JPH05101725A - Manufacture of oxide superconductive wire rod - Google Patents

Manufacture of oxide superconductive wire rod

Info

Publication number
JPH05101725A
JPH05101725A JP3289077A JP28907791A JPH05101725A JP H05101725 A JPH05101725 A JP H05101725A JP 3289077 A JP3289077 A JP 3289077A JP 28907791 A JP28907791 A JP 28907791A JP H05101725 A JPH05101725 A JP H05101725A
Authority
JP
Japan
Prior art keywords
wire
oxide superconducting
wire rod
diameter
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3289077A
Other languages
Japanese (ja)
Inventor
Akito Kurosaka
昭人 黒坂
Mamoru Aoyanagi
守 青▲柳▼
Haruo Tominaga
晴夫 冨永
Akira Saji
明 佐治
Toshio Inoue
俊夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Chubu Electric Power Co Inc
Original Assignee
Fujikura Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Chubu Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP3289077A priority Critical patent/JPH05101725A/en
Publication of JPH05101725A publication Critical patent/JPH05101725A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide the manufacture of oxide superconductive wire rod having a high critical current density and provided with the stabilizing material on the peripheral surface thereof. CONSTITUTION:A raw wire material 1 made of the sintered body, which is composed of Bi group superconducting component, is melted locally to form a melting part 3. The melted liquid is led out from the melting part 3 through a pipe 5, and is solidified to form an oxide superconducting wire material 11 having a wire diameter of 2mm or less. Next, electroplating of Ag is applied to the peripheral surface of the oxide superconductive wire rod 11 at a current density of 0.3A/dm<2> or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Bi−Sr−Ca−C
u−O系(以下BSCCO系という)等のBi系超電導
組成の焼結体を出発原料とする酸化物超電導線材の製造
方法に関し、特にその周面に安定化材としてAgめっき
層を備えた酸化物超電導線材の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to Bi-Sr-Ca-C.
The present invention relates to a method for producing an oxide superconducting wire starting from a sintered body having a Bi-based superconducting composition such as u-O (hereinafter referred to as BSCCO), and particularly to an oxidation method having an Ag plating layer as a stabilizing material on the peripheral surface thereof. The present invention relates to a method for manufacturing a superconducting wire.

【0002】[0002]

【従来の技術】従来、酸化物超電導線材は以下に示す方
法により製造されている。即ち、先ず、超電導組成の酸
化物粉末を加圧成形して成形体を得る。次に、この成形
体を銀等の金属パイプ中に充填して封入する。次に、こ
の金属パイプを所望の線径に伸線加工する。次いで、加
熱処理を施すことにより、芯部の粉末成形体を焼結させ
る。
2. Description of the Related Art Conventionally, oxide superconducting wires have been manufactured by the following method. That is, first, an oxide powder having a superconducting composition is pressure-molded to obtain a molded body. Next, this molded body is filled and sealed in a metal pipe such as silver. Next, this metal pipe is drawn into a desired wire diameter. Then, a heat treatment is applied to sinter the powder compact of the core.

【0003】このようにして製造された酸化物超電導線
材においては、芯部の酸化物超電導体が金属で被覆され
ているため、この被覆部の金属が超電導線材の安定化材
として作用する。つまり、酸化物超電導体は、超電導状
態での電気抵抗は存在しないが、何らかの外乱要因で常
電導状態に遷移したときに、その電気抵抗は通常の金属
導体よりも著しく高くなる。この常電導遷移時における
高抵抗状態及び線材の焼損を防止するために、酸化物超
電導体を被覆する安定化材が必要となる。従って、安定
化材としては、通常、低温域で電気抵抗が低いAl、C
u及びAg等の金属が使用される。なお、上述の酸化物
超電導線材の製造方法において、前記金属パイプとして
銀パイプを使用した場合は、特に銀シース法と呼ばれて
いる。
In the oxide superconducting wire thus manufactured, the oxide superconductor in the core portion is coated with a metal, and thus the metal in the coating portion acts as a stabilizer for the superconducting wire. That is, the oxide superconductor has no electric resistance in the superconducting state, but when the oxide superconductor transitions to the normal conducting state due to some disturbance factor, the electric resistance becomes significantly higher than that of a normal metal conductor. In order to prevent the high resistance state and the burnout of the wire at the time of this transition to normal conduction, a stabilizer for covering the oxide superconductor is required. Therefore, as the stabilizing material, usually Al or C, which has a low electric resistance in a low temperature range, is used.
Metals such as u and Ag are used. In addition, in the above-mentioned method for producing an oxide superconducting wire, when a silver pipe is used as the metal pipe, it is particularly called a silver sheath method.

【0004】しかしながら、上述した酸化物超電導線材
の製造方法においては、以下に示す欠点がある。
However, the above-mentioned method for producing an oxide superconducting wire has the following drawbacks.

【0005】(1)粉末成形体の充填密度の差異によっ
て、芯部の線径にバラツキが生じやすい。
(1) Due to the difference in the packing density of powder compacts, the wire diameter of the core portion tends to vary.

【0006】(2)この線材の超電導現象が発生する部
分(即ち、芯部)の線径を測定するためには、被覆部の
銀を剥ぎ取る必要がある。
(2) In order to measure the wire diameter of the portion (that is, the core portion) of the wire rod where the superconducting phenomenon occurs, it is necessary to remove the silver from the coating portion.

【0007】(3)酸化物超電導体からなる芯部が焼結
体であるため、僅かな曲げ応力によりこの部分にクラッ
クが生じやすい。
(3) Since the core made of the oxide superconductor is a sintered body, cracks are likely to occur in this portion due to slight bending stress.

【0008】(4)酸化物超電導体からなる芯部が焼結
体であるため、この部分に多数の空隙が存在すると共に
結晶粒が微細なことから、粒界面積が大きく、高い臨界
電流密度を得ることが困難である。
(4) Since the core portion made of the oxide superconductor is a sintered body, a large number of voids are present in this portion and the crystal grains are fine, resulting in a large grain boundary area and a high critical current density. Is difficult to obtain.

【0009】そこで、焼結体からなる酸化物超電導組成
の線材を形成した後、この線材を局部的に溶融し、その
後凝固させることにより所望の線径の酸化物超電導線材
を得る溶融法が提案されている(R.S.Feigelson,et.a
l., Science 240, 1642,1988及びA,Kurosaka,et,al., A
ppl.Phys,Lett.55(4),I4 July,1989等)。この溶融法に
は、以下に示す利点がある。
Therefore, a melting method is proposed in which a wire having an oxide superconducting composition made of a sintered body is formed, and the wire is locally melted and then solidified to obtain an oxide superconducting wire having a desired wire diameter. (RSFeigelson, et.a
L., Science 240, 1642, 1988 and A, Kurosaka, et, al., A
ppl. Phys, Lett. 55 (4), I4 July, 1989 etc.). This melting method has the following advantages.

【0010】(1)空隙が少なく、ab面が育成方向に
配向している結晶構造の線材を得ることができるので、
容易に高臨界電流密度を得ることができる。
(1) Since it is possible to obtain a wire having a crystal structure in which there are few voids and the ab plane is oriented in the growing direction,
A high critical current density can be easily obtained.

【0011】(2)製造時に線径をモニタしながら線材
を形成することができるため、線材の線径を均一にする
ことが容易である。また、製造後の線材の線径を非破壊
で測定することができる。
(2) Since the wire rod can be formed while monitoring the wire diameter during manufacturing, it is easy to make the wire diameter uniform. In addition, the wire diameter of the manufactured wire can be measured nondestructively.

【0012】(3)焼結体で構成される線材に比して、
可撓性が優れている。
(3) Compared with a wire rod made of a sintered body,
Excellent flexibility.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上述し
た溶融法による酸化物超電導線材の製造方法には以下に
示す問題点がある。即ち、溶融法により製造された酸化
物超電導線材は、常電導状態に遷移した場合のことを考
慮して、その周面に安定化材を被覆する必要がある。こ
の必要性にも拘らず、現在のところ溶融法によって製造
された酸化物超電導線材の周面に安定化材を被覆する技
術は確立されていない。
However, the above-mentioned method for producing an oxide superconducting wire by the melting method has the following problems. That is, in the oxide superconducting wire manufactured by the melting method, it is necessary to cover the peripheral surface of the oxide superconducting wire with the stabilizing material in consideration of the case of transition to the normal conducting state. Despite this necessity, at present, no technique has been established to coat the stabilizing material on the peripheral surface of the oxide superconducting wire produced by the melting method.

【0014】本発明はかかる問題点に鑑みてなされたも
のであって、Bi系酸化物超電導組成の焼結体を出発原
料として溶融及び凝固の工程を経て製造された線材を芯
材とし、この芯材の周面に安定化材が均一な厚さで且つ
良好な密着性で被覆された酸化物超電導線材を得ること
ができる酸化物超電導線材の製造方法を提供することを
目的とする。
The present invention has been made in view of the above problems, and a core made of a wire produced by a melting and solidifying process using a sintered body of a Bi-based oxide superconducting composition as a starting material. An object of the present invention is to provide a method for producing an oxide superconducting wire, which can obtain an oxide superconducting wire in which a stabilizing material is coated on the peripheral surface of a core material with a uniform thickness and good adhesion.

【0015】[0015]

【課題を解決するための手段】本発明に係る酸化物超電
導線材の製造方法は、酸化物超電導組成の原料線材を酸
化雰囲気中にてその融点以上の温度に加熱して溶融部を
形成し、この溶融部から融液を連続的に引き出して凝固
させ、線径が 2mm以下の線材を形成する工程と、この線
材の周面に 0.3A/dm2 以上の電流密度でAgを電気め
っきする工程とを有することを特徴とする。
The method for producing an oxide superconducting wire according to the present invention comprises heating a raw material wire having an oxide superconducting composition to a temperature above its melting point in an oxidizing atmosphere to form a molten portion, The process of continuously drawing and solidifying the melt from this fusion zone to form a wire with a wire diameter of 2 mm or less, and the step of electroplating Ag on the peripheral surface of this wire at a current density of 0.3 A / dm 2 or more. And having.

【0016】[0016]

【作用】本願発明者等は、Bi系酸化物超電導組成の原
料線材を溶融し、その後凝固させて得た線材が室温にお
いて電気伝導体であること、更に焼結体に比較して緻密
な結晶構造となっていることに着目し、この線材の周面
への電気めっきによる金属の被覆を種々試みた。その結
果、線径を 2mm以下にしたBi系酸化物超電導線材は結
晶の配向性が優れているため、電流密度を所定の値以上
に設定してAgめっきを施すことにより、線材の周面に
Agめっき層を均一な厚さで、且つ良好な密着性で形成
できることを見い出した。本発明はこのような実験結果
に基づいてなされたものである。
The inventors of the present invention have found that the wire rod obtained by melting the raw material wire rod having the Bi-based oxide superconducting composition and then solidifying the wire rod is an electric conductor at room temperature, and has a denser crystal than the sintered body. Focusing on the structure, various attempts were made to coat the peripheral surface of this wire with metal by electroplating. As a result, since the Bi-based oxide superconducting wire with a wire diameter of 2 mm or less has excellent crystal orientation, the current density is set to a predetermined value or more and Ag plating is applied to the surface of the wire. It was found that the Ag plating layer can be formed with a uniform thickness and good adhesion. The present invention has been made based on such experimental results.

【0017】以下に、線径の限定理由及びめっき時の電
流密度の限定理由について説明する。
The reasons for limiting the wire diameter and the current density during plating will be described below.

【0018】線径の限定理由 Bi系酸化物超電導組成の原料線材から溶融及び凝固の
工程を経てその線径が2mmを超える酸化物超電導線材を
製造しようとすると、ab面が線材の長手方向に配向し
た結晶構造の線材を得ることが極めて困難であり、配向
性が劣化する。従って、超電導線材の臨界電流密度が低
下してしまう。また、線径が 2mmを超えたBi系酸化物
超電導線材は、電気めっき工程において、厚さが均一で
あり且つ密着性が良好なAgめっき層を形成することが
困難である。従って、原料線材から溶融及び凝固の工程
を経て形成した線材の線径は 2mm以下であることが必要
である。
Reason for limitation of wire diameter When an oxide superconducting wire having a wire diameter of more than 2 mm is manufactured from a raw material wire having a Bi-based oxide superconducting composition through a melting and solidifying process, the ab plane is oriented in the longitudinal direction of the wire. It is extremely difficult to obtain a wire having an oriented crystal structure, and the orientation deteriorates. Therefore, the critical current density of the superconducting wire is lowered. Further, in the Bi-based oxide superconducting wire having a wire diameter exceeding 2 mm, it is difficult to form an Ag plating layer having a uniform thickness and good adhesion in the electroplating process. Therefore, the wire diameter formed from the raw wire material through the melting and solidification process must be 2 mm or less.

【0019】電流密度の限定理由 電気めっき時の電流密度が 0.3A/dm2 未満の場合は、
線材の線径が 2mm以下であっても、厚さが均一であり且
つ密着性が良好なAgめっき層を形成することが困難で
ある。従って、Agめっき時の電流密度は 0.3A/dm2
以上であることが必要である。
Reasons for limiting the current density If the current density during electroplating is less than 0.3 A / dm 2 ,
Even if the wire diameter of the wire is 2 mm or less, it is difficult to form an Ag plating layer having a uniform thickness and good adhesion. Therefore, the current density during Ag plating is 0.3 A / dm 2
It is necessary to be above.

【0020】[0020]

【実施例】次に、本発明の実施例について添付の図面を
参照して説明する。
Embodiments of the present invention will now be described with reference to the accompanying drawings.

【0021】図1は本発明の実施例において使用する超
電導細線の製造装置を示す断面図である。
FIG. 1 is a sectional view showing an apparatus for manufacturing superconducting thin wires used in an embodiment of the present invention.

【0022】超電導組成の焼結体からなる原料線材1は
その上端を原料線材供給用駆動軸8に取り付けられた線
材ホルダ6aに固定され、その長手方向を垂直にして支
持されている。また、供給用駆動軸8の下方には引き下
げ用駆動軸7が配置されており、引き下げ用駆動軸7に
取付けられた線材ホルダ6bには引き下げ用ガイド線材
2が固定されている。この供給用駆動軸8及び引き下げ
用駆動軸7は、夫々駆動装置(図示せず)により所定の
相対速度を有して連動して上下動することができる。
A raw material wire rod 1 made of a sintered body having a superconducting composition is fixed at its upper end to a wire rod holder 6a attached to a drive shaft 8 for supplying the raw material wire rod, and is supported with its longitudinal direction being vertical. A pull-down drive shaft 7 is arranged below the supply drive shaft 8, and a pull-down guide wire 2 is fixed to a wire rod holder 6b attached to the pull-down drive shaft 7. The supply drive shaft 8 and the pull-down drive shaft 7 can be moved up and down in conjunction with each other at a predetermined relative speed by a drive device (not shown).

【0023】この原料線材1の通過域には、筒状の加熱
炉9がその軸方向を垂直にし、原料線材1を取り囲むよ
うにして配置されている。この加熱炉9にはコイル状の
発熱体10が内設されていて、この発熱体10に適宜の
電源から給電して発熱体10を抵抗発熱させることによ
り、加熱炉9の内側に位置する原料線材1等を所定の温
度に加熱するようになっている。
In the passage region of the raw material wire rod 1, a cylindrical heating furnace 9 is arranged so that its axial direction is vertical and surrounds the raw material wire rod 1. A coil-shaped heating element 10 is internally provided in the heating furnace 9. A raw material located inside the heating furnace 9 is generated by supplying electric power to the heating element 10 from an appropriate power source to generate resistance heat. The wire rod 1 and the like are heated to a predetermined temperature.

【0024】加熱炉9の内側には、溶融用抵抗発熱コイ
ル4が原料線材1の下降域に介在して配設されている。
この抵抗発熱コイル4は、例えば直径が 0.2乃至2.0mm
の白金線をコイル状に成形したものである。また、コイ
ル4の下方に隣接して抵抗発熱線5bが配設されてお
り、この抵抗発熱線5bも、例えば直径が 0.1乃至0.5m
mの白金線をコイル4と同軸的に1回巻回して成形され
ている。コイル4及び発熱線5bは適宜の電源から給電
されるようになっており、このコイル4及び発熱線5b
に通電して抵抗発熱させることにより、このコイル4及
び発熱線5bに囲まれた部分の原料線材1をその融点以
上の温度に加熱して溶融させることができる。これによ
り得られた溶融物はコイル4及び発熱線5bに囲まれた
領域内に溶融物の濡れの性質を利用して表面張力により
保持され、溶融部3が形成される。
Inside the heating furnace 9, a resistance heating coil 4 for melting is arranged in the descending region of the raw material wire rod 1.
The resistance heating coil 4 has a diameter of 0.2 to 2.0 mm, for example.
The platinum wire is shaped into a coil. Further, a resistance heating wire 5b is disposed adjacently below the coil 4, and the resistance heating wire 5b also has a diameter of 0.1 to 0.5 m, for example.
It is formed by winding a platinum wire of m coaxially with the coil 4 once. The coil 4 and the heating wire 5b are adapted to be supplied with power from an appropriate power source.
By heating the coil 4 and the heating wire 5b to heat the raw material wire 1 in the portion surrounded by the coil 4 and the heating wire 5b, the raw wire material 1 can be heated to a temperature equal to or higher than its melting point and melted. The melt thus obtained is held by surface tension in the region surrounded by the coil 4 and the heating wire 5b by utilizing the wetting property of the melt, and the melted portion 3 is formed.

【0025】更に、コイル4の中心部直下には、パイプ
5aがコイル4と同軸的に、即ちその長手方向を鉛直に
して配置されている。このパイプ5aは例えば外径が
0.1乃至2.5mm 、内径が0.05乃至2.0mmの白金製であり、
抵抗発熱線5bに固定されている。なお、このパイプ5
aも発熱線5bの抵抗発熱により原料線材1の融点以上
の温度に加熱される。このようにパイプ5aが溶融部3
の下端に接触して配設されているので、溶融部3の融液
は毛細管の原理によりパイプ5aの下端まで浸透する。
Further, immediately below the center of the coil 4, a pipe 5a is arranged coaxially with the coil 4, that is, with its longitudinal direction being vertical. This pipe 5a has, for example, an outer diameter
Made of platinum with a diameter of 0.1 to 2.5 mm and an inner diameter of 0.05 to 2.0 mm,
It is fixed to the resistance heating wire 5b. In addition, this pipe 5
A is also heated to a temperature equal to or higher than the melting point of the raw material wire rod 1 by resistance heating of the heating wire 5b. In this way, the pipe 5a
Is arranged in contact with the lower end of the pipe 5, the melt of the melting portion 3 penetrates to the lower end of the pipe 5a by the principle of the capillary.

【0026】また、このコイル4及びパイプ5aの配置
位置及びその周囲は酸化性雰囲気に保持されるようにな
っている。これは、例えば、加熱炉9の全体を酸化性ガ
スの雰囲気中においてもよいし、コイル4及びパイプ5
aの周囲に酸化性ガスを吹きつけることによってもよ
い。
Further, the arrangement position of the coil 4 and the pipe 5a and the periphery thereof are kept in an oxidizing atmosphere. For example, the entire heating furnace 9 may be in an atmosphere of oxidizing gas, or the coil 4 and the pipe 5 may be used.
It is also possible to blow an oxidizing gas around a.

【0027】なお、コイル4、抵抗発熱線5b及びパイ
プ5aは前述の如く白金から成形したものに限定するも
のではないが、この酸化性雰囲気中で使用できるもので
あることが必要である。
The coil 4, the resistance heating wire 5b and the pipe 5a are not limited to those formed of platinum as described above, but it is necessary that they can be used in this oxidizing atmosphere.

【0028】次に、上述した製造装置を使用した酸化物
超電導線材の製造方法について説明する。
Next, a method for manufacturing an oxide superconducting wire using the above-mentioned manufacturing apparatus will be described.

【0029】先ず、BSCCO系酸化物粉末の成形体を
Agパイプに充填封入した後、このパイプをスウェージ
ングにより縮径加工して線材化する。その後、表層のA
gシースを硝酸メタノールで溶解する。
First, a BSCCO-based oxide powder compact is filled and sealed in an Ag pipe, and then the pipe is swaged to reduce its diameter to form a wire rod. After that, A on the surface
Dissolve g-sheath with nitric acid methanol.

【0030】次に、残存した酸化物線材を、温度が例え
ば 780℃の酸化雰囲気中で10時間加熱処理することによ
り、BSCCO系酸化物の焼結体からなる原料線材1を
得る。
Next, the remaining oxide wire is heat-treated in an oxidizing atmosphere at a temperature of, for example, 780 ° C. for 10 hours to obtain a raw material wire 1 made of a sintered body of BSCCO oxide.

【0031】次に、この原料線材1の上端を前述の線材
ホルダ6aに固定し、供給駆動軸8を下降させて原料線
材1の下端がコイル4内に嵌合するように原料線材1を
配置する。一方、パイプ5aの内径より細い引き下げ用
ガイド線材2の上端部をパイプ5a内に挿入し、その下
端部を線材ホルダ6bに固定する。そして、コイル4及
びパイプ5aの周囲に酸化性ガスを供給しつつ、予熱用
発熱体10に通電して加熱炉9内の原料線材1を例えば
700℃以上の温度に加熱する。また、溶融用抵抗発熱コ
イル4に通電して原料線材1を局部的に加熱し、溶融さ
せる。これにより、コイル4に囲まれた領域に溶融部3
が形成される。また、パイプ支持用抵抗発熱線5bにも
通電してこれを原料線材1の融点以上の温度に加熱す
る。
Next, the upper end of the raw material wire 1 is fixed to the above-mentioned wire rod holder 6a, the supply drive shaft 8 is lowered, and the raw material wire 1 is arranged so that the lower end of the raw material wire 1 fits into the coil 4. To do. On the other hand, the upper end of the pulling-down guide wire 2 which is thinner than the inner diameter of the pipe 5a is inserted into the pipe 5a, and the lower end is fixed to the wire holder 6b. Then, while supplying the oxidizing gas around the coil 4 and the pipe 5a, the preheating heating element 10 is energized so that the raw wire material 1 in the heating furnace 9 is, for example,
Heat to a temperature above 700 ° C. Further, the resistance heating coil 4 for melting is energized to locally heat and melt the raw material wire rod 1. As a result, in the region surrounded by the coil 4, the fusion zone 3
Is formed. The resistance heating wire 5b for supporting the pipe is also energized to heat it to a temperature equal to or higher than the melting point of the raw material wire 1.

【0032】次に、供給用駆動軸8及び引き下げ用駆動
軸7を相互間に所定の相対速度を有して下降させる。溶
融部3の融液はパイプ5a内を浸透して下降し、その下
端からパイプ外に出て降温し、細線形状に凝固して酸化
物超電導線材11が得られる。この酸化物超電導線材1
1は引き下げ用駆動軸7の下降により下方に搬出され
る。一方、原料線材1は供給用駆動軸8の下降により加
熱炉9内へその上側から連続的に供給される。このよう
にして、線径が 2mm以下の酸化物超電導線材11を連続
的に製造する。
Next, the supply drive shaft 8 and the pull-down drive shaft 7 are moved down with a predetermined relative speed therebetween. The melt of the melting portion 3 permeates the inside of the pipe 5a and descends, goes out of the pipe from its lower end and is cooled, and solidifies into a thin wire shape to obtain the oxide superconducting wire 11. This oxide superconducting wire 1
1 is carried out downward by lowering the drive shaft 7 for pulling down. On the other hand, the raw material wire rod 1 is continuously fed into the heating furnace 9 from above by descending the feed drive shaft 8. In this way, the oxide superconducting wire 11 having a wire diameter of 2 mm or less is continuously manufactured.

【0033】次いで、このようにして得た酸化物超電導
線材11にAgを電気めっきする。この場合の電流密度
は 0.3A/dm2 以上とする。これにより、安定化材とし
てAgめっき層を備えた酸化物超電導線材を得ることが
できる。
Next, the oxide superconducting wire 11 thus obtained is electroplated with Ag. In this case, the current density is 0.3 A / dm 2 or more. Thereby, an oxide superconducting wire having an Ag plating layer as a stabilizing material can be obtained.

【0034】本実施例方法においては、焼結体からなる
原料線材1を溶融させて溶融部3を形成し、この溶融部
3から融液を引き出して凝固させることにより酸化物超
電導線材11を得るから、この超電導線材は、空隙を有
していないと共にab面がその長手方向に配向した結晶
構造を有している。従って、超電導状態での臨界電流密
度が高い。また、Agめっき前の超電導線材の線径を 2
mm以下とし、めっき時の電流密度を 0.3A/dm2 とした
から、安定化材としてのAgめっき層の層厚が均一であ
ると共に、その密着性が良好である。
In the method of this embodiment, the raw material wire rod 1 made of a sintered body is melted to form the melted portion 3, and the melt is drawn out from the melted portion 3 and solidified to obtain the oxide superconducting wire rod 11. Therefore, this superconducting wire does not have voids and has a crystal structure in which the ab plane is oriented in the longitudinal direction. Therefore, the critical current density in the superconducting state is high. In addition, the wire diameter of the superconducting wire before Ag plating should be 2
Since the thickness is less than or equal to mm and the current density during plating is set to 0.3 A / dm 2 , the layer thickness of the Ag plating layer as a stabilizing material is uniform and its adhesion is good.

【0035】次に、本実施例方法により実際に酸化物超
電導線材を製造し、その安定化材の厚さのバラツキ及び
密着性を調べた結果について、比較例と比較して説明す
る。
Next, the result of actually manufacturing the oxide superconducting wire by the method of this embodiment and examining the variation in the thickness and the adhesion of the stabilizing material will be described in comparison with the comparative example.

【0036】実施例1 Bi系酸化物超電導組成を有する線径が 5mmの焼結体ロ
ッドを出発原料とし、上述した装置を使用して、線径が
1mmのBi系酸化物超電導線材を得た。その後、シアン
浴中において線材の周面に理論計算上約50μm厚さでめ
っき層を形成できる時間だけ通電し、線材の周面にAg
めっき層を形成した。このときのめっき条件を下記表1
に示す。
Example 1 A sintered rod having a Bi-based oxide superconducting composition and a wire diameter of 5 mm was used as a starting material, and the wire diameter was changed by using the above-mentioned apparatus.
A 1 mm Bi-based oxide superconducting wire was obtained. After that, in the cyan bath, the peripheral surface of the wire is energized for the time that can theoretically form a plating layer with a thickness of about 50 μm, and Ag is applied to the peripheral surface of the wire.
A plating layer was formed. The plating conditions at this time are shown in Table 1 below.
Shown in.

【0037】[0037]

【表1】 [Table 1]

【0038】実施例2 実施例1と同様のBi系酸化物超電導組成を有する線径
が10mmの焼結体ロッドを出発原料とし、上述の装置を使
用して線径が 2mmのBi系酸化物超電導線材を得た。そ
して、この線材の周面に、第1の実施例と同様のめっき
条件でAgをめっきした。
Example 2 A Bi-based oxide having a wire diameter of 2 mm was produced using the above-mentioned apparatus by using a sintered rod having a wire diameter of 10 mm and having the same Bi-based oxide superconducting composition as the starting material. A superconducting wire was obtained. Then, the peripheral surface of this wire was plated with Ag under the same plating conditions as in the first embodiment.

【0039】実施例3 実施例1と同様にして、線径が 0.5mmのBi系酸化物超
電導線材を得た。そして、この線材の周面に、表1に示
す浴組成のシアン浴を用いてAgを電気めっきした。但
し、この電気めっきにおける電流密度は0.3 A/dm2
ある。
Example 3 In the same manner as in Example 1, a Bi type oxide superconducting wire having a wire diameter of 0.5 mm was obtained. Then, Ag was electroplated on the peripheral surface of this wire using a cyan bath having a bath composition shown in Table 1. However, the current density in this electroplating is 0.3 A / dm 2 .

【0040】比較例1 実施例2と同様にして、線径が 3mmのBi系酸化物超電
導線材を得た。そして、この線材の周面に、第1の実施
例と同様のめっき条件でAgをめっきした。
Comparative Example 1 In the same manner as in Example 2, a Bi type oxide superconducting wire having a wire diameter of 3 mm was obtained. Then, the peripheral surface of this wire was plated with Ag under the same plating conditions as in the first embodiment.

【0041】比較例2 実施例1と同様にして、線径が 0.5mmのBi系酸化物超
電導線材を得た。そして、この線材の周面に、表1に示
す浴組成のシアン浴を用いてAgをめっきした。但し、
この電気めっきにおける電流密度は 0.2A/dm2 であ
る。
Comparative Example 2 In the same manner as in Example 1, a Bi type oxide superconducting wire having a wire diameter of 0.5 mm was obtained. Then, the peripheral surface of this wire was plated with Ag using a cyan bath having a bath composition shown in Table 1. However,
The current density in this electroplating is 0.2 A / dm 2 .

【0042】比較例3 Bi系酸化物超電導組成を有する線径が 2mmの焼結体ロ
ッドの周面に、実施例1と同様のめっき条件でAgを電
気めっきした。
Comparative Example 3 Ag was electroplated on the peripheral surface of a sintered rod having a Bi-based oxide superconducting composition and a wire diameter of 2 mm under the same plating conditions as in Example 1.

【0043】このようにして得た実施例及び比較例の各
線材について、芯材のBi系酸化物超電導線材と被覆部
のAgめっき層との密着性及びめっき層の厚さの均一性
について調べた。但し、比較例3においては、焼結体ロ
ッドの一部がシアン浴液によって浸食され、分離して沈
殿する現象が発生したと共に、Agめっき層が形成され
る部分と形成されない部分の存在が顕著に生じることが
確認されたので、電気めっき処理を途中で中止した。こ
のため、比較例3については、上述の密着性及び厚さの
均一性については調べなかった。
With respect to each of the wire rods of Examples and Comparative Examples thus obtained, the adhesion between the Bi-based oxide superconducting wire rod of the core material and the Ag plating layer of the covering portion and the uniformity of the thickness of the plating layer were examined. It was However, in Comparative Example 3, a phenomenon in which a part of the sintered rod was eroded by the cyan bath liquid and separated and precipitated occurred, and the presence of the portion where the Ag plating layer was formed and the portion where the Ag plating layer was not formed were remarkable. Since it was confirmed that the electroplating process occurred, the electroplating process was stopped halfway. Therefore, in Comparative Example 3, the above-mentioned adhesion and uniformity of thickness were not examined.

【0044】なお、密着性については、Agめっき後の
線材をメチルアルコール中で30分間超音波撹拌し、Ag
めっき層が剥離するか否かを観察した。また、めっき層
の厚さの均一性については、実施例及び比較例の線材
(長さ50mm)の縦断面観察写真を撮影し、この写真を用
いてめっき層厚さを測定した。その結果を下記表2に示
す。
Regarding the adhesion, the Ag-plated wire was ultrasonically stirred in methyl alcohol for 30 minutes to obtain Ag.
It was observed whether the plating layer peeled off. Regarding the uniformity of the thickness of the plating layer, a longitudinal section observation photograph of the wire rods (50 mm in length) of Examples and Comparative Examples was taken, and the thickness of the plating layer was measured using this photograph. The results are shown in Table 2 below.

【0045】この表2から明らかなように、実施例1乃
至3においては、安定化材としてのAgめっき層の密着
性が良好であると共に、めっき層の厚さの均一性も良好
である。一方、比較例1,2においては、めっき層の密
着性が十分でないと共に、めっき層の厚さのバラツキも
大きいものであった。また、比較例3については、前述
の如く、全周面にAgめっき層を形成することができな
かった。
As is clear from Table 2, in Examples 1 to 3, the adhesion of the Ag plating layer as the stabilizing material is good and the thickness uniformity of the plating layer is also good. On the other hand, in Comparative Examples 1 and 2, the adhesion of the plating layer was not sufficient and the variation in the thickness of the plating layer was large. Further, in Comparative Example 3, as described above, the Ag plating layer could not be formed on the entire peripheral surface.

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【発明の効果】以上説明したように本発明によれば、酸
化物超電導組成の原料線材を溶融して融液から所定の線
径以下の線材を形成し、この線材の周面に所定の電流密
度以上でAgを電気めっきするから、その周面に厚さが
均一であると共に密着性が良好な安定化材を備えた酸化
物超電導線材を製造することができる。
As described above, according to the present invention, a raw material wire having an oxide superconducting composition is melted to form a wire having a predetermined wire diameter or less from a melt, and a predetermined current is applied to the peripheral surface of the wire. Since Ag is electroplated at a density or higher, it is possible to manufacture an oxide superconducting wire provided with a stabilizing material having a uniform thickness and good adhesion on its peripheral surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例において使用する超電導細線の
製造装置を示す断面図である。
FIG. 1 is a cross-sectional view showing a superconducting thin wire manufacturing apparatus used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1;焼結体原料線材 2;引き下げ用ガイド線材 3;溶融部 4;抵抗発熱コイル 5a;パイプ 5b;抵抗発熱線 6a,6b;線材ホルダ 7;引き下げ用駆動軸 8;原料線材供給用駆動軸 9;加熱炉 10;発熱体 11;酸化物超電導線材 1; Sintered raw material wire rod 2; Pulling down guide wire rod 3; Melting part 4; Resistance heating coil 5a; Pipe 5b; Resistance heating wire 6a, 6b; Wire rod holder 7; Pulling down drive shaft 8; Raw material wire feed drive shaft 9; heating furnace 10; heating element 11; oxide superconducting wire

フロントページの続き (72)発明者 冨永 晴夫 東京都江東区木場1丁目5番1号 藤倉電 線株式会社内 (72)発明者 佐治 明 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社技術開発本部電力 技術研究所内 (72)発明者 井上 俊夫 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社技術開発本部電力 技術研究所内Front page continuation (72) Haruo Tominaga Haruo Tominaga 1-5-1 Kiba, Koto-ku, Tokyo Fujikura Electric Line Co., Ltd. (72) Inventor Saji Akira 20 Kitakanzan, Otakamachi, Midori-ku, Aichi Prefecture 1 Chubu Electric Power Co., Inc. Power Technology Research Laboratory (72) Inventor Toshio Inoue 20 Kitakanzan, Otaka-cho, Midori-ku, Aichi Prefecture Nagoya 1 Chubu Electric Power Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導組成の原料線材を酸化雰囲
気中にてその融点以上の温度に加熱して溶融部を形成
し、この溶融部から融液を連続的に引き出して凝固さ
せ、線径が 2mm以下の線材を形成する工程と、この線材
の周面に 0.3A/dm2 以上の電流密度でAgを電気めっ
きする工程とを有することを特徴とする酸化物超電導線
材の製造方法。
1. A raw material wire having an oxide superconducting composition is heated in an oxidizing atmosphere to a temperature equal to or higher than its melting point to form a melted portion, and a melt is continuously drawn out from the melted portion to solidify the wire diameter. Of 2 mm or less, and a step of electroplating Ag on the peripheral surface of the wire with a current density of 0.3 A / dm 2 or more, a method for producing an oxide superconducting wire.
JP3289077A 1991-10-08 1991-10-08 Manufacture of oxide superconductive wire rod Pending JPH05101725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3289077A JPH05101725A (en) 1991-10-08 1991-10-08 Manufacture of oxide superconductive wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3289077A JPH05101725A (en) 1991-10-08 1991-10-08 Manufacture of oxide superconductive wire rod

Publications (1)

Publication Number Publication Date
JPH05101725A true JPH05101725A (en) 1993-04-23

Family

ID=17738528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3289077A Pending JPH05101725A (en) 1991-10-08 1991-10-08 Manufacture of oxide superconductive wire rod

Country Status (1)

Country Link
JP (1) JPH05101725A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526597A (en) * 2003-06-27 2007-09-13 スーパーパワー インコーポレイテッド Novel superconducting article and method of forming and using the same
US8716188B2 (en) 2010-09-15 2014-05-06 Superpower, Inc. Structure to reduce electroplated stabilizer content

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007526597A (en) * 2003-06-27 2007-09-13 スーパーパワー インコーポレイテッド Novel superconducting article and method of forming and using the same
US8716188B2 (en) 2010-09-15 2014-05-06 Superpower, Inc. Structure to reduce electroplated stabilizer content

Similar Documents

Publication Publication Date Title
US4378330A (en) Ductile alloy and process for preparing composite superconducting wire
KR101943223B1 (en) Method for manufacturing of bonding wire
JPH05101725A (en) Manufacture of oxide superconductive wire rod
JPH11347848A (en) Manufacture of spark erosion electrode wire and manufacturing device therefor
JP3117521B2 (en) Manufacturing method of oxide superconducting wire
JP3117519B2 (en) Oxide superconducting wire
JP3065411B2 (en) Manufacturing method of oxide superconducting wire
JP3117520B2 (en) Manufacturing method of oxide superconducting wire
KR101912565B1 (en) Device for manufacturing of bonding wire
JPH03261006A (en) Manufacture of superconductive wire
US4702302A (en) Method of making thin alloy wire
JP2587871B2 (en) Method and apparatus for producing oxide superconducting wire
JPH0249169B2 (en)
US5261151A (en) Multifilamentary superconducting cable and a method of manufacturing it
JP2604379B2 (en) Manufacturing method of ceramic superconducting wire
RU2148866C1 (en) Method for producing long wire covered with high- temperature superconducting material
JPS63291318A (en) Manufacture of oxide superconductive wire
JPH0346710A (en) Manufacture of superconductive wire
JPH01144524A (en) Manufacture of ceramic-based superconductive wire
JPH0355719A (en) Manufacture and manufacturing device of oxide superconducting line material
JPH0322312A (en) Manufacture of oxide superconducting wire and manufacturing device
JPH02199718A (en) Manufacture of oxide superconductive wire rod
JPH0355718A (en) Manufacture and manufacturing device of oxide superconducting line material
JPH02231107A (en) Manufacture of oxide superconducting wire material
JPH01149316A (en) Manufacture of ceramic superconductive wire