage inductance LR1 of the main transformer T1.
LO 'and LM1 represent the inductance value seen from the primary side of the main transformer T1 in FIG. 3 and the excitation (6) inductance value of the main conversion transformer. VO 'indicates the voltage generated on the primary side of the main transformer T1 in FIG. 3, and the diodes D5 and D6 are the same as the diodes D5 and D6 shown in FIG. Further, circled arrows 1 to 3 indicate constant current sources generated in the above-mentioned inductances, and IM1 and IO 'are exciting currents flowing in the exciting inductance LM1 of the main transformer T1.
The current obtained by converting the output current flowing on the secondary side of the main transformer T1 into the primary side is shown. IP represents the sum of the exciting current IM1 and the output current IO 'converted to the primary side. Reference numeral 4 shows an equivalent circuit of the two-stone forward converter on the other side of FIG. 3, but it is omitted because it has no relation to the operation of this description.
C4, C3 and VCC of 5 and 6 represent capacitors C3 and C4 connected in parallel to the main switches Q3 and Q4, respectively, and indicate that the DC power source VCC is charged.
【0011】次に図3に示してある本発明の二石型フォ
ワ−ドコンバ−タ回路の主スイッチ素子Q1〜Q4を図4
に示した波形a〜dで駆動した時の説明を行う。説明の
便宜上時間t1〜t6について行い、それ以降については
同様なくり返し動作を行うものとする。図4で時間t1
〜t2の動作モ−ドは図3の本実施回路図を等価回路で
表した図5のMODE1に示す。初期条件としてこの期
間、主スイッチ素子Q3、Q4はしゃ断状態にあるため主
スイッチ素子Q3、Q4の寄生容量C3、C4は直流電源V
CCまで充電されているものとする。又主スイッチ素子Q
1、Q2は導通状態にあり、主スイッチ素子Q1、Q2に並
列接続されている寄生容量C1、C2の印加電圧はほぼ零
ボルトになっているものとする。従って主スイッチ素子
Q1、Q2には図4に示したg、及びjが流れる。g及び
jは図4の時間T2後には図3のチョ−クL3によりピ−
ク値IP1に達する。このMODE1は負荷RLにエネル
ギ−が伝達される期間であり、負荷RLの大きさにより
変化する。Next, the main switching elements Q1 to Q4 of the two-stone forward converter circuit of the present invention shown in FIG.
A description will be given of the case of driving with the waveforms a to d shown in FIG. For convenience of explanation, it is assumed that the time is from t1 to t6, and the subsequent loopback operation is performed after that. Time t1 in FIG.
The operation mode from t2 to t2 is shown in MODE1 of FIG. 5, which is an equivalent circuit of the circuit diagram of this embodiment shown in FIG. As an initial condition, since the main switching elements Q3 and Q4 are in the cutoff state during this period, the parasitic capacitances C3 and C4 of the main switching elements Q3 and Q4 are the DC power source V.
It shall be charged to CC. The main switching element Q
It is assumed that 1 and Q2 are in a conductive state, and the applied voltages of the parasitic capacitances C1 and C2 connected in parallel to the main switch elements Q1 and Q2 are almost zero volt. Therefore, g and j shown in FIG. 4 flow through the main switch elements Q1 and Q2. After time T2 in FIG. 4, g and j are picked up by the choke L3 in FIG.
Reaches the black level IP1. This MODE1 is a period during which energy is transferred to the load RL, and changes depending on the size of the load RL.
【0012】次に図4のt2〜t3期間すなわち図5のM
ODE2について説明を行う。図(7)3の主スイッチ
素子Q1がOFFするとしゃ断直前の電流は図4の主ス
イッチ素子Q1の電流gがIP1を初期条件として流れつ
づけるため、図3の主スイッチ素子Q1と並列のコンデ
ンサC1が充電されると同時に主スイッチ素子Q4と並列
のコンデンサC4が電源電圧VCCまで充電されていたの
が、L1+LR、L0、LM1を通して放電される。従って主
スイッチ素子Q1及びQ4のドレイン、ソ−ス間の電圧は
図4のf、eの如くゆるやかに上昇及びゆるやかに下降
を始め図4の時間t3にてスイッチ素子Q1の電圧はほぼ
直流電源電圧VCCまで充電され、又スイッチ素子Q4は
零ボルトまで放電される。従って、主スイッチ素子Q1
は電圧、電流がクロスしないいわゆる零ボルトスイッチ
ングが可能になりスイッチング損失が極めて少なくな
る。Next, the period from t2 to t3 in FIG. 4, that is, M in FIG.
The ODE2 will be described. When the main switching element Q1 in FIG. 3 (7) is turned off, the current g immediately before the interruption occurs because the current g of the main switching element Q1 in FIG. 4 continues to flow with IP1 as the initial condition, so the capacitor C1 in parallel with the main switching element Q1 in FIG. The capacitor C4 in parallel with the main switch element Q4 was charged up to the power supply voltage Vcc at the same time as the charge was charged, but is discharged through L1 + LR, L0, LM1. Therefore, the voltage between the drain and the source of the main switching elements Q1 and Q4 starts to rise and fall slowly as shown in f and e of FIG. 4, and at time t3 of FIG. It is charged to the voltage Vcc and the switch element Q4 is discharged to zero volts. Therefore, the main switching element Q1
Enables so-called zero volt switching in which voltage and current do not cross, and switching loss is extremely reduced.
【0013】この時の関係式を次式で示すことが出来
る。 VCC(tX)=VCC(1−cosω1t)-V0’(1−cosω1t)+IP/W1(C1+C4) ∴W=1/√・{(L1′+LR)+LM/L0′}(C1+C4) VC4(tx)=VCC−VC1(t) IP1=IM1+I0′ VC1(tx)=IP/(C1+C4)・t ∴t=t2−t1=VCC・(C1+C4)/IP1 但しtxはt1〜t2間の任意の期間とする。The relational expression at this time can be expressed by the following expression. VCC (tX) = VCC (1-cosω1t) -V0 '(1-cosω1t) + IP / W1 (C1 + C4) ∴W = 1 / √ ・ {(L1' + LR) + LM / L0 '} (C1 + C4) VC4 (tx) = VCC-VC1 (t) IP1 = IM1 + I0 'VC1 (tx) = IP / (C1 + C4) .t ∴t = t2-t1 = VCC. (C1 + C4) / IP1 However, tx is any value between t1 and t2. And the period.
【0014】よって、図3の主スイッチ素子Q1、Q4に
並列な寄生容量C1、C4が直流電源VCCに充電される時
間及び寄生容量C4が直流電源VCCから放電してほぼ零
ボルトまで放電する時間tは、主スイッチ素子Q1に流
れていた電流IP1及び寄生容量C1、C4の大きさによっ
て変化する事がわかる。又、電流IP1は、時間t3後に
は、電源側及び帰還ダイオ−ドD5を通って流れ、最終
的にIP2となり次式で表される。Therefore, the time when the parasitic capacitances C1 and C4 in parallel with the main switching devices Q1 and Q4 of FIG. 3 are charged to the DC power supply VCC and the time when the parasitic capacitance C4 is discharged from the DC power supply VCC to almost zero volt. It can be seen that t changes depending on the magnitude of the current IP1 flowing through the main switch element Q1 and the parasitic capacitances C1 and C4. The current IP1 flows through the power source side and the feedback diode D5 after the time t3, and finally becomes IP2, which is expressed by the following equation.
【0015】 IP2=IP1−{(V0′−VCC−D5VF)(t3−t2)/(L1+LR1+LM1/L0) (8) +(V0′−VCC−Q2V05(ON))(t3−t2)/(L1+LR1+LM1/L0')} 但し、D5VFはダイオ−ドD5の順方向電圧、Q2V05
(ON)はスイッチQ2のドレインソ−ス間のON電圧。IP2 = IP1 − {(V0′−VCC−D5VF) (t3−t2) / (L1 + LR1 + LM1 / L0) (8) + (V0′−VCC−Q2V05 (ON)) (t3−t2) / (L1 + LR1 + LM1 / L0 ')} where D5VF is the forward voltage of diode D5, Q2V05
(ON) is the ON voltage between the drain and source of switch Q2.
【0016】次に図4のt3〜t4の期間について説明を
行う。この期間は図4より主スイッチ素子Q1、Q3がし
ゃ断、Q2が導通状態で、Q4が時間t3′に導通するモ
−ドである。従って、この期間を等価回路で表すと、図
5のMODE3になる。この期間は、図3のチョ−クコ
イルL1と主トランスT1のもれインダクタンスLR1の和
であるL1+LR1に蓄えられたエネルギ−がIP2を初期
条件として主スイッチ素子Q4と並列なダイオ−ドD4及
びダイオ−ドD5を通して順環するモ−ドである。又時
間t4には主スイッチQ2に流れる電流IDは次式によっ
て求められる。Next, the period from t3 to t4 in FIG. 4 will be described. During this period, as shown in FIG. 4, the main switch elements Q1 and Q3 are cut off, Q2 is in the conductive state, and Q4 is in the conductive state at time t3 '. Therefore, when this period is represented by an equivalent circuit, MODE 3 in FIG. 5 is obtained. During this period, the energy stored in L1 + LR1 which is the sum of the leakage inductance LR1 of the choke coil L1 of FIG. 3 and the main transformer T1 is the diode D4 and the diode which are in parallel with the main switch element Q4 with IP2 as the initial condition. It is a mode in which the ring goes through the mode D5. At time t4, the current ID flowing through the main switch Q2 is obtained by the following equation.
【0017】 IP3=IP2−{(t4−t3)・(D5VF+D4VF)/(L1+LR1)} 但し IP3:時間t4での主スイッチQ2の電流ID D4VF:主スイッチ素子Q4に並列なダイオ−ドの順方
向電圧IP3 = IP2 − {(t4−t3) · (D5VF + D4VF) / (L1 + LR1)} where IP3: current of the main switch Q2 at time t4 ID D4VF: forward direction of diode parallel to the main switching element Q4 Voltage
【0018】この期間のt3′では、主スイッチ素子Q4
が導通状態になるが並列のダイオ−ドD4に電流IDが流
れている状態で導通するが、図4の時間t3ですでに主
スイッチ素子Q4と並列の寄生容量C4の電圧がほぼ零ボ
ルトまで放電しているため、主スイッチ素子Q4の電
圧、電流のスイッチング損失は発生しない事がわかる。At t3 'during this period, the main switching element Q4
Is turned on, but it is turned on while the current ID is flowing in the parallel diode D4, but at time t3 in FIG. 4, the voltage of the parasitic capacitance C4 in parallel with the main switch element Q4 has almost reached 0 volt. It can be seen that the voltage and current switching loss of the main switch element Q4 does not occur because the discharge occurs.
【0019】次に時間t4〜t5の期間について説明を行
う。この期間は図4より主スイッチ素子Q1、Q3がしゃ
断状態、Q2が時間t4でしゃ断、Q4が導通状態の期間
であり図3の本実施回路例を等価回路で表すと、図5の
MODE4に相当する。この期間は時間t4で主スイッ
チ素子Q2がしゃ断するため、チョ−クコイルL1と主ト
ランスT1のもれインダクタン(9)スLR1の和、L1
+LR1に蓄えられていたエネルギ−は、電流IP3によ
り、主スイッチ素子Q2に並列な寄生容量C2を零ボルト
から直流電源VCCまで前記L1+R1及びダイオ−ドD
4、D5を通して充電し又、主スイッチ素子Q3に並列で
直流電源VCCまで充電されている図5の6の寄生容量C
3をほぼ零ボルトまで前記L1+LR1及びダイオ−ドD6
を通して放電する。この時の関係式を次式で表す事が出
来る。Next, the period from time t4 to t5 will be described. This period is a period in which the main switching devices Q1 and Q3 are in the cutoff state, Q2 is in the cutoff state at time t4, and Q4 is in the conduction state from FIG. 4, and the equivalent circuit example of this embodiment circuit in FIG. Equivalent to. During this period, since the main switching element Q2 is cut off at time t4, the sum of the leakage inductance (9) LR1 of the choke coil L1 and the main transformer T1, L1
The energy stored in + LR1 is the parasitic capacitance C2 in parallel with the main switch element Q2 from 0 volt to the DC power supply Vcc due to the current IP3. L1 + R1 and diode D
Parasitic capacitance C of 6 in FIG. 5 is charged through 4, D5 and is charged in parallel to the main switch element Q3 up to the DC power supply Vcc.
3 to almost zero volt L1 + LR1 and diode D6
To discharge through. The relational expression at this time can be expressed by the following expression.
【0020】 VC2(t)=(IP3/2)・√・(L1+LR1)/C2・Sinω2t W2=1/√・(L1+LR1)(C3+C4) VC3(t)=VCC−VC2(t) 但しD4VOF:ダイオ−ドD4の順方向電圧 VC2(t):コンデンサC2のt4〜t5間の任意の時間で
の電圧 VC3(t):コンデンサC3のt4〜t5間の任意の時間で
の電圧VC2 (t) = (IP3 / 2) ・ √ ・ (L1 + LR1) / C2 ・ Sinω2t W2 = 1 / √ ・ (L1 + LR1) (C3 + C4) VC3 (t) = VCC-VC2 (t) where D4VOF: Daio -Forward voltage of D4 VC2 (t): voltage of capacitor C2 at any time between t4 and t5 VC3 (t): voltage of capacitor C3 at any time between t4 and t5
【0021】従って主スイッチ素子Q2の電圧は時間t4
よりゆるやかに上昇し、Q3はゆるやかに下降する為、
主スイッチ素子Q2のスイッチング損失は発生しない事
がわかる。この時、C2、C3の充放電完了後の電流IP4
は次式で表される。Therefore, the voltage of the main switch element Q2 is at time t4.
As it rises more slowly and Q3 falls gradually,
It can be seen that the switching loss of the main switch element Q2 does not occur. At this time, the current IP4 after the completion of charging / discharging of C2 and C3
Is expressed by the following equation.
【0022】IP4=IP3-(D4VF+D5VF)/(L1+LR
1)IP4 = IP3- (D4VF + D5VF) / (L1 + LR
1)
【0023】次に時間t5〜t6について説明する。この
期間は図4より主スイッチQ1Q2はしゃ断、Q3はしゃ
断から時間tbで導通、Q4は導通状態になる期間であ
り、図3の本実施回路例を等価回路で表すと図5のMO
DE5になる。この期間は前記MODE4にてチョ−ク
コイルL1と主トランスT1のもれインダクタンスに蓄え
られたエネルギ−で図5の1の電流IP4がダイオ−ドD
6、D3及び直流電源VCCとダイオ−ドD4、D5を通して
放電する期間である。図4の時間t6で主スイッチ素子
Q3と並列のダイオ−ドD3に流れる電流rが流れ続けて
いる期間に主スイッチ素子(10)Q3を導通する事に
より主スイッチ素子Q3のスイッチング損失をなくす事
が解る。尚ダイオ−ドD3に流れる電流rは、時間t6で
の大きさIP5は次式により求める事が出来る。Next, the times t5 to t6 will be described. This period is a period in which the main switches Q1 and Q2 are cut off, Q3 is turned on at time tb from the cutoff, and Q4 is turned on according to FIG. 4, and the equivalent circuit example of this embodiment shown in FIG.
It becomes DE5. During this period, the current I P4 of 1 in FIG. 5 is the diode D due to the energy stored in the leakage inductance of the choke coil L1 and the main transformer T1 in the MODE4.
6, D3 and the DC power supply Vcc and the diodes D4 and D5 are discharged. By eliminating the switching loss of the main switching element Q3 by conducting the main switching element (10) Q3 during the period in which the current r flowing through the diode D3 in parallel with the main switching element Q3 continues to flow at time t6 in FIG. Understand. The current r flowing through the diode D3 and the magnitude IP5 at the time t6 can be obtained by the following equation.
【0024】 IP5=IP4−(VCC+D6VF+D3VF+D4VF+D5VF)(t6−t5)/(L1+LR1)IP5 = IP4− (VCC + D6VF + D3VF + D4VF + D5VF) (t6−t5) / (L1 + LR1)
【0025】図4に於いて時間t6以降については、前
記で述べた如く同様なくり返しを行う事により、スイッ
チング時の損失が発生しない事が容易に推察出来る。以
上の如く、本説明では主スイッチ素子をFETで説明を
行ったが他の素子でも応用出来る事は明白である。従っ
て図3の実施回路例では主スイッチ素子Q1〜Q4に並列
に寄生する容量C1〜C4及び寄生ダイオ−ドD1〜D4を
使って説明を行ったが別にコンデンサ及びダイオ−ドを
主スイッチ素子Q1〜Q4に並列に接続して前記動作を行
わせる事は充分可能である。In FIG. 4, after the time t6, it can be easily inferred that no loss occurs at the time of switching by carrying out the flyback as described above. As described above, in the present description, the main switch element has been described as an FET, but it is obvious that other elements can be applied. Therefore, in the embodiment circuit example of FIG. 3, the explanation has been made by using the parasitic capacitances C1 to C4 and the parasitic diodes D1 to D4 in parallel with the main switch elements Q1 to Q4. It is sufficiently possible to connect in parallel to Q4 to perform the above operation.
【0026】[0026]
【発明の効果】本発明に依り、主トランスの偏励磁しに
くい二石型ダブルフォワ−ドコンバ−タに於いて、スイ
ッチング時のエネルギ−を電源に帰還する事により比較
的容量の大きいコンバ−タの低ノイズ化高効率化、小型
化が実現出来、産業上の効果大である。According to the present invention, in a two-stone type double forward converter in which the main transformer is less likely to be biasedly excited, the energy of switching is returned to the power source so that the converter having a relatively large capacity can be used. It is possible to realize low noise, high efficiency, and miniaturization, which is a great industrial effect.
【図1】従来の二石型ダブルフォワ−ドコンバ−タFIG. 1 Conventional two-stone double forward converter
【図2】従来の回路の動作波形[Fig. 2] Operation waveform of a conventional circuit
【図3】本発明の二石型ダブルフォワ−ドコンバ−タFIG. 3 is a two-stone double forward converter of the present invention.
【図4】本発明の回路の動作波形(11)FIG. 4 is an operation waveform (11) of the circuit of the present invention.
【図5】本発明回路の各動作モ−ドの等価回路FIG. 5: Equivalent circuit of each operation mode of the circuit of the present invention
Q1〜Q4 主スイッチ素子 D1〜D4 寄生ダイオ−ド又は外部に設けたダイオ
−ド T1、T2 主変換トランス D5〜D11 ダイオ−ド L1、L2 漏れインダクタンス又は外部に設けたイ
ンダクタンス C1〜C4 寄生コンデンサ又は外部に設けたコンデ
ンサ C5 平滑コンデンサ VCC 直流電源 RL 負荷 LR1 主トランスT1の漏れインダクタンス L0′ 主トランスT1の1次側換算インダクタ
ンス LM1 主トランスT1の励磁インダクタンス V0′ 出力電圧の1次側換算値 1 L1+LR1に蓄積された定電流源、IP
=IM+IO IM 励磁インダクタンスLM1に蓄えられた
励磁電流 3 出力電流を1次側換算した電流I0′ 4 他方の二石型コンバ−タの等価回路 5 コンデンサC4の直流電源VCCの充電状
態 6 コンデンサC3の直流電源VCCの充電状
態 VCC 直流電源Q1 to Q4 Main switch element D1 to D4 Parasitic diode or external diode T1, T2 Main conversion transformer D5 to D11 Diode L1, L2 Leakage inductance or external inductance C1 to C4 Parasitic capacitor or Externally installed capacitor C5 Smoothing capacitor V CC DC power supply RL load LR1 Leakage inductance of main transformer T1 L0 'Primary transformer equivalent inductance of main transformer T1 LM1 Main transformer T1 excitation inductance V0' Primary voltage equivalent of output voltage 1 L1 + LR1 Constant current source, IP
= IM + IO IM Excitation current stored in excitation inductance LM1 3 Current I0'4 obtained by converting the output current to the primary side 4 Equivalent circuit of the other two-stone converter 5 Charge state of DC power supply VCC of capacitor C4 6 Capacitor C3 Charge state of DC power supply VCC VCC DC power supply
Claims (1)
続された2個のスイッチング素子の間に主変圧器が接続
された二石式フォワ−ド型コンバ−タを2組組合わせて
1組の直流出力を供給するDC−DCコンバ−タに於い
て、前記各々の主変圧器に直列にリ−ケ−ジインダクタ
ンス又は外部インダクタンスを設け、かつ前記各々のス
イッチ素子と並列に寄生コンデンサ又は外部コンデンサ
が接続され、1組の二石式フォワ−ド型コンバ−タの−
側電源ラインに接続されたスイッチング素子のドレイン
又はコレクタと他の1組の二石式フォワ−ド型コンバ−
タの+側電源ラインに接続されたスイッチング素子のソ
−ス又はエミッタとの間に順方向となる様にダイオ−ド
を接続し、かつ前記他の1組のニ石式フォワ−ド型コン
バ−タの−側電源ラインに接続されたスイッチング素子
のドレイン又はコレクタと前記1組の二石式フォワ−ド
型コンバ−タの+側電源ラインに接続されたスイッチン
グ素子のソ−ス又はエミッタとの間に順方向となる様に
ダイオ−ドを接続した事を特徴とするDC−DCコンバ
−タ。1. A combination of two sets of two-stone forward type converters in which a main transformer is connected between two switching elements each having one end connected to the + side and the-side of a power supply line. In a DC-DC converter for supplying a set of direct current output, a leakage inductance or an external inductance is provided in series with each of the main transformers, and parasitic parallel to each of the switch elements. Capacitor or external capacitor is connected to a set of two stone forward type converters.
Drain or collector of the switching element connected to the side power supply line and another pair of two-stone forward type converter
A diode is connected to the source or the emitter of the switching element connected to the positive side power supply line of the switch so as to be in the forward direction, and the other one pair of forward type forward converters. A drain or collector of the switching element connected to the negative (-) side power supply line, and a source or emitter of the switching element connected to the positive (+) side power supply line of the pair of two-stone forward type converters. A DC-DC converter characterized in that a diode is connected in a forward direction between the two.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28378191A JP2966603B2 (en) | 1991-10-04 | 1991-10-04 | DC-DC converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28378191A JP2966603B2 (en) | 1991-10-04 | 1991-10-04 | DC-DC converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05103467A true JPH05103467A (en) | 1993-04-23 |
JP2966603B2 JP2966603B2 (en) | 1999-10-25 |
Family
ID=17670050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28378191A Expired - Fee Related JP2966603B2 (en) | 1991-10-04 | 1991-10-04 | DC-DC converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2966603B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002315338A (en) * | 2001-04-05 | 2002-10-25 | Shindengen Electric Mfg Co Ltd | Switching power supply |
JP2002330582A (en) * | 2001-05-08 | 2002-11-15 | Shindengen Electric Mfg Co Ltd | Switching power supply device |
JP2002369524A (en) * | 2001-06-01 | 2002-12-20 | Shindengen Electric Mfg Co Ltd | Switching power supply unit |
JP2003037978A (en) * | 2001-07-24 | 2003-02-07 | Shindengen Electric Mfg Co Ltd | Switching power device |
-
1991
- 1991-10-04 JP JP28378191A patent/JP2966603B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002315338A (en) * | 2001-04-05 | 2002-10-25 | Shindengen Electric Mfg Co Ltd | Switching power supply |
JP2002330582A (en) * | 2001-05-08 | 2002-11-15 | Shindengen Electric Mfg Co Ltd | Switching power supply device |
JP4716598B2 (en) * | 2001-05-08 | 2011-07-06 | 新電元工業株式会社 | Switching power supply |
JP2002369524A (en) * | 2001-06-01 | 2002-12-20 | Shindengen Electric Mfg Co Ltd | Switching power supply unit |
JP4703037B2 (en) * | 2001-06-01 | 2011-06-15 | 新電元工業株式会社 | Switching power supply |
JP2003037978A (en) * | 2001-07-24 | 2003-02-07 | Shindengen Electric Mfg Co Ltd | Switching power device |
JP4716613B2 (en) * | 2001-07-24 | 2011-07-06 | 新電元工業株式会社 | Switching power supply |
Also Published As
Publication number | Publication date |
---|---|
JP2966603B2 (en) | 1999-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11011980B2 (en) | Switched-capacitor converter with multi-tapped autotransformer | |
US6452814B1 (en) | Zero voltage switching cells for power converters | |
US7272020B2 (en) | Isolated, current-fed, pulse width modulation, DC-DC converter | |
JP4534223B2 (en) | DC-DC converter | |
US8040697B2 (en) | Resonant circuit and resonant power converter with a narrow operating frequency bandwidth | |
US20090290389A1 (en) | Series resonant converter | |
US8619438B2 (en) | Resonant converter | |
JP5591666B2 (en) | DC-DC converter | |
JPWO2008020629A1 (en) | Isolated step-up push-pull soft switching DC / DC converter | |
CN110190752B (en) | Bidirectional CLLLC-DCX resonant converter and control method thereof | |
US6906931B1 (en) | Zero-voltage switching half-bridge DC-DC converter topology by utilizing the transformer leakage inductance trapped energy | |
CN112087140B (en) | Multi-mode automatic switching two-stage resonance DC-DC converter | |
CN108199579B (en) | High-transformation-ratio soft-switching DC-DC buck converter with coupling inductor | |
JPH07123717A (en) | Switching power unit | |
CN109787479A (en) | A kind of two-way changing circuit and converter comprising dual resonant cavity | |
US6667893B2 (en) | Phase and frequency shifted controller for interleaved ZVS forward power converter | |
JP2966603B2 (en) | DC-DC converter | |
JP2003134817A (en) | Power supply | |
US20080278971A1 (en) | Forward-forward converter | |
WO2022077421A1 (en) | Voltage conversion circuit and electronic device | |
JP2972013B2 (en) | DC-DC converter | |
US7576446B2 (en) | Zero voltage switching (ZVS) in a power converter | |
JP3022620B2 (en) | DC-DC converter | |
JP2751961B2 (en) | DC / DC converter | |
US20240223086A1 (en) | Buck-boost switching converter and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20070813 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20080813 |
|
LAPS | Cancellation because of no payment of annual fees |