JPH0355719A - Manufacture and manufacturing device of oxide superconducting line material - Google Patents

Manufacture and manufacturing device of oxide superconducting line material

Info

Publication number
JPH0355719A
JPH0355719A JP1189284A JP18928489A JPH0355719A JP H0355719 A JPH0355719 A JP H0355719A JP 1189284 A JP1189284 A JP 1189284A JP 18928489 A JP18928489 A JP 18928489A JP H0355719 A JPH0355719 A JP H0355719A
Authority
JP
Japan
Prior art keywords
wire
oxide superconducting
line
raw material
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1189284A
Other languages
Japanese (ja)
Inventor
Shoji Mimura
彰治 味村
Harutaka Tominaga
冨永 晴天
Akito Kurosaka
昭人 黒坂
Kazuhiko Tomomatsu
友松 和彦
Mamoru Aoyanagi
青柳 守
Satoru Nakao
知 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1189284A priority Critical patent/JPH0355719A/en
Publication of JPH0355719A publication Critical patent/JPH0355719A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To stably manufacture superconducting line materials of fine line size simultaneously by forming a melting part by partially heating sintered line materials of oxide superconducting structure after preliminary heating, and by coagulating the molten liquid after being lowered from pipes. CONSTITUTION:After a molded body of oxide powder such as La-Ba-Cu-O is filled and sealed in a Ag pipe, it is contracted in its size up to 3mm, after which a Ag sheathe is dissolved, and a residual oxide line material is hated in an oxidation atmosphere of 780 deg.C, so as to obtain a line material 1. The upper edge of the line material 1 is fixed on a line material holder 6a, while the lower edge thereof is fitted in a coil 4. The upper edges of three platinum guide line materials 2 for lowering which are thinner than the inner diameter of pipes 5a are inserted into the pipes 5a, while the lower edges thereof are fixed on a line material holder 6b, and the line material 1 in a heating furnace 9 is heated not less than 700 deg.C in oxidation gas, while a heating coil 4 is electrified so as to partially melt the line material 1. A melting part is formed in this way, and driving shafts 8, 7 for supply and for lowering are lowered at a certain relative rate, and by lowering the melted liquid in the pipes 5a, whereby superconducing line materials 11 of fine line shape are obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は酸化物超電導組成の焼結線材を出発原料とし、
この線材を一旦溶融させた後凝固させることによって、
この線材中の空隙を除去すると共に線材中の結晶組織を
制御して高い臨界電流密度を有する酸化物超電導線材を
製造する酸化物超電導線材の製造方法及び製造装置に関
し、特に線径が均一な細線のB i −S r−Ca−
Cu−0系超電導線材の製造に好適の酸化物超電導線材
の製造方法及び製造装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses a sintered wire having an oxide superconducting composition as a starting material,
By once melting this wire and then solidifying it,
A method and apparatus for manufacturing an oxide superconducting wire that removes voids in the wire and controls the crystal structure in the wire to produce an oxide superconducting wire having a high critical current density, particularly a fine wire with a uniform wire diameter. B i -S r-Ca-
The present invention relates to a method and apparatus for manufacturing an oxide superconducting wire suitable for manufacturing a Cu-0 superconducting wire.

[従来の技術] 酸化物超電導材としては、La−Ba−Cu −O系、
Y−Ba−Cu−0系及びBi−Sr−Ca−Cu−0
(以下、BSCCOという)系のもの等がある。一般に
、これらの酸化物超電導材は下記に示す方法により線材
に加工されている。
[Prior art] As oxide superconducting materials, La-Ba-Cu-O system,
Y-Ba-Cu-0 system and Bi-Sr-Ca-Cu-0
(hereinafter referred to as BSCCO) type. Generally, these oxide superconducting materials are processed into wire rods by the method shown below.

先ず、酸化物超電導組成の粉末を加圧成形して成形体と
する。そして、この成形体を金属パイプに充填して封止
する。次に、これを所望の線径に伸線加工した後、酸に
より表層の金属パイプ部分を溶解して除去する。次いで
、酸化物線材を熱処理して焼結体にする。
First, a powder having an oxide superconducting composition is pressure-molded to form a compact. Then, this molded body is filled into a metal pipe and sealed. Next, after drawing this wire to a desired wire diameter, the surface metal pipe portion is dissolved and removed using acid. Next, the oxide wire is heat treated to form a sintered body.

このようにして成形された酸化物超電導線材は焼結体で
あるために多孔質であり、空隙が多数存在している。ま
た、結晶粒界(Grain Boundary)も極め
て小さい。このため、この線材を超電導化した場合に、
得られる臨界電流密度が小さいという難点がある。
Since the oxide superconducting wire formed in this manner is a sintered body, it is porous and has many voids. Further, grain boundaries are also extremely small. Therefore, when this wire is made superconducting,
The disadvantage is that the obtained critical current density is small.

ところで、酸化物超電導組成の焼結体を一旦溶融させた
後、凝固させることにより超電導材を製造する方法もあ
る。しかしながら、この方法においては、超電導材中の
空隙は除去することができるが、機械的に伸線加工する
ことはできない。このため、この方法では所望の形状の
線材を得ることができない。
By the way, there is also a method of manufacturing a superconducting material by once melting a sintered body having an oxide superconducting composition and then solidifying it. However, in this method, although voids in the superconducting material can be removed, mechanical wire drawing cannot be performed. Therefore, with this method, it is not possible to obtain a wire rod having a desired shape.

そこで、前述した方法により所望形状の酸化物超電導線
材の焼結体を形成した後、この焼結線材を白金又はアル
ミナ(A7。03)ボート上に載置して帯域溶融法によ
り局部的に溶融させ、得られた溶融帯を線材の長手方向
に連続的に移動させて空隙を除去する方法が試みられて
いる。
Therefore, after forming a sintered body of oxide superconducting wire in the desired shape by the method described above, this sintered wire is placed on a platinum or alumina (A7.03) boat and locally melted using the zone melting method. Attempts have been made to remove voids by continuously moving the resulting molten zone in the longitudinal direction of the wire.

しかし、例えば、酸化雰囲気中のBSCCO系セラミッ
クスの融液は、その融点近傍において粘性が高くなり、
白金及びアルミナボート等の帯域溶融用器材と濡れやす
いため良好な溶融帯が得られないと共に、これらの器材
との間で化合物を形成しやすいという性質がある。従っ
て、このような酸化物超電導組成の原料線材の帯域溶融
は、浮遊帯溶融法により器材と非接触にして行う必要が
ある。
However, for example, a melt of BSCCO ceramics in an oxidizing atmosphere becomes highly viscous near its melting point,
Since it easily wets with zone melting equipment such as platinum and alumina boats, it is difficult to obtain a good melting zone, and it also tends to form compounds with these equipment. Therefore, zone melting of the raw material wire having such an oxide superconducting composition needs to be carried out without contact with equipment by a floating zone melting method.

しかし、セラミックスは誘導加熱できないため、浮遊帯
溶融法において通常使用される高周波誘導加熱ではBS
CCO系セラミックスの溶融帯を得ることができない。
However, since ceramics cannot be heated by induction, high-frequency induction heating, which is normally used in the floating zone melting method, has a BS
It is not possible to obtain a molten zone of CCO ceramics.

このため、BSCCO系セラミックスについては、レー
ザを使用した集光加熱法により浮遊溶融帯を形成する方
法が試みられている。
For this reason, for BSCCO ceramics, attempts have been made to form a floating molten zone using a condensed heating method using a laser.

[発明が解決しようとする課題コ しかしながら、従来の集光加熱による浮遊溶融帯の形成
方法においては、原料線材が細線(線径が5關以下)で
ある場合には安定した溶融帯を形成することができない
。このために、従来の集光加熱による酸化物超電導線材
の製造技術では、空隙がなく、所望の高い臨界電流密度
を有する細線径の酸化物超電導線材を得ることができな
いという問題点がある。
[Problems to be solved by the invention] However, in the conventional method of forming a floating molten zone by condensed light heating, when the raw material wire is a thin wire (wire diameter is 5 mm or less), a stable molten zone cannot be formed. I can't. For this reason, the conventional technology for producing oxide superconducting wires using condensed light heating has the problem that it is not possible to obtain oxide superconducting wires with a small wire diameter without voids and having a desired high critical current density.

また、従来の技術は、原料線材を集光加熱により局部的
に加熱しつつ、形成された溶融帯から1本の線材を凝固
させるものであるため、生産性が悪いという欠点もある
In addition, the conventional technique involves locally heating the raw material wire by condensed light heating and solidifying a single wire from the formed molten zone, which also has the drawback of poor productivity.

本発明はかかる問題点に鑑みてなされたものであって、
安定した溶融部を形成することができると共に、空隙が
除去された線材を安定して凝固させることができ、これ
により所望の細線径で高臨界電流密度を有する酸化物超
電導線材を高生産性で製造できる酸化物超電導線材の製
造方法及び製造装置を提供することを目的とする。
The present invention has been made in view of such problems, and includes:
Not only can a stable molten zone be formed, but also the wire from which voids have been removed can be stably solidified, making it possible to produce oxide superconducting wire with a desired thin wire diameter and high critical current density with high productivity. It is an object of the present invention to provide a manufacturing method and a manufacturing apparatus for an oxide superconducting wire that can be manufactured.

[課題を解決するための手段] 本発明に係る酸化物超電導線材の製造方法は、焼結され
た酸化物超電導組成の原料線材を700℃以上の温度に
予熱する工程と、この予熱された原料線材を酸化雰囲気
にてその融点以上の温度に局部的に加熱して溶融部を形
成する工程と、その融液を前記溶融部の下部に並列的に
配置された複数本のパイプ内を通過させそれらの下端か
ら同時に引き下げつつ凝固させて複数本の線材を得る工
程と、を有することを特徴とする。
[Means for Solving the Problems] The method for producing an oxide superconducting wire according to the present invention includes a step of preheating a sintered raw material wire having an oxide superconducting composition to a temperature of 700° C. or higher, and a step of preheating the preheated raw material. A process of locally heating a wire rod to a temperature higher than its melting point in an oxidizing atmosphere to form a molten part, and passing the molten liquid through a plurality of pipes arranged in parallel below the molten part. It is characterized by having a step of simultaneously pulling down the wire rods from their lower ends and solidifying them to obtain a plurality of wire rods.

本発明に係る酸化物超電導線材の製造装置は、焼結され
た酸化物超電導組成の原料線材が相対的に移動する間に
これを700℃以上の温度に加熱する第1の加熱手段と
、この第1の加熱手段の加鮎領域内にて前記原料線材を
その融点以上の温度に局部的に加熱して溶融部を形成す
る第2の加熱手段と、前記溶融部の下端部と接触して並
列的に配置され融液をその内部を通過させて引き下げる
ことにより所望の径の複数本の線材に凝固させる複数本
のパイプと、前記溶融部を酸化雰囲気にする手段とを有
することを特徴とする。
The apparatus for producing an oxide superconducting wire according to the present invention includes: a first heating means for heating the sintered raw material wire having an oxide superconducting composition to a temperature of 700° C. or higher while the material wire is relatively moving; a second heating means that locally heats the raw material wire to a temperature equal to or higher than its melting point in the melting region of the first heating means to form a melting part; and a second heating means that contacts the lower end of the melting part; It is characterized by having a plurality of pipes that are arranged in parallel and solidify the melt into a plurality of wire rods having a desired diameter by passing the melt through the inside and pulling it down, and a means for creating an oxidizing atmosphere in the melting part. do.

[作用] 本発明方法においては、酸化物超電導組成の焼結線材を
700℃以上の温度に予熱した後、この予熱された原料
線材を更に融点以上の温度に局部的に加熱して溶融部を
形成する。このため、溶融部近傍における焼結体原料線
材の長平方向の温度差及び溶融部の表層と芯部との間の
温度差が小さく、安定した溶融部を得ることができる。
[Function] In the method of the present invention, after a sintered wire having an oxide superconducting composition is preheated to a temperature of 700°C or higher, the preheated raw material wire is further locally heated to a temperature higher than the melting point to form a molten part. Form. Therefore, the temperature difference in the longitudinal direction of the sintered raw material wire in the vicinity of the fusion zone and the temperature difference between the surface layer and the core of the fusion zone are small, and a stable fusion zone can be obtained.

また、この溶融部の融液を溶融部の下方に並列的に配置
された複数本のパイプ内を通過させ、その下端から引き
下げて凝固させるので、得られた酸化物超電導線材は線
径が実質的にパイプの外径と等しくなる。これにより、
パイプ径により決まる線径を有する線材が得られ、前記
パイプ径を所望の細線径のものにすることにより、均一
な径を有する細線の酸化物超電導線材を容易に製造する
ことができる。また、1つの溶融部から複数本のパイプ
により複数本の酸化物超電導線材を同時に製造すること
ができる。
In addition, the melt in the molten zone is passed through multiple pipes arranged in parallel below the molten zone and is pulled down from the lower end to solidify, so the resulting oxide superconducting wire has a substantially is equal to the outside diameter of the pipe. This results in
A wire having a wire diameter determined by the pipe diameter is obtained, and by setting the pipe diameter to a desired thin wire diameter, a thin oxide superconducting wire having a uniform diameter can be easily manufactured. Further, a plurality of oxide superconducting wires can be simultaneously produced from one melting section using a plurality of pipes.

この場合に、前記パイプを原料線材の融点以上の温度に
加熱しておくと、前記融液はパイプを通過する際には凝
固が進行しないので、この融岐は円滑にパイプ内を通過
する。
In this case, if the pipe is heated to a temperature equal to or higher than the melting point of the raw material wire, the melt will not solidify when passing through the pipe, so the melt will smoothly pass through the pipe.

また、バイブ内を通過する融液は下方に引き下げられつ
つ凝固が進行するので、融液中の気泡は凝固界面に巻き
込まれに<<、溶融部内を浮上して除去され易い。更に
、本発明においては、溶融部内の融液を重力の作用方向
と同一方向に引き抜くので、融液は凝固界面に確実に補
給される。これらの理由により、本発明においては、製
造途中での断線が発生しに<<、長寸の線材を安定して
製造することができる。これにより、所望の線径の酸化
物超電導線材を連続的に製造することができる。
Further, since the melt passing through the vibrator is pulled downward and solidification progresses, air bubbles in the melt are easily caught in the solidification interface and floated inside the melted portion to be removed. Furthermore, in the present invention, since the melt in the melting zone is pulled out in the same direction as the direction of gravity, the melt is reliably replenished at the solidification interface. For these reasons, in the present invention, long wire rods can be stably manufactured without causing wire breakage during manufacturing. Thereby, an oxide superconducting wire having a desired wire diameter can be continuously manufactured.

原料線材を予熱する温度は700″C以上である。The temperature at which the raw material wire is preheated is 700''C or higher.

予熱温度が700℃未満のときは、溶融部の温度と溶融
直前の原料線材との温度差が過大となり、安定した溶融
部が得られず、製造途中で断線が発生しやすくなる。こ
のため、線材の予熱温度はTOO℃以上にする。
When the preheating temperature is less than 700° C., the temperature difference between the temperature of the melting zone and the raw material wire immediately before melting becomes excessive, making it impossible to obtain a stable melting zone and making wire breakage more likely to occur during production. For this reason, the preheating temperature of the wire is set to TOO° C. or higher.

本発明装置においては、原料線材を第1の加熱手段によ
り700℃以上の温度に予熱した後、第2の加熱手段に
より融点以上の温度に局部的に加熱する。そうすると、
この第2の加熱手段により加熱された領域が溶融して溶
融部が形成されると共に、この溶融部の下端部に接触し
て並列的に配置された複数本のパイプ内を融液が下降し
、その下端から引下げられて凝固する。従って、原料線
材が大径である場合、又は溶融部の直径が大きい場合も
、融液が凝固して得られた線材はパイプの径により決ま
る所望の線径を有する。
In the apparatus of the present invention, the raw material wire is preheated to a temperature of 700° C. or higher by the first heating means, and then locally heated to a temperature higher than the melting point by the second heating means. Then,
The region heated by the second heating means melts to form a molten part, and the melt descends in a plurality of pipes arranged in parallel in contact with the lower end of this molten part. , is pulled down from its lower end and solidifies. Therefore, even if the raw material wire has a large diameter or the diameter of the melted part is large, the wire obtained by solidifying the melt has a desired wire diameter determined by the diameter of the pipe.

[実施例コ 次に、本発明の実施例について、添付の図面を参照して
説明する。
[Embodiments] Next, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は本実施例に係る酸化物超電導線材の製造装置を
示す断面図である。焼結体の原料線材1はその上端を原
料線材供給用駆動軸8に取付けられた線材ホルダ6aに
固定され、その長手方向を垂直にして支持されている。
FIG. 1 is a sectional view showing an apparatus for manufacturing an oxide superconducting wire according to this embodiment. The raw material wire 1 of the sintered body is fixed at its upper end to a wire holder 6a attached to a raw material wire supply drive shaft 8, and is supported with its longitudinal direction perpendicular.

また、供給用駆動軸8の下方には引下げ用駆動軸7が配
置されており、引下げ用駆動軸7に取付けられた線材ホ
ルダ6bには白金等により構成された引下げ用ガイド線
材2が固定されている。なお、本実施例においては、引
下げ用ガイド線材2は3本であり、各ガイド線材2は相
互間に適長間隔をおきその長手方向を鉛直にして線材ホ
ルダ6bに固定されている。この供給用駆動軸8及び引
下げ用駆動軸7は夫々駆動装置(図示せず)により所定
の相対速度を有して連動して上下動することができる。
Further, a pull-down drive shaft 7 is arranged below the supply drive shaft 8, and a pull-down guide wire 2 made of platinum or the like is fixed to a wire holder 6b attached to the pull-down drive shaft 7. ing. In this embodiment, there are three guide wire rods 2 for pulling down, and each guide wire rod 2 is fixed to the wire rod holder 6b with an appropriate length interval between them and with their longitudinal direction vertical. The supply drive shaft 8 and the pull-down drive shaft 7 can be moved up and down in conjunction with each other at a predetermined relative speed by a drive device (not shown).

この原料線材1の通過域には、筒状の加熱炉9がその軸
方向を垂直にし、原料線材1を取囲むようにして配置さ
れている。この加熱炉9にはコイル状の発熱体10が内
設されていて、この発熱体10に適宜の電源から給渭し
て発熱体10を抵抗発熱させることにより、加熱炉9の
内側に位置する原料線材1等を700℃以上の温度に加
熱するようになっている。
In the passage area of the raw material wire 1, a cylindrical heating furnace 9 is arranged with its axial direction perpendicular and surrounding the raw material wire 1. This heating furnace 9 has a coil-shaped heating element 10 installed therein, and by supplying power to this heating element 10 from an appropriate power source and causing the heating element 10 to generate resistance heat, the heating element 10 is located inside the heating furnace 9. The raw material wire 1 etc. are heated to a temperature of 700°C or higher.

加熱炉9の内側には、抵抗発熱コイル4が原料線材1の
下降域に介在して配設されている。この抵抗発熱コイル
4は、例えば線径が0.2乃至1.0目の白金線をコイ
ル状に成形したものである。また、コイル4の下方に隣
接して抵抗発熱腺5bが配設されており、この抵抗発熱
線5bも、例えば、線径がQ.l内至0.3−  の白
金線をコイル4と同軸的に1回巻回して成形されている
。コイル4及び発熱線5bは適宜の電源から給電される
ようになっており、このコイル4及び発熱線5bに通電
して抵抗発熱させることにより、このコイル4及び発熱
線5bに囲まれた部分の原料線材1をその融点以上の温
度に加熱して溶融させる。これにより、得られた溶融物
はコイル4及び発熱線5bに囲まれた領域内に溶融物の
濡れの性質を利用して表面張力により保持され、溶融部
3が形成される。更に、コイル4の中心部直下には、3
本のパイプ5aがその上端を溶融部3に接触させて配設
されている。パイプ5aはその少なくとも下半部が鉛直
に延びており、その下端部は下方のガイド線材2と整合
するように位置している。各パイプ5aは例えば外径が
0.1内至0.5 film,内径が0.05内至0.
31の白金製であり、白金製′抵抗発熱線5bに固定さ
れている。なお、これらのパイブ5aも発熱線5bの抵
抗発熱により原料線材1の融点以上の温度に加熱される
。このように各パイブ5aが溶融部3の下端に接触して
配設されているので、溶融部3の融液は毛細管の原理に
より各パイプ5a内を浸透してパイプ下端まで下降する
A resistance heating coil 4 is disposed inside the heating furnace 9 in a region where the raw material wire 1 descends. The resistance heating coil 4 is formed by forming a platinum wire having a wire diameter of 0.2 to 1.0 into a coil shape, for example. Further, a resistance heating wire 5b is arranged below and adjacent to the coil 4, and this resistance heating wire 5b also has a wire diameter of, for example, Q. It is formed by winding a platinum wire with a diameter of 0.3 mm coaxially with the coil 4 once. The coil 4 and the heating wire 5b are supplied with power from an appropriate power source, and by energizing the coil 4 and the heating wire 5b to generate resistance heat, the area surrounded by the coil 4 and the heating wire 5b is heated. The raw material wire 1 is heated to a temperature equal to or higher than its melting point and melted. As a result, the obtained molten material is held in the area surrounded by the coil 4 and the heating wire 5b by surface tension using the wetting property of the molten material, and a molten part 3 is formed. Furthermore, directly below the center of the coil 4, there are 3
A main pipe 5a is disposed with its upper end in contact with the melting section 3. At least the lower half of the pipe 5a extends vertically, and the lower end thereof is positioned to align with the guide wire 2 below. For example, each pipe 5a has an outer diameter of 0.1 to 0.5 film, and an inner diameter of 0.05 to 0.5 film.
It is made of platinum and is fixed to the platinum resistance heating wire 5b. Note that these pipes 5a are also heated to a temperature equal to or higher than the melting point of the raw material wire 1 due to resistance heating of the heating wire 5b. Since each pipe 5a is disposed in contact with the lower end of the melting section 3 in this manner, the melt in the melting section 3 permeates through each pipe 5a according to the capillary principle and descends to the lower end of the pipe.

このコイル4及びパイプ5aの配設位置及びその周囲は
酸化雰囲気に保持されるようになっている。これは、例
えば、加熱炉9の全体を酸化性ガスの雰囲気においても
よいし、コイル4及びパイプ5aの周囲に酸化性ガスを
吹きつけることによってもよい。
The locations of the coil 4 and pipe 5a and their surroundings are maintained in an oxidizing atmosphere. This may be done, for example, by placing the entire heating furnace 9 in an oxidizing gas atmosphere, or by blowing an oxidizing gas around the coil 4 and pipe 5a.

なお、コイル4、抵抗発熱線5b及びパイプ5aは前述
のごとく白金から成形したものに限定するものではない
が、この酸化雰囲気中で使用できるものであることが必
要である。
The coil 4, the resistance heating wire 5b, and the pipe 5a are not limited to those molded from platinum as described above, but they must be able to be used in this oxidizing atmosphere.

次に、上述した製造装置を使用した酸化物超電導線材の
製造方法について説明する。この実施例は、酸化物超電
導組成がBSCCO系の場合のものであるが、他の組成
の酸化物超電導材も同様にして製造することができる。
Next, a method for producing an oxide superconducting wire using the above-described production apparatus will be described. In this example, the oxide superconducting composition is BSCCO-based, but oxide superconducting materials having other compositions can be manufactured in the same manner.

先ず、BSCCO系酸化物粉末の成形体をAgパイプに
充填封入した後、このパイプをスウェージングにより、
例えば直径が3關になるように縮径加工して線材化する
。その後、表層のAgシースを硝酸メタノールで溶解す
る。
First, a molded body of BSCCO-based oxide powder is filled and sealed in an Ag pipe, and then the pipe is swaged.
For example, it is made into a wire by reducing its diameter to three dimensions. Thereafter, the Ag sheath on the surface layer is dissolved with nitric acid and methanol.

次に、残存した酸化物線材を、温度が例えば780℃の
酸化雰囲気中で10時間加熱処理することにより、BS
CCO系酸化物の焼結体からなる原料線材lを得る。
Next, the remaining oxide wire is heat-treated for 10 hours in an oxidizing atmosphere at a temperature of, for example, 780°C, so that the BS
A raw material wire l made of a sintered body of CCO-based oxide is obtained.

次に、この原料線材1の上端を前述の線材ホルダ6aに
固定し、供給駆動軸8を下降させて原料線材1の下端が
コイル4内に嵌合するように原料線材1を配置する。一
万、パイプ5aの内径より細い白金製の3本の引き下げ
用ガイド線材2の上端部を夫々パイプ5a内に挿入し、
その下端部を線材ホルダ6bに固定する。そして、コイ
ル4及びパイブ5aの周囲に酸化性ガスを供給した後、
予熱用発熱体10に通電して加熱炉9内の原料線材1を
700℃以上の温度に加熱する。また、溶融用抵抗発熱
コイル4に通電して原料線材1を局部的に加熱し、溶融
させる。これにより、コイル4に囲まれた領域に溶融部
3が形成される。また、パイプ支持用抵抗発熱線5bに
も通電して抵抗発熱線5b及びバイプ5aを原料線材1
の融点以上の温度に加熱する。
Next, the upper end of the raw material wire 1 is fixed to the aforementioned wire holder 6a, and the supply drive shaft 8 is lowered to arrange the raw material wire 1 so that the lower end of the raw material wire 1 fits into the coil 4. 10,000, insert the upper ends of three pull-down guide wires 2 made of platinum that are thinner than the inner diameter of the pipe 5a into the pipe 5a,
Its lower end is fixed to the wire holder 6b. After supplying the oxidizing gas around the coil 4 and the pipe 5a,
The preheating heating element 10 is energized to heat the raw material wire 1 in the heating furnace 9 to a temperature of 700° C. or higher. Further, the resistance heating coil 4 for melting is energized to locally heat the raw material wire 1 and melt it. As a result, a melted portion 3 is formed in a region surrounded by the coil 4. In addition, the resistance heating wire 5b for supporting the pipe is also energized to connect the resistance heating wire 5b and the pipe 5a to the raw material wire 1.
heated to a temperature above the melting point of

次いで、供給用駆動軸8及び引下げ用駆動軸7を相互間
に所定の相対速度を有して下降させる。
Next, the supply drive shaft 8 and the pull-down drive shaft 7 are lowered at a predetermined relative speed.

溶融部3の融液はバイプ5a内を浸透して下降し、その
下端からパイプ外に出て降温し、パイプ5aの線径によ
り決まる線径を有する細線形状に凝固して酸化物超電導
線材11が得られる。この酸化物超電導線材11は引下
げ用駆動軸7の下降により下方に搬出される。一方、原
料線材1は供給r駆動軸8の下降により加熱炉9内へそ
の上側から連続的に供給される。このようにして、原料
線材1がコイル4の配設位置を通過することにより溶融
し、溶融部3がバイプ5aにより縮径して所望の線径に
なり、これにより空隙を有しない酸化物超電導線材11
が連続的に製造される。また、同時に3本の酸化物超電
導線材11を製造することができるので、生産性が極め
て高い。
The melt in the melting section 3 permeates inside the pipe 5a and descends, exits from the lower end of the pipe, cools down, and solidifies into a thin wire shape having a wire diameter determined by the wire diameter of the pipe 5a, forming the oxide superconducting wire 11. is obtained. This oxide superconducting wire 11 is carried out downward by the lowering of the pull-down drive shaft 7. On the other hand, the raw material wire 1 is continuously supplied into the heating furnace 9 from above by lowering the supply r drive shaft 8 . In this way, the raw material wire 1 is melted by passing through the arrangement position of the coil 4, and the diameter of the molten part 3 is reduced by the pipe 5a to the desired wire diameter, thereby making the oxide superconductor without voids. Wire rod 11
is produced continuously. Moreover, since three oxide superconducting wires 11 can be manufactured at the same time, productivity is extremely high.

この場合に、溶融直前の原料線材1及び凝固直後の酸化
物超電導線材1lは加熱炉9により700℃以上の温度
に予熱されているから、この溶融部3と原料線材1及び
酸化物超電導線材11との境界部と、溶融部3の中央部
との間の温度差が小さい。このため、安定した溶融部3
が得られる。また、融液はパイプ5a内を通過してパイ
ブ5aの下端から引下げられて凝固するため、その線径
はパイプ5aの径により決まり、パイプ5aの径を所望
の細線径にすることにより、その径が均一な細線径の超
電導線材11を容易に得ることができる。
In this case, since the raw material wire 1 just before melting and the oxide superconducting wire 1l just after solidification have been preheated to a temperature of 700°C or higher in the heating furnace 9, this melting part 3, the raw material wire 1 and the oxide superconducting wire 11 The temperature difference between the boundary between the two and the center of the melting zone 3 is small. Therefore, stable molten zone 3
is obtained. Furthermore, since the melt passes through the inside of the pipe 5a and is pulled down from the lower end of the pipe 5a to solidify, its wire diameter is determined by the diameter of the pipe 5a, and by making the diameter of the pipe 5a a desired thin wire diameter. A superconducting wire 11 having a fine wire diameter and a uniform diameter can be easily obtained.

なお、本実施例装置においては、線材の供給及び引下げ
を供給用駆動軸8及び引下げ用駆動軸7により行ってい
るが、本発明はこれに限らず、例えばピンチロール等に
より線材の供給及び引下げを行っても同様の効果がある
In the device of this embodiment, the wire rods are supplied and pulled down by the supply drive shaft 8 and the pull-down drive shaft 7, but the present invention is not limited to this, and the wire rods are supplied and pulled down by, for example, pinch rolls. The same effect can be obtained by doing this.

次に、本実施例方法及び装置により、実際に酸化物超電
導線材を製造した結果について説明する。
Next, the results of actually manufacturing an oxide superconducting wire using the method and apparatus of this example will be explained.

L駈虹上 抵抗発熱コイル4の下部に外径が0.5開のパイプ5a
を5本組み合わせて配置した。そして、前述の如く作製
したBSCCO系酸化物の焼結体原料線材1を加熱炉9
により700℃に加熱すると共に、抵抗発熱コイル4に
より融点以上の温度に加熱して溶融部3を形成した。こ
のとき、パイブ5aの表面温度を950℃に保持した。
A pipe 5a with an outer diameter of 0.5 is provided at the bottom of the L-shaped resistance heating coil 4.
were arranged in combination of five. Then, the BSCCO-based oxide sintered raw material wire 1 produced as described above is placed in a heating furnace 9.
was heated to 700° C. and heated to a temperature higher than the melting point by a resistance heating coil 4 to form a molten portion 3. At this time, the surface temperature of the pipe 5a was maintained at 950°C.

このパイプ5aの下端から融液を引下げて細線径の酸化
物超電導線材を製造した。
The melt was drawn down from the lower end of the pipe 5a to produce an oxide superconducting wire with a fine wire diameter.

又駁髭と 予熱温度が800℃1パイプの外径が0.3關であるこ
と以外は、実施例1と同様にしてBSCCO系酸化物超
電導線材を製造した。
A BSCCO-based oxide superconducting wire was produced in the same manner as in Example 1, except that the preheating temperature was 800° C. and the outer diameter of each pipe was 0.3°.

比虹握上 バイプ5aを1本のみ設けたこと以外は実施例1と同様
にしてBSCCO系酸化物超電導線材を製造した。
A BSCCO-based oxide superconducting wire was produced in the same manner as in Example 1, except that only one Hiji gripping pipe 5a was provided.

比1u剋』エ 原料線材lを抵抗発熱コイル4の下方から供給して加熱
溶融させた後、溶融部の融液を抵抗発熱コイル4の直上
に配置したパイプ内を浸透させて引き上げ、細径の酸化
物超電導線材を製造した。
After feeding the raw material wire l from below the resistance heating coil 4 and heating and melting it, the molten liquid in the molten part permeates the inside of the pipe placed directly above the resistance heating coil 4 and is pulled up. oxide superconducting wire was manufactured.

止艷並走 実施例1と同様にして作製したBSCCO系焼結体原料
線材1に対し、CO2ガスレーザによる集光加熱により
浮遊溶融帯を形成して超電導線材を製造した。
A superconducting wire was manufactured by forming a suspended molten zone on the BSCCO-based sintered raw material wire 1 produced in the same manner as in Example 1 with a CO2 gas laser.

比14伏」, 実施例1と同様にして作製したBSCCO系焼結体原料
線材1自体であり、空隙除去のための溶融処理を施して
いない。
This is the BSCCO-based sintered body raw material wire 1 itself produced in the same manner as in Example 1, and was not subjected to melting treatment to remove voids.

その結果、比較例3の場合は、線径が5■以下の線材を
得ることはできなかった。
As a result, in the case of Comparative Example 3, it was not possible to obtain a wire rod with a wire diameter of 5 cm or less.

実施例1,2及び比較例1内至4について、電気抵抗が
O(μΩ●cm)になる温度(Tc;以下、臨界温度と
いう)及び液体窒素中での臨界電流密度を測定した。こ
の結果を下記第1表に示す。なお、臨界電流密度は焼結
体のままである比較例4に対する比として示す。また、
各酸化物超電導線材の線径も併せて示す。
For Examples 1 and 2 and Comparative Examples 1 to 4, the temperature at which the electrical resistance becomes O (μΩ·cm) (Tc; hereinafter referred to as critical temperature) and the critical current density in liquid nitrogen were measured. The results are shown in Table 1 below. Note that the critical current density is shown as a ratio to Comparative Example 4, which is a sintered body. Also,
The wire diameter of each oxide superconducting wire is also shown.

この第1表に示すように、本発明の実施例1.2及び比
較例1.2はいずれも安定した溶融部を形成することが
でき、空隙を有しない所望の細線径の超電導線材を製造
することができた。そして、この実施例1.2及び比較
例1.2は、従来方法である比較例2及び焼結体のまま
の比較例3に比して臨界温度が高く、また臨界電流密度
も8倍以上と極めて高い値を示した。
As shown in Table 1, in both Example 1.2 of the present invention and Comparative Example 1.2, a stable molten zone can be formed, and superconducting wires with a desired fine wire diameter without voids can be produced. We were able to. In addition, the critical temperature of Example 1.2 and Comparative Example 1.2 is higher than that of Comparative Example 2, which is a conventional method, and Comparative Example 3, which is a sintered body, and the critical current density is also 8 times or more. showed an extremely high value.

第 1 表 次に、実施例1と比較例1.2の場合について、その製
造途中での断線回数を比較した結果について説明する。
Table 1 Next, the results of comparing the number of disconnections during the manufacturing process for Example 1 and Comparative Examples 1.2 will be described.

即ち、両者の製造方法で製造を開始した後、酸化物超電
導線材を20cm製造する実験をlO回繰り返した。そ
の結果、実施例1の引き下げ法の場合には、5本のパイ
プ5aから合計50本の酸化物超電導線材を全数断線す
ることなく連続して製造することができた。しかし、引
き上げ法の比較例2の場合には、50本中22本が20
c+s以内で断線してしまった。また、比較例1の場合
は製造途中で断線することはなかったが、lO回の製造
実験で10本しか製造することができなかったので、生
産性は実施例1の場合の175と低い。
That is, after starting production using both production methods, an experiment for producing 20 cm of oxide superconducting wire was repeated 10 times. As a result, in the case of the pull-down method of Example 1, a total of 50 oxide superconducting wires could be continuously manufactured from the five pipes 5a without any wire breakage. However, in the case of Comparative Example 2 of the pulling method, 22 out of 50
The wire broke within c+s. Further, in the case of Comparative Example 1, there was no wire breakage during production, but only 10 wires could be produced in 10 production experiments, so the productivity was 175, which is lower than that in Example 1.

[発明の効果] 以上一説明したように本発明によれば、酸化物超電導組
成の焼結体線材を予め700℃以上に加熱した後、局部
的に融点以上の温度に加熱することにより溶融部を形成
し、複数本のパイプを介して融液を引下げることにより
融液を凝固させて酸化物超電導線材を製造するから、パ
イプ径により決まる細線径の酸化物超電導線材を断線を
抑制しつつ安定して製造することができる。しかも、同
時に複数本の酸化物超電導線材を製造することができる
ので、生産性が極めて高い。この酸化物超電導線材は空
隙が除去されているため、臨界電流密度が極めて高い。
[Effects of the Invention] As explained above, according to the present invention, a sintered wire having an oxide superconducting composition is heated to 700° C. or higher in advance, and then locally heated to a temperature higher than the melting point, thereby forming a molten part. The oxide superconducting wire is produced by solidifying the melt by drawing it down through multiple pipes, so it is possible to manufacture oxide superconducting wire with a thin wire diameter determined by the pipe diameter while suppressing wire breakage. It can be manufactured stably. Furthermore, since a plurality of oxide superconducting wires can be manufactured at the same time, productivity is extremely high. Since voids have been removed from this oxide superconducting wire, its critical current density is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る酸化物超電導線材の製造
装置を示す断面図である。
FIG. 1 is a sectional view showing an apparatus for manufacturing an oxide superconducting wire according to an embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] (1)焼結された酸化物超電導組成の原料線材を700
℃以上の温度に予熱する工程と、この予熱された原料線
材を酸化雰囲気にてその融点以上の温度に局部的に加熱
して溶融部を形成する工程と、その融液を前記溶融部の
下部に並列的に配置された複数本のパイプ内を通過させ
それらの下端から同時に引き下げつつ凝固させて複数本
の線材を得る工程と、を有することを特徴とする酸化物
超電導線材の製造方法。
(1) 700 sintered raw material wires with oxide superconducting composition
a step of preheating the preheated raw material wire to a temperature of ℃ or higher; a step of locally heating the preheated raw material wire in an oxidizing atmosphere to a temperature higher than its melting point to form a molten zone; A method for manufacturing an oxide superconducting wire, comprising the step of passing through a plurality of pipes arranged in parallel and simultaneously pulling down from the lower ends of the pipes and solidifying the wires to obtain a plurality of wires.
(2)前記パイプは前記原料線材の融点以上の温度を有
することを特徴とする請求項1に記載の酸化物超電導線
材の製造方法。
(2) The method for manufacturing an oxide superconducting wire according to claim 1, wherein the pipe has a temperature higher than the melting point of the raw material wire.
(3)焼結された酸化物超電導組成の原料線材が相対的
に移動する間にこれを700℃以上の温度に加熱する第
1の加熱手段と、この第1の加熱手段の加熱領域内にて
前記原料線材をその融点以上の温度に局部的に加熱して
溶融部を形成する第2の加熱手段と、前記溶融部の下端
部と接触して並列的に配置され融液をその内部を通過さ
せて引き下げることにより所望の径の複数本の線材に凝
固させる複数本のパイプと、前記溶融部を酸化雰囲気に
する手段とを有することを特徴とする酸化物超電導線材
の製造装置。
(3) a first heating means that heats the sintered raw material wire of the oxide superconducting composition to a temperature of 700°C or higher while it moves relatively; and a heating area of the first heating means. a second heating means that locally heats the raw material wire to a temperature equal to or higher than its melting point to form a molten part; An apparatus for manufacturing an oxide superconducting wire, comprising: a plurality of pipes that are passed through and pulled down to solidify into a plurality of wires having a desired diameter; and means for creating an oxidizing atmosphere in the molten zone.
JP1189284A 1989-07-21 1989-07-21 Manufacture and manufacturing device of oxide superconducting line material Pending JPH0355719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1189284A JPH0355719A (en) 1989-07-21 1989-07-21 Manufacture and manufacturing device of oxide superconducting line material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1189284A JPH0355719A (en) 1989-07-21 1989-07-21 Manufacture and manufacturing device of oxide superconducting line material

Publications (1)

Publication Number Publication Date
JPH0355719A true JPH0355719A (en) 1991-03-11

Family

ID=16238749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1189284A Pending JPH0355719A (en) 1989-07-21 1989-07-21 Manufacture and manufacturing device of oxide superconducting line material

Country Status (1)

Country Link
JP (1) JPH0355719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439336B1 (en) * 2002-03-28 2004-07-07 성정민 A sanitary supporting device for a seat chamber pot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100439336B1 (en) * 2002-03-28 2004-07-07 성정민 A sanitary supporting device for a seat chamber pot

Similar Documents

Publication Publication Date Title
JPS60130453A (en) Method and device for manufacturing ribbon, filament, fiber or film
US3791172A (en) Apparatus for making a glass or the like coated wire
JPH0355719A (en) Manufacture and manufacturing device of oxide superconducting line material
JP2005105326A (en) Method and apparatus for manufacturing coated metal wire
JPH0355718A (en) Manufacture and manufacturing device of oxide superconducting line material
JP2587871B2 (en) Method and apparatus for producing oxide superconducting wire
JPH02162615A (en) Method and device for manufacturing oxide superconducting wire material
JPH0322312A (en) Manufacture of oxide superconducting wire and manufacturing device
JPH02148518A (en) Oxide superconducting wire rod and its manufacture and manufacturing device
JPH02148519A (en) Oxide superconducting wire rod and its manufacture and manufacturing device
JPH02199718A (en) Manufacture of oxide superconductive wire rod
Grodkiewicz Fused silica fibers with metal cores
JPH02199720A (en) Manufacture of oxide superconductive wire rod
JPH05101725A (en) Manufacture of oxide superconductive wire rod
CA1184095A (en) Process and apparatus for recrystallization of thin strip material
JPH02199717A (en) Manufacture of oxide superconductive wire rod
JPH02231107A (en) Manufacture of oxide superconducting wire material
JPH02199716A (en) Manufacture of oxide superconductive wire rod
KR102698389B1 (en) Thin plate single crystal manufacturing device and thin plate single crystal manufacturing method
JPH02199719A (en) Manufacture of oxide superconductive wire rod
JP2593846B2 (en) Continuous casting equipment
JPS6357498B2 (en)
JP3117519B2 (en) Oxide superconducting wire
JPS63254615A (en) Manufacture of superconductive material
JP3117520B2 (en) Manufacturing method of oxide superconducting wire