JPH0499126A - Production of high-fatigue strength valve spring by high frequency heating - Google Patents

Production of high-fatigue strength valve spring by high frequency heating

Info

Publication number
JPH0499126A
JPH0499126A JP20776890A JP20776890A JPH0499126A JP H0499126 A JPH0499126 A JP H0499126A JP 20776890 A JP20776890 A JP 20776890A JP 20776890 A JP20776890 A JP 20776890A JP H0499126 A JPH0499126 A JP H0499126A
Authority
JP
Japan
Prior art keywords
heating
steel wire
coil
valve spring
fatigue strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20776890A
Other languages
Japanese (ja)
Inventor
Michiaki Tateyama
舘山 道昭
Shinichi Suzuki
信一 鈴木
Takeshi Miki
武司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20776890A priority Critical patent/JPH0499126A/en
Publication of JPH0499126A publication Critical patent/JPH0499126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To produce the high-fatigue strength valve spring by high-frequency heating by subjecting a steel wire specified in carbon content to high-frequency inductive heating at a specific temp. at the center in a high-frequency inductive coil while continuously moving the steel wire, then rapidly cooling the steel wire at a specific temp. immediately thereafter while winding the steel wire to a coil shape, and adjusting the pitch and number of turns at a specific temp. CONSTITUTION:A spring blank material 1 of 0.5 to 0.86% carbon content is fed at an arbitrary speed to a heating coil 3 by feed rolls 2 which are driven to rotate. This blank material is thereby subjected to the high-frequency inductive heating from 850 to 1050 deg.C. The blank material is then immediately fed to a spring forming mechanism section and is taken up on a take-up drum 6 driven by a revolving motor 4 and a cross feed motor 5, and is rapidly cooled at >=70 deg.C. The heating blank material 1 fed to the take-up drum 6 is tightly wound up to the first 1 to 2 turns and is thereafter wound in 4 to 5 turns in the effective winding coil part at an equal pitch interval. The valve spring constituted of an intricate shape and size is thus coiled and formed at >=650 deg.C with good accuracy. The valve spring from which working flaws are entirely removed and which has the excellent fatigue strength is obtd. in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、特に疲労強度に優れた四輪自動車やオートハ
イエンジン用の弁ばねを、高周波加熱しなからコイル形
状に成形する製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of manufacturing a valve spring for a four-wheeled vehicle or an auto-high engine, which has particularly excellent fatigue strength, by forming it into a coil shape without high-frequency heating. It is something.

[従来の技術] 従来から、はねは一般的に、JIS−G3502  (
ピアノ線) 、3505 (硬鋼線)あるいは4801
 (はね鋼材)に規定されている線材などを用いて、車
に焼入れ、焼戻しをした後玲間でコイル成形するものが
多い。
[Prior Art] Conventionally, springs have generally been manufactured according to JIS-G3502 (
piano wire), 3505 (hard steel wire) or 4801
Many cars are hardened and tempered using wire rods specified in the (Spring Steel Materials) and then formed into coils at Reima.

また、自動車エンジンの弁はねの一部には、疲労強度を
高める手段として特公昭36−9406号公報にあるよ
うに、 500℃前後の低温で浸炭窒化したものかある
。これは、機成部品を表面硬化する方法としてよく知ら
れており、上記の特公昭36−9406号は、この原理
を弁ばねに適用した一事例である。しかし、この方法は
、表面硬化させるために、コイル形状に成形した後50
0℃前後の低温て数時間浸炭窒化処理しなければならな
い為、生産性に欠点かある。
In addition, some valve springs of automobile engines are carbonitrided at a low temperature of around 500° C. as described in Japanese Patent Publication No. 36-9406 as a means of increasing fatigue strength. This is well known as a method for surface hardening mechanical parts, and the above-mentioned Japanese Patent Publication No. 36-9406 is an example of applying this principle to a valve spring. However, in this method, in order to harden the surface, after forming into a coil shape,
Since the carbonitriding treatment must be carried out at a low temperature of around 0°C for several hours, there is a drawback in productivity.

また、機械部品の表面硬化には、高周波電流による誘導
加熱方式もよく利用されている。例えは、高周波加熱コ
イル内に処理しようとするコイルはねを放置しそのコイ
ルばねを均一に材貿調整するには、個々のコイルばね形
状や寸法等に応し8導加熱コイルを必要とするため設備
面でコスト高となり、作業性も良くない。また、文献「
鉄と鋼J Vol、73(1987)、P2290や「
ばね論文集」第27号(1978) 、P28さらには
特公昭60−30736号公報等にあるように、高周波
加熱により焼入れ、焼戻し処理をしたばね素線を用いて
全く別の工程でしかも冷間でコイル成形された高い疲労
強度のコイルはねは、既に公知である。しかしながら、
これらは何れも高周波加熱して所要の材質や強度レベル
を得た後冷間で成形するため、極めて高強度な素材の場
合はコイリングの加工性に問題かある。
In addition, induction heating using high-frequency current is often used to harden the surface of mechanical parts. For example, if a coil spring to be processed is left in a high-frequency heating coil and the material of the coil spring is adjusted uniformly, 8 conductive heating coils are required depending on the shape and dimensions of each coil spring. This results in high equipment costs and poor workability. In addition, the literature “
Tetsu to Hagane J Vol, 73 (1987), P2290 and “
As described in ``Spring Papers'' No. 27 (1978), p. 28, as well as in Japanese Patent Publication No. 30736/1983, spring wires that have been hardened and tempered by high-frequency heating are used in a completely different process and cold-heated. High fatigue strength coiled springs are already known. however,
All of these materials are subjected to high-frequency heating to obtain the required material quality and strength level, and then cold-formed, so in the case of extremely high-strength materials, there is a problem with the workability of coiling.

さらに、特開昭59−38329号公報には、成形前ま
たは後のはねに高周波電源を接続して、直接高周波電流
を流してはね表面の焼入れを行う方法があるか、この方
法によれば、はね素材に高周波電源を直接接続するため
接触面の表面状態や線径の変動あるいは、送給速度むら
によって焼入れ精度の安定性に問題がある。
Furthermore, Japanese Patent Application Laid-Open No. 59-38329 discloses a method of connecting a high-frequency power source to the blade before or after molding and directly passing a high-frequency current to harden the surface of the blade. For example, since a high-frequency power source is directly connected to the spring material, there are problems with the stability of hardening accuracy due to variations in the surface condition of the contact surface, the wire diameter, or uneven feeding speed.

[発明が解決しようとする課題] 自動車エンジン等の高性能、高出力化にともない、高疲
労強度の弁はわが強く望まれている。本発明は、これら
の要望を実現するために、生産性、コイリング性、焼入
れ性などの問題点を解決して、その要求特性を保証でき
る弁ばねの製造方法を提供しようとするものである。
[Problems to be Solved by the Invention] With the increasing performance and output of automobile engines, valves with high fatigue strength are strongly desired. In order to realize these demands, the present invention aims to solve problems such as productivity, coiling performance, and hardenability, and to provide a method for manufacturing a valve spring that can guarantee the required characteristics.

[課題を解決するための手段] 本発明の要旨とするところは、炭素量か0.5〜086
%である鋼線材を連続的に移動させながら、高周波話導
コイル内中心で、 850℃以上1050℃以下に高周
波話導加熱した後、直ちにコイル形状に巻きながら冷却
速度70℃/sec以上で急速冷却して、且つ650℃
以上でピッチや巻数を整えることを特徴とする、高周波
加熱による高疲労強度弁はねの製造方法にある。
[Means for solving the problem] The gist of the present invention is that the carbon content is 0.5 to 0.86
While continuously moving the steel wire rod, it is heated by high frequency conduction to 850℃ or more and 1050℃ or less at the center of the high frequency conduction coil, and then immediately wound into a coil shape and rapidly cooled at a cooling rate of 70℃/sec or more. Cooled and 650℃
The above provides a method for manufacturing a valve spring with high fatigue strength by high-frequency heating, which is characterized by adjusting the pitch and number of turns.

[作   用] そこで、本発明者らは、自動車エンジン用弁はねの疲労
強度を向上のため生産性、コイリング性、焼入れ性にお
いてかかる手段の適用を可能とすることについて種々検
討を行った。
[Function] Therefore, the present inventors conducted various studies on the possibility of applying such means in terms of productivity, coiling property, and hardenability in order to improve the fatigue strength of a valve spring for an automobile engine.

以下に本発明の詳細について説明する。The details of the present invention will be explained below.

本発明にかかる化学成分中、特に炭素含有量を05〜0
86%の範囲にしたのは、引張り強度あるいは硬度を高
くして高疲労強度の要求を満足させる為であって、さら
に本発明の高周波話導加熱温度を 850℃以上105
0℃以下として且つ、70℃/sec以上の急速冷却処
理をすれは、非常に微細なマルテンサイト組織が得られ
る。
Among the chemical components according to the present invention, in particular, the carbon content is 05 to 0.
The reason for setting the range to 86% is to increase the tensile strength or hardness to satisfy the requirement for high fatigue strength, and furthermore, the high frequency conduction heating temperature of the present invention is set to 850°C or higher 105
If the temperature is 0° C. or lower and rapid cooling is performed at 70° C./sec or higher, a very fine martensitic structure can be obtained.

また、高温短時間加熱においてオーステナイト(γ)化
によって得られる微細な組織や結晶粒が生成可能となり
、伸びや絞り等の靭性を向上させ、より高い疲労強度を
得るためである。ここで炭素含有量か05%未満の場合
には、へたり現象か大きく疲労強度レベルか極めて砥く
、方、086%を超える場合には、靭性低下か著しく使
用に耐えない。また、必要に応して、Siを0.10〜
1.5 %、Mnを0.40〜0.55%、Crを0.
01〜08%添加すれは、鋼線の焼入性が向上し、大径
のコイルはねても安定して、高強度のものが得られる。
In addition, it is possible to generate fine structures and crystal grains obtained by austenitization (γ) during high-temperature and short-time heating, improving toughness such as elongation and drawing, and obtaining higher fatigue strength. Here, if the carbon content is less than 0.5%, the fatigue strength level will be extremely high due to the sagging phenomenon, whereas if it exceeds 0.86%, the toughness will deteriorate significantly and it will not be able to withstand use. In addition, if necessary, Si may be added from 0.10 to
1.5%, Mn 0.40-0.55%, Cr 0.
Addition of 0.01 to 0.08% improves the hardenability of the steel wire, resulting in a stable and high-strength steel wire even when a large-diameter coil is bounced.

さらに高温短時間加熱におけるオーステナイト(γ)化
によって得られる組織は一層微細なものとなる。この場
合、Si、 Mn、 Crは、それぞれ0.10.0.
40.0.01%未満では十分な強度が得られない、又
夫々1.5.0.55.0.8%超では圧延線材の硬さ
か上昇し、皮むきあるいは引抜き等の前加工が困難にな
る。
Furthermore, the structure obtained by austenite (γ) formation during high-temperature, short-time heating becomes even finer. In this case, Si, Mn, and Cr are each 0.10.0.
If it is less than 40.0.01%, sufficient strength cannot be obtained, and if it exceeds 1.5, 0.55, or 0.8%, the hardness of the rolled wire increases, making pre-processing such as peeling or drawing difficult. become.

また、鋼線材を移動させながら、高周波8導加熱する温
度か850℃未満では十分なオーステナイト化が行われ
ないために必要な強度の確保が困難で、1050℃超て
は必要以上の加熱状態となって結晶粒か粗大化してへた
り特性や靭性の低下を来す。その後、直ちにコイル形状
に巻きながら急速冷却するか、この冷却速度が70℃/
sec未満て冷却したのでは、焼きか入らず、目標とす
る強度が得られない。しかも、その後の使用特性評価試
験での疲労強度向上を期待できるものてない。
In addition, if the temperature at which the steel wire is heated by high-frequency 8 conduction while moving is less than 850°C, sufficient austenitization will not occur, so it is difficult to secure the necessary strength, and if it exceeds 1050°C, it will be heated more than necessary. As a result, the crystal grains become coarser and the properties and toughness deteriorate. Then, immediately cool it quickly while winding it into a coil shape, or if the cooling rate is 70℃/
If it is cooled for less than sec, it will not harden and the target strength will not be obtained. Moreover, there is no expectation of improvement in fatigue strength in subsequent use characteristic evaluation tests.

高温短時間加熱処理の最適条件を、第1図で示すが、鋼
線材を高周波誘導加熱したコイル内中心を移動させれば
、温度むらがなく内部まで均一に、しかも、短時間で 
850〜1050℃に高周波加熱可能となる。650℃
以上で直ちにコイル形状に巻きながら座壱部および有効
巻部のピッチと巻数を整えることとしたのは、オーステ
ナイト−相の状態で成形するためであって、 650℃
未満では、変態が始まりコイル成形中の鋼線断面内の硬
度に変化を生じ、疲労強度に悪影響を及ぼすためて、さ
らに極度に低温の場合にはコイル成形か困難となるので
、これは極めて有効な要件となる。
The optimal conditions for high-temperature, short-time heat treatment are shown in Figure 1.If you move the center of the coil in which the steel wire is heated by high-frequency induction, the temperature can be uniformly distributed throughout the interior without any unevenness, and in a short time.
High frequency heating becomes possible at 850-1050°C. 650℃
The reason why we decided to adjust the pitch and number of turns of the seat part and the effective winding part while immediately winding it into a coil shape is to form it in the austenite phase state, and the temperature is 650°C.
This is extremely effective because at temperatures lower than This is a requirement.

そのため、特に第2図に本発明を実施する製造装置を模
式図で示した。素材送給機構部、加熱部、はね成形機構
部のそれぞれの作用精度は勿Mのこと、これらか一体と
なった構成精度は、エンジン部品となる弁はねの品質性
能に大きな影響を及はすものである。即ち、かかる成分
系よりなる鋼線材をはね素材1として、電動モーターに
よって駆動回転する送給ロール2で加熱コイル3へ任意
の速度で送る。送給された素材1は、高周波発信機によ
って誘導加熱される加熱コイル3の中心を通過する際、
適正な高周波誘導加熱温度である850〜1050℃が
与えられる。その後、直ちにはね成形機構部へ送給され
、回転モーター4と横送りモーター5によって駆動する
巻取りトラム6に巻取られる。この巻取り成形時に、7
0℃以上の急速冷却か必要であるから、巻取りトラム6
の進行方向に、冷却カスや冷却水なとを放散可能な様に
リング状にノズル7を設けれは本発明の要件を容易に満
たすことかできる。また、弁はねの形状は、両端に座巻
部と言われる密着コイル部と中間部に等ピッチ閘隔の有
効巻コイル部より成っているが、巻取りトラム6へ送給
された加熱素材1は、最初1〜2巻目までを産着巻きし
、その後等ピツチ間隔て有効巻コイル部を4〜5巻きし
、また最後に1〜2巻を密着巻きすることか可能であり
、この様な、複雑な形状と寸法で構成される弁はねを精
度よく650℃以上てコイル成形すれば、従来の玲開成
形峙て生じている様な加工きずか一掃でき高疲労強度に
優れた弁はねか得られる。
Therefore, in particular, FIG. 2 schematically shows a manufacturing apparatus for carrying out the present invention. Not only the working precision of the material feeding mechanism, heating section, and spring forming mechanism, but also the precision of the construction of these components has a great influence on the quality and performance of the valve springs that are engine parts. It is a lotus. That is, a steel wire rod made of such a component system is used as a spring material 1 and is sent to a heating coil 3 at an arbitrary speed by a feed roll 2 driven and rotated by an electric motor. When the fed material 1 passes through the center of the heating coil 3, which is heated by induction by a high frequency transmitter,
A suitable high frequency induction heating temperature of 850-1050°C is provided. Thereafter, it is immediately fed to the spring forming mechanism and wound onto a winding tram 6 driven by a rotary motor 4 and a transverse feed motor 5. During this winding and forming, 7
Since rapid cooling to 0°C or higher is required, the winding tram 6
The requirements of the present invention can be easily met by providing a ring-shaped nozzle 7 in the direction of travel of the vehicle so as to be able to dissipate cooling debris, cooling water, etc. In addition, the shape of the valve spring consists of a close coil part called an end turn part at both ends and an effective winding coil part with equal pitch spacing in the middle part. 1 is possible by first winding the 1st and 2nd windings, then winding the effective winding coil part 4 to 5 times at equal pitches, and finally winding the 1st and 2nd windings closely. If valve springs with complex shapes and dimensions are coil-formed with precision at temperatures above 650°C, the processing flaws that occur with conventional re-opening molding can be eliminated, resulting in valves with excellent fatigue strength. You can get a splash.

かくして、成形したコイルはねは、必すしも焼戻し処理
を必要としないが、室温〜350℃範囲でのセッチング
およびショットピーニング処理を行う。
Thus, the formed coil spring does not necessarily require tempering treatment, but is subjected to setting and shot peening treatment at a temperature ranging from room temperature to 350°C.

以下実施例により本発明の効果をさらに具体的に示す。The effects of the present invention will be illustrated in more detail with reference to Examples below.

[実 施 例] 次に実施例を示す。[Example] Next, examples will be shown.

実施例に供試した高炭素鋼線材の化学成分を第1表に示
し、第2表には鋼炭素鋼線材をφ3.8 +n+nにし
た伸線材を長さ 600mmに切断して、AIO〜A3
3の本発明方法で製造した。
Table 1 shows the chemical composition of the high carbon steel wire rods used in the examples, and Table 2 shows the drawn carbon steel wire rods having a diameter of φ3.8 +n+n, which were cut into lengths of 600 mm, and were used as AIO to A3 wire rods.
It was manufactured by the method of the present invention described in No. 3.

本発明方法の条件は、はね素材を送給ロールで高周波加
熱コイルに送給し、高周波誘導加熱した加熱コイル中心
を40 mm/ secの速度て移動させた。ばね素材
を850〜1050℃に高周波で加熱した後、直ちに7
0℃/sec以上の冷却速度で急冷しながら巻取りトラ
ムに送給して650℃以上てコイル形状に巻き、その際
、座巻部は2巻および有効巻部はlo、5mmのピッチ
で5巻を等間隔て整えて、高周波誘導加熱により弁ばね
を成形した。これらを200℃でセツチングし、ショッ
トピーニングをした。
The conditions for the method of the present invention were that the spring material was fed to a high frequency heating coil by a feed roll, and the center of the heating coil subjected to high frequency induction heating was moved at a speed of 40 mm/sec. Immediately after heating the spring material to 850-1050℃ with high frequency
While rapidly cooling at a cooling rate of 0°C/sec or more, the winding tram is fed to a winding tram and wound into a coil shape at a temperature of 650°C or higher.At this time, the end winding part is 2 turns, the effective winding part is lo, and 5 turns are made at a pitch of 5 mm. The coils were arranged at equal intervals and a valve spring was formed by high-frequency induction heating. These were set at 200°C and shot peened.

また、比較法をBll〜B22によって弁ばねを製造し
た。この場合の冷却速度と巻取り温度はA法と同様にし
た。尚、高周波発信機は15kW、 400KHzを用
いた。
In addition, valve springs were manufactured using the comparative method Bll-B22. The cooling rate and winding temperature in this case were the same as in method A. Note that a high frequency transmitter of 15 kW and 400 KHz was used.

このようにして製造した弁ばねについて、計算によって
求められた剪断応力 (τ max=60±50kgf
/mm2)  になる圧縮荷重を繰り返し負荷して破断
まての疲労寿命を求めた。これらの結果を第3表に示す
。この結果からも明らかなように、本発明の高周波加熱
による製造方法された弁ばねは、高疲労強度の特性を示
すものである。尚、A1鋼を用い、従来法によって製造
された弁はねの疲労寿命も実験したので、参考としてC
11てネオ。
For the valve spring manufactured in this way, the shear stress (τ max = 60 ± 50 kgf
/mm2) was repeatedly applied to determine the fatigue life until fracture. These results are shown in Table 3. As is clear from these results, the valve spring manufactured by the high-frequency heating method of the present invention exhibits high fatigue strength. In addition, we also tested the fatigue life of a valve spring manufactured by the conventional method using A1 steel, so we used C as a reference.
11 Neo.

刀 表 (%) 第 表 の欠点や疲労特性の限界の問題を克服して、高周波8導
加熱による高疲労強度弁ばねを製造することを可能とし
たものである。ばね素材は真円材に限らず楕円材のもの
でも適用可能であり工業的に価値が大きいことは明らか
である。
Table of Contents (%) By overcoming the drawbacks and limitations of fatigue properties shown in Table 1, it has become possible to manufacture a valve spring with high fatigue strength using high-frequency 8 conduction heating. It is clear that the spring material is not limited to a perfectly round material, but also an elliptical material, which is of great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における加熱温度と時間との関係を示す
線図、第2図は本発明にかかる製造方法を示す模式図で
ある。 1・・・素材      2・・・送給ロール3・・・
加熱コイル   4・・・回転モーター5・・・横送り
モーター 6・・・巻取りドラム7・・・冷却ノズル 化4名 弗 表 [発明の効果] 以上述べた如く、本発明は従来手段のように全くべつの
工程てしかも冷間でばね成形したり、また、はね素材に
高周波電源を直接接続してばね成形することによって生
じる加工性など第 図 時間(sec)
FIG. 1 is a diagram showing the relationship between heating temperature and time in the present invention, and FIG. 2 is a schematic diagram showing the manufacturing method according to the present invention. 1...Material 2...Feed roll 3...
Heating coil 4 Rotating motor 5 Transverse feed motor 6 Winding drum 7 Cooling nozzle [Effect of the invention] As described above, the present invention is similar to the conventional means. This is a completely different process, and the workability caused by cold spring forming or spring forming by directly connecting a high frequency power source to the spring material, etc.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素量が0.5〜0.86%である鋼線材を連続的
に移動させながら、高周波誘導コイル内中心で、850
℃以上1050℃以下に高周波誘導加熱した後、直ちに
コイル形状に巻きながら冷却速度70℃/sec以上で
急速冷却して、且つ650℃以上でピッチや巻数を整え
ることを特徴とする、高周波加熱による高疲労強度弁ば
ねの製造方法。
1 While continuously moving a steel wire rod with a carbon content of 0.5 to 0.86%, 850
By high-frequency heating, which is characterized by high-frequency induction heating at a temperature of 1050°C or higher, immediately followed by rapid cooling at a cooling rate of 70°C/sec or higher while immediately winding into a coil shape, and adjusting the pitch and number of turns at 650°C or higher. Method for manufacturing high fatigue strength valve springs.
JP20776890A 1990-08-06 1990-08-06 Production of high-fatigue strength valve spring by high frequency heating Pending JPH0499126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20776890A JPH0499126A (en) 1990-08-06 1990-08-06 Production of high-fatigue strength valve spring by high frequency heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20776890A JPH0499126A (en) 1990-08-06 1990-08-06 Production of high-fatigue strength valve spring by high frequency heating

Publications (1)

Publication Number Publication Date
JPH0499126A true JPH0499126A (en) 1992-03-31

Family

ID=16545214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20776890A Pending JPH0499126A (en) 1990-08-06 1990-08-06 Production of high-fatigue strength valve spring by high frequency heating

Country Status (1)

Country Link
JP (1) JPH0499126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042066A1 (en) * 2012-09-14 2014-03-20 日本発條株式会社 Helical compression spring and method for manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205037A (en) * 1988-02-10 1989-08-17 Nippon Steel Corp Manufacture of coiled spring having high fatigue strength by high-frequency surface heating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205037A (en) * 1988-02-10 1989-08-17 Nippon Steel Corp Manufacture of coiled spring having high fatigue strength by high-frequency surface heating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042066A1 (en) * 2012-09-14 2014-03-20 日本発條株式会社 Helical compression spring and method for manufacturing same
US9752636B2 (en) 2012-09-14 2017-09-05 Nhk Spring Co., Ltd. Helical compression spring and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP4415009B2 (en) Method for thermal processing control of steel
WO2012029812A1 (en) Steel wire material for high-strength spring which has excellent wire-drawing properties and process for production thereof, and high-strength spring
JPS62192532A (en) Production of steel wire
JP2008069452A (en) Hot-rolled high-carbon steel sheet and process for production of the same
JP2017043835A (en) Steel for machine structural use for cold-working, and production method therefor
JP2021533271A (en) Soft heat treatment time shortening type cold heading wire and its manufacturing method
RU2604542C2 (en) Method and plant for continuous production of steel wire
JP4377715B2 (en) High strength PC steel wire with excellent twisting characteristics
WO2017098964A1 (en) Steel wire for mechanical structural components
JP2000119805A (en) Steel wire rod excellent in wire drawability
JPH07276242A (en) Manufacture of iron-series shot grain
JPH0499126A (en) Production of high-fatigue strength valve spring by high frequency heating
US5342700A (en) Steel wire having a structure of a strain-hardened lower bainite type and method for producing such wire
JPH07268546A (en) High carbon steel wire rod having two-layer structure and its production
KR101019628B1 (en) Methods of spheroidizing medium and high carbon steels by severe plastic deformation, apparatus for severe plastic deformation, and spheroidized medium and high carbon steels prepared therefrom
JPH0517284B2 (en)
WO2017033773A1 (en) Mechanical structure steel for cold-working and manufacturing method therefor
JP2003089846A (en) High carbon steel sheet for working having reduced plane anisotropy, and production method therefor
JP2017214621A (en) Manufacturing method of hyper-eutectoid steel wire
JPH06346146A (en) Production of wire rod for cold forming coil spring and device therefor
US4984770A (en) Apparatus for partial tempering of rolled wire products made of steel
KR102139175B1 (en) High-strength wire rod and steel wire with improved torsion property and method for manufacturing the same
JP2004011017A (en) Hot rolled steel sheet for rotary ironing, method for producing the same and automobile parts
JPS60155621A (en) Production of steel bar and wire rod having spheroidized structure
US5060496A (en) Procedure for producing coil-forming tubes in an inert enviroment