JPH07268546A - High carbon steel wire rod having two-layer structure and its production - Google Patents

High carbon steel wire rod having two-layer structure and its production

Info

Publication number
JPH07268546A
JPH07268546A JP6114094A JP6114094A JPH07268546A JP H07268546 A JPH07268546 A JP H07268546A JP 6114094 A JP6114094 A JP 6114094A JP 6114094 A JP6114094 A JP 6114094A JP H07268546 A JPH07268546 A JP H07268546A
Authority
JP
Japan
Prior art keywords
wire
surface layer
wire rod
carbon steel
steel wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6114094A
Other languages
Japanese (ja)
Inventor
Susumu Kanbara
進 神原
Takashi Tsukamoto
孝 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6114094A priority Critical patent/JPH07268546A/en
Publication of JPH07268546A publication Critical patent/JPH07268546A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To produce a high carbon steel wire rod high in tensile strength, in which delamination is hard to generate and capable of high degree wire drawing and to provide a method for producing the same. CONSTITUTION:This high carbon steel wire rod is the one contg. 0.7 to 1.2wt.% C and having a two layer structure in which a bainitic structure or a structure in which cementite is spheroidized is formed from the surface to a depth of 5 to 20%of the radius of the cross section and a pearlitic or ferrite pearlitic structure is formed at the part inner than the same. This wire rod can be obtd. by heating a high carbon steel wire stock contg. 0.7 to 1.2wt.%. C to 850 to 1100 deg.C and thereafter bringing it into contact with a coold roll to rapidly cool the surface layer part and to form the structure of the surface layer part into a bainitic one or forming the structure of the surface layer part into pearlite, bainite or martensite or a mixted one thereof and executing rolling to spheroidize cementite in the surface layer part structure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐デラミネーション性
に優れ、伸線加工後の引張強さも大きい伸線加工用の高
炭素鋼線材およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high carbon steel wire rod for wire drawing, which is excellent in delamination resistance and has a high tensile strength after wire drawing, and a method for producing the same.

【0002】[0002]

【従来の技術】高炭素鋼線材は通常伸線加工が施され、
送電ケーブル用補強鋼線、スチールコードワイヤ、スチ
ールビードワイヤ等の最終製品になる。この伸線加工用
の線材には、従来、伸線加工前に断面を均一組織にする
ためパテンティングが施されていた。パテンティングの
方法としては、線材の組織を一旦オーステナイト化した
後、空冷あるいは風冷を行うエアーパテンティング、ま
たは鉛沿中に浸漬する鉛パテンティングがよく使われて
いる。
2. Description of the Related Art High carbon steel wire rods are usually drawn.
It will be the final product such as reinforced steel wire for power transmission cable, steel cord wire, and steel bead wire. This wire rod for wire drawing has conventionally been patented to have a uniform cross-section before wire drawing. As the patenting method, air patenting in which the structure of the wire is once austenized and then air-cooled or air-cooled, or lead patenting in which the wire is immersed in lead is often used.

【0003】「鉄と鋼」Vol.79(1993), No.9, p.89-95
(文献1)に示されるように、パテンティングによって
得られる組織のうち、伸線時の延性や耐デラミネーショ
ン性(伸線材の捻回試験での縦割れの起こりにくさ)に
優れ、伸線後の引張強さが最も優れているのは微細パー
ライトのみの組織であるとされている。それでも上記文
献1の92頁の Fig.6に示されるように、伸線加工ひずみ
(ε) が 2.53 を超えるとデラミネーションが発生し始
める。デラミネーションが発生しやすいということは、
高度の伸線加工ができないということであり、結局、伸
線性がわるいということになる。
"Iron and Steel" Vol.79 (1993), No.9, p.89-95
As shown in (Reference 1), among the structures obtained by patenting, it is excellent in ductility during wire drawing and delamination resistance (durability of vertical cracking in a twist test of a wire drawn material) and It is said that the structure having only fine pearlite has the highest tensile strength afterwards. Nevertheless, as shown in Fig. 6 on page 92 of the above-mentioned document 1, wire drawing strain
Delamination begins to occur when (ε) exceeds 2.53. The fact that delamination easily occurs means that
This means that it is impossible to perform a high degree of wire drawing, which means that the wire drawability is poor.

【0004】そこでCAMP-ISJI,Vol.6(1993)-1684 (文献
2) や特開平5-117762号公報に示されるようにベイナイ
ト均一組織にすることにより高伸線加工度域においても
デラミネーションが発生しにくい高炭素鋼線材およびそ
の製造方法が提案されている。しかし、ベイナイト線材
には、文献2のFig.2 にも示されているようにデラミネ
ーションの発生は抑制されるものの、加工硬化率が低い
ため伸線後の最終引張強さが低いという欠点がある。
Therefore, as shown in CAMP-ISJI, Vol.6 (1993) -1684 (Reference 2) and Japanese Patent Laid-Open No. 5-117762, a bainite uniform structure is used to delaminate even in a high wire drawing area. A high-carbon steel wire rod that is less likely to generate and a method for manufacturing the same have been proposed. However, as shown in Fig. 2 of Reference 2, the bainite wire rod has a drawback that the final tensile strength after wire drawing is low because the work hardening rate is low, although the occurrence of delamination is suppressed. is there.

【0005】[0005]

【発明が解決しようとする課題】前記のように、均一微
細パーライト組織の線材は、伸線後の引張強さは高いも
ののデラミネーションは均一ベイナイト組織の線材より
発生しやすい。一方、ベイナイト組織の線材は、デラミ
ネーションの発生は少ないが伸線後の最終引張強さが低
い。即ち、現在のところ、デラミネーションが起こりに
くく、しかも伸線後の引張強さが大きい線材は得られて
いない。
As described above, a wire having a uniform fine pearlite structure has a high tensile strength after drawing, but delamination is more likely to occur than a wire having a uniform bainite structure. On the other hand, a wire having a bainite structure has less delamination but a low final tensile strength after wire drawing. That is, at present, no wire rod has been obtained in which delamination is unlikely to occur and which has a high tensile strength after wire drawing.

【0006】本発明は、伸線後の引張強さが大きく、か
つデラミネーションも発生しにくく高度の伸線加工が可
能な高炭素鋼線材、およびその製造方法を提供すること
を目的としたなされたものである。
It is an object of the present invention to provide a high carbon steel wire rod which has a high tensile strength after wire drawing, is less likely to cause delamination, and is capable of high-level wire drawing, and a method for producing the same. It is a thing.

【0007】[0007]

【課題を解決するための手段】本発明者らは、高炭素鋼
線材の金属組織を様々に変化させ、しかも表層部と中心
部の組織が異なる線材も試作して、伸線性、伸線後の引
張強さ、およびデラミネーションの発生状況について詳
細な検討を行った。その結果、伸線性および伸線後の引
張強さは主に中心部の組織の影響を受け、デラミネーシ
ョンの発生のしやすさは表層部の組織に大きな影響を受
けることがわかった。
Means for Solving the Problems The inventors of the present invention have variously changed the metallographic structure of a high carbon steel wire rod, and have produced a wire rod having a different surface layer portion and central portion structure, which are drawn and drawn. A detailed study was conducted on the tensile strength and the occurrence of delamination. As a result, it was found that the drawability and the tensile strength after drawing are mainly influenced by the structure of the central part, and the easiness of delamination is greatly affected by the structure of the surface part.

【0008】具体的には、 中心部が均一なパーライト組織であれば、伸線性
(ここでいう伸線性とは断線しないで細くまで伸線でき
る性能である) に優れ、かつ伸線後の引張強さの大きい
線材が得られる。ただし、表層部までパーライト組織で
あるとデラミネーションが発生しやすい。即ち伸線後の
捻回試験で縦割れが発生しやすい。
Specifically, if the center part has a uniform pearlite structure, the wire drawability is
It is possible to obtain a wire rod which is excellent in (drawability as referred to here is the ability to draw wires finely without breaking) and which has high tensile strength after drawing. However, if the pearlite structure extends to the surface layer, delamination easily occurs. That is, vertical cracks are likely to occur in the twisting test after wire drawing.

【0009】 表層部が均一なベイナイト組織であれ
ばデラミネーションの発生は少ない。
If the surface layer portion has a uniform bainite structure, delamination is less likely to occur.

【0010】しかし、全断面がベイナイト組織であれ
ば、伸線後の引張強さが低い。
However, if the entire cross section has a bainite structure, the tensile strength after wire drawing is low.

【0011】 同じく表層部が、セメンタイトが球状
化した柔らかい組織であればデラミネーションの発生は
少ない。しかし、全断面が球状化セメンタイト組織であ
れば伸線性が悪く、かつ伸線後の引張強さが低くなる。
Similarly, if the surface layer has a soft structure in which cementite is spherical, delamination is less likely to occur. However, if the entire cross section has a spheroidized cementite structure, the wire drawability is poor and the tensile strength after wire drawing is low.

【0012】本発明は上記の知見を基にしてなされたも
ので、下記(1) および(3) の表層部と中心部が異なる組
織をもつ2層組織の線材、ならびに(2) および(4) のそ
れらの製造方法を要旨とする。
The present invention was made on the basis of the above findings, and is a wire rod having a two-layer structure having the structures of the surface layer portion and the central portion different from each other in the following (1) and (3), and (2) and (4) The manufacturing method of those is summarized.

【0013】(1) 0.7〜1.2 重量%のCを含有し、表面
から断面半径の 5〜20%の深さまでがベイナイト組織で
あり、それより内部の組織はパーライトまたはフェライ
ト・パーライト組織である二層組織構造を有することを
特徴とする高炭素鋼線材。
(1) It contains 0.7 to 1.2% by weight of C, a bainite structure is present from the surface to a depth of 5 to 20% of the cross-sectional radius, and the structure inside thereof is a pearlite or ferrite-pearlite structure. A high carbon steel wire rod having a layered structure.

【0014】(2) 0.7〜1.2 重量%のCを含有する高炭
素鋼素線材を 850〜1100℃に加熱した後、冷却ロールに
接触させることにより、表層部を急冷し、表層部をベイ
ナイト組織とすることを特徴を有する上記(1) の高炭素
鋼線材の製造方法。
(2) A high carbon steel wire rod containing 0.7 to 1.2% by weight of C is heated to 850 to 1100 ° C. and then brought into contact with a cooling roll to rapidly cool the surface layer portion, and the surface layer portion has a bainite structure. The method for producing a high carbon steel wire rod according to the above (1), characterized in that

【0015】(3) 0.7〜1.2 重量%のCを含有し、表面
から断面半径の 5〜20%の深さまではセメンタイトが球
状化した組織であり、それより内部の組織はパーライト
またはフェライト・パーライト組織である二層組織構造
を有することを特徴とする高炭素鋼線材。
(3) Cementite is spheroidized at a depth of 5 to 20% of the cross-sectional radius from the surface containing 0.7 to 1.2% by weight of C, and the internal structure is pearlite or ferrite pearlite. A high carbon steel wire rod having a two-layer structure structure which is a structure.

【0016】(4) 0.7〜1.2 重量%のCを含有する高炭
素鋼素線材を 850〜1100℃に加熱した後、冷却ロールに
接触させて表層部を急冷し、表層部をパーライト、ベイ
ナイト、マルテンサイト、またはこれらの混合組織と
し、上記の急冷と同時または急冷の直後に合計加工率15
%以上の圧延を行って表層部組織中のセメンタイトを球
状化することを特徴とする上記(3) の高炭素鋼線材の製
造方法。
(4) After heating a high carbon steel wire rod containing 0.7 to 1.2% by weight of C to 850 to 1100 ° C., it is brought into contact with a cooling roll to rapidly cool the surface layer, and the surface layer is pearlite, bainite, Martensite, or a mixed structure of these, with a total processing rate of 15 at the same time as or immediately after the above quenching
% Or more to make the cementite in the surface layer structure spherical, and the method for producing a high carbon steel wire rod according to (3) above.

【0017】[0017]

【作用】まず、前記 (1)および(3) の線材について説明
する。これらの線材は表層部がベイナイトまたはセメン
タイトが球状化した組織であり、中心部がパーライトま
たはフェライト・パーライト組織である。
[Operation] First, the wire rods (1) and (3) will be described. These wire rods have a bainite or cementite spheroidized structure in the surface layer and a pearlite or ferrite-pearlite structure in the center.

【0018】上記線材のC(炭素)の含有量を 0.7〜1.
2 % (以下、成分含有量についての%は「重量%」のこ
とである) とする理由は次のとおりである。
The content of C (carbon) in the above wire is 0.7-1.
The reason for setting it to 2% (hereinafter,% with respect to the content of components means “% by weight”) is as follows.

【0019】Cが 0.7%未満ではパテンティング後の引
張強さ(伸線前の初期強度)が低く、従って伸線後の引
張強さも低いため、高炭素鋼々線としての使用目的に沿
わない。一方、Cが 1.2%を超えると結晶粒界に初析セ
メンタイトが発生し、伸線性が大きく劣化する。このた
めC含有量は 0.7〜1.2 %とした。C含有量のさらに望
ましい範囲は 0.7〜1.0 %である。
When C is less than 0.7%, the tensile strength after patenting (initial strength before wire drawing) is low, and therefore the tensile strength after wire drawing is low, so that it does not meet the purpose of use as a high carbon steel wire. . On the other hand, when C exceeds 1.2%, pro-eutectoid cementite is generated at the crystal grain boundaries, and wire drawability is greatly deteriorated. Therefore, the C content is set to 0.7 to 1.2%. A more desirable range of the C content is 0.7 to 1.0%.

【0020】C以外の成分およびその含有量は、通常の
高炭素鋼々線で規定される範囲で選べばよい。例えば、
Si: 0.15〜0.35%、Mn:0.3〜0.9 %、Cr:0.4%以下 (0
でもよい) 、Ni:0.3%以下(0でもよい) 、Cu:0.3%以下
(0でもよい) 、不純物としてのP:0.04 %以下、同じく
S: 0.04%以下、が標準的な組成である。
The components other than C and the contents thereof may be selected within the range specified by ordinary high carbon steel wires. For example,
Si: 0.15 to 0.35%, Mn: 0.3 to 0.9%, Cr: 0.4% or less (0
), Ni: 0.3% or less (may be 0), Cu: 0.3% or less
(It may be 0), P: 0.04% or less as impurities, and S: 0.04% or less are standard compositions.

【0021】次に、表層部の組織について述べる。ここ
で表層部とは、線材の表面から断面半径の5〜20%の深
さまでをいう。例えば、半径が10mm (直径が20mm) の線
材であれば、その表面から 0.5〜2 mmの深さまでが表層
部であり、この部分がベイナイトまたはセメンタイトが
球状化した組織となっていなければならない。このよう
な組織の表層部が表面から5%未満であると、デラミネ
ーションの抑制効果が小さく、20%を超えると伸線性が
急激に悪くなり、また伸線加工後の引張強さも低くな
る。
Next, the structure of the surface layer will be described. Here, the surface layer portion is from the surface of the wire to a depth of 5 to 20% of the cross-sectional radius. For example, in the case of a wire with a radius of 10 mm (diameter of 20 mm), the surface layer extends from the surface to a depth of 0.5 to 2 mm, and this portion must have a spheroidized structure of bainite or cementite. If the surface layer portion of such a structure is less than 5% from the surface, the delamination suppressing effect is small, and if it exceeds 20%, the wire drawability deteriorates sharply, and the tensile strength after wire drawing also becomes low.

【0022】上記の表層部を除く部分 (中心部) の組織
は、パーライトあるいはフェライト・パーライト組織で
ある。共析鋼または過共析鋼ではパーライト、亜共析鋼
ではフェライト・パーライトになる。中心部がこれら以
外の組織であれば、伸線性が悪くなる。
The structure of the part (central part) excluding the surface layer is a pearlite or ferrite-pearlite structure. It becomes pearlite in eutectoid or hypereutectoid steel, and ferrite pearlite in hypoeutectoid steel. If the center part has a structure other than these, the wire drawability is deteriorated.

【0023】上記の2層組織をもつ線材のうち、表層部
がベイナイトである線材は前記 (2)の方法で製造するこ
とができる。この方法において、高炭素鋼線材を 850〜
1100℃に加熱する理由は、850 ℃未満では素材組織が完
全にオーステナイト化せず、炭化物が残存するため、次
の冷却工程で中心部が均一なパーライト(またはフェラ
イト・パーライト)組織にならないだけでなく、表層部
がベイナイト組織にならず、望ましい2層組織が得られ
ないからである。一方、加熱温度が1100℃を超えると結
晶粒が急激に粗大化し、伸線性が大幅に低下する。な
お、加熱時間は線材の全断面が均一温度となって完全に
オーステナイト化するに足りる時間でよい。例えば、鋼
材を走行させつつ誘導加熱する場合、5秒ないし1分の
短時間加熱で足りる。
Among the wire rods having the above-mentioned two-layer structure, the wire rod whose surface layer portion is bainite can be manufactured by the method (2). In this method, high carbon steel wire rod
The reason for heating to 1100 ° C is that if the temperature is less than 850 ° C, the material structure does not completely become austenite and the carbide remains, so that the pearlite (or ferrite / pearlite) structure is not uniform in the center in the next cooling step. This is because the surface layer portion does not have a bainite structure and a desired two-layer structure cannot be obtained. On the other hand, when the heating temperature exceeds 1100 ° C., the crystal grains are abruptly coarsened and the wire drawability is significantly reduced. It should be noted that the heating time may be a time sufficient for the entire cross section of the wire to have a uniform temperature and to be completely austenitized. For example, when induction heating is performed while the steel material is running, short-time heating for 5 seconds to 1 minute is sufficient.

【0024】上記のように加熱した線材を冷却ロールに
接触させて冷却する。このように冷却ロールとの接触に
よって冷却を行うのは、表層部のみを急冷して急速に A
r1変態点以下に冷却し、前記の2層組織を得るためであ
る。急冷された表層部は、ベイナイト組織となり、緩冷
却された中心部はパーライト(またはフェライト・パー
ライト)組織になる。
The wire rod heated as described above is brought into contact with a cooling roll to be cooled. In this way, cooling is performed by contacting with the chill roll by rapidly cooling only the surface layer and rapidly
This is to obtain the above-mentioned two-layer structure by cooling below the r 1 transformation point. The rapidly cooled surface layer portion has a bainite structure, and the slowly cooled center portion has a pearlite (or ferrite / pearlite) structure.

【0025】通常行われている加熱した線材を空冷帯や
水冷帯中を通過させる冷却方法、あるいは鉛浴に浸漬す
る方法では、表層部だけを急冷し、中心部を緩冷却とす
ることは難しい。仮に表層部の極く薄い範囲をベイナイ
ト組織にできたとしても、その層の厚さをコントロール
することはできない。しかし、ロール接触による冷却方
法では熱伝達率が大きいので表層部のみを均一に、かつ
瞬間的に急冷することができ目標とする組織が容易に得
られる。
It is difficult to rapidly cool only the surface layer and slowly cool the central part by a cooling method which is usually performed by passing a heated wire through an air-cooled zone or a water-cooled zone or a method of immersing in a lead bath. . Even if the bainite structure can be formed in the extremely thin area of the surface layer, the thickness of the layer cannot be controlled. However, since the heat transfer coefficient is large in the cooling method using roll contact, only the surface layer portion can be uniformly and instantaneously rapidly cooled, and a target structure can be easily obtained.

【0026】線材表層部の冷却速度を大きくするために
は、ロールを外部または内部から水冷等で冷却するのが
望ましい。また、複数個のロールで連続的に冷却する方
法が推奨される。表層部組織の厚さは、ロール冷却の程
度、接触させるロール数、線材の送り速度で調整するこ
とができる。
In order to increase the cooling rate of the surface layer portion of the wire rod, it is desirable to cool the roll from outside or inside by water cooling or the like. Further, a method of continuously cooling with a plurality of rolls is recommended. The thickness of the surface layer structure can be adjusted by the degree of roll cooling, the number of rolls in contact, and the wire feed rate.

【0027】次に、表層部が「セメンタイトが球状化し
た組織」である前記(3) の線材の製造方法について述べ
る。素線材の化学組成およびその加熱温度は先に述べた
のと同じでよい。加熱後の冷却もロール接触による急冷
法による。この急冷の条件(前記のロール冷却の程度、
接触させるロール数、線材の送り速度、等)によって表
層部はパーライト、ベイナイトもしくはマルテンサイ
ト、またはこれらの混合組織になる。
Next, the method for producing the wire according to the above (3), in which the surface layer has a "structure in which cementite is spheroidized" will be described. The chemical composition of the wire and its heating temperature may be the same as described above. Cooling after heating is also performed by a rapid cooling method by contact with a roll. Conditions for this quenching (degree of roll cooling,
The surface layer portion becomes pearlite, bainite or martensite, or a mixed structure of these, depending on the number of rolls to be contacted, the feed rate of the wire, etc.

【0028】上記のように、表層部を Ar1点以下まで急
冷することにより表層部のみパーライト、ベイナイトも
しくはマルテンサイト、またはこれらの混合組織に変態
させた後、直ちに圧延することによって、これらの組織
中のセメンタイトを球状化する。この圧延はロール冷却
と同時に行ってもよい。即ち、冷却ロールに圧延ロール
の役割を持たせ、急冷と圧延を同時に行うのである。ま
た、冷却用ロールと圧延用ロールを並べたラインで、ロ
ール急冷の直後に圧延を行ってもよい。およその目安と
して、線材中心温度が Ar1点+(100〜200 ℃) 以下にな
らないうちに圧延を行うのがよい。この線材中心部から
の復熱が加工を受けた表層部のセメンタイトの球状化を
促進する。
As described above, the surface layer portion is rapidly cooled to 1 point or less of Ar to transform only the surface layer portion into pearlite, bainite or martensite, or a mixed structure thereof, and then immediately rolled to obtain these structures. Sphericalize cementite inside. This rolling may be performed simultaneously with roll cooling. That is, the cooling roll has a role of a rolling roll, and rapid cooling and rolling are performed at the same time. Further, rolling may be carried out immediately after the roll is rapidly cooled in a line where cooling rolls and rolling rolls are arranged. As a rough guide, it is recommended to perform rolling before the temperature of the wire center falls below Ar 1 point + (100 to 200 ° C). The recuperation from the central part of the wire promotes the spheroidization of cementite in the surface layer subjected to the processing.

【0029】圧延は、合計加工率 (断面減少率)が15%
以上となるように行う。15%未満の圧延ではセメンタイ
トは十分には球状化しない。急冷および圧延は、複数個
のロールで連続的に行ってもよい。なお、表層のセメン
タイトは完全に球状化していなくても(例えば、60%程
度の球状化率であっても) デラミネーション抑制効果は
十分にある。
In rolling, the total processing rate (area reduction rate) is 15%
Do as above. At less than 15% rolling, cementite does not spheroidize sufficiently. The quenching and rolling may be continuously performed with a plurality of rolls. Even if the cementite in the surface layer is not completely spheroidized (for example, even if the spheroidization rate is about 60%), the delamination suppressing effect is sufficient.

【0030】[0030]

【実施例1】表層部がベイナイトで中心部がパーライト
の2層組織の線材を下記のようにして製造した。まず、
表1に示す化学組成の 5.5mmφの線材を冷間伸線して3
mmφの線材を準備し、これを 3.5 m/sの速度で送り出し
ながら表2の熱処理を施した。
Example 1 A wire having a two-layer structure in which the surface layer portion was bainite and the central portion was pearlite was manufactured as follows. First,
Cold draw a 5.5 mmφ wire rod with the chemical composition shown in Table 1
A wire having a diameter of mmφ was prepared, and the heat treatment shown in Table 2 was performed while feeding the wire at a speed of 3.5 m / s.

【0031】ロール冷却は3mmφの孔型をもつ直径200
mmの高速度鋼製ロールを連続して12個配列したラインで
行い、線材に接触させるロールの数を変えて表層部のベ
イナイト層の厚さを調整した。なお、比較のために、鉛
浴浸漬によって冷却する方法も実施した。こうして得ら
れた線材の横断面組織の光学顕微鏡観察を行い、12視野
の測定値からベイナイト層の平均深さを求めた。その値
を表2に示す。
Roll cooling is 200 mm with a hole type of 3 mmφ
The thickness of the bainite layer in the surface layer portion was adjusted by changing the number of rolls in contact with the wire rod by using a line in which 12 high-speed steel rolls of mm were continuously arranged. For comparison, a method of cooling by immersion in a lead bath was also carried out. The cross-sectional structure of the wire thus obtained was observed with an optical microscope, and the average depth of the bainite layer was determined from the measured values in 12 fields of view. The values are shown in Table 2.

【0032】また、線材を硫酸酸洗し、リン酸亜鉛皮膜
潤滑処理を施した後、湿式極細伸線機を用いて、表3の
パススケジュールで 0.4mmφまで伸線した。そして、各
伸線工程のサンプルを採取し、線径の 100倍のスパンで
捻回試験を行い、デラミネーションの発生し始める伸線
加工ひずみ ln(Ao/An)〔但し、Ao:伸線前(3mmφ)の
横断面積、An:伸線後の横断面積〕を確認するととも
に、最終伸線材(0.4 mmφ) の引張強さを調べた。これ
らの測定値を表2に併記し、かつ図1に示す。
The wire was washed with sulfuric acid and subjected to a zinc phosphate coating lubrication treatment, and then drawn to 0.4 mmφ according to the pass schedule shown in Table 3 using a wet ultrafine wire drawing machine. Then, a sample of each wire drawing process is taken, a twist test is performed at a span of 100 times the wire diameter, and wire drawing strain ln (Ao / An) (where Ao: before wire drawing) at which delamination begins to occur (3 mmφ) cross-sectional area, An: cross-sectional area after wire drawing] and the tensile strength of the final wire-drawn material (0.4 mmφ) were investigated. These measured values are also shown in Table 2 and shown in FIG.

【0033】図1から明らかなように、表面からのベイ
ナイト層の深さが線材半径の5%に満たない場合は、デ
ラミネーション発生時のひずみが小さい。即ち、デラミ
ネーションが発生しやすい。他方、ベイナイト層の深さ
が線材半径の20%を超えると伸線後の引張強さが急激に
低下する。また、表2の試験No.10 および11からわかる
ように、ロール冷却前の加熱温度が低過ぎても高過ぎて
も伸線途中で断線しており、伸線性のよい線材は得られ
ない。
As is clear from FIG. 1, when the depth of the bainite layer from the surface is less than 5% of the wire radius, the strain at the time of delamination is small. That is, delamination is likely to occur. On the other hand, when the depth of the bainite layer exceeds 20% of the wire radius, the tensile strength after wire drawing sharply decreases. Further, as can be seen from Test Nos. 10 and 11 in Table 2, if the heating temperature before cooling the roll is too low or too high, the wire is broken during wire drawing, and a wire having good wire drawability cannot be obtained.

【0034】加熱温度およびベイナイト層の表層深さが
適正な本発明例 (No.3〜5)では、優れた伸線性と高い伸
線後強度が得られている。
In Examples (Nos. 3 to 5) of the present invention in which the heating temperature and the surface depth of the bainite layer were appropriate, excellent wire drawability and high strength after wire drawing were obtained.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【実施例2】表層部はセメンタイトが球状化された組織
で、中心部がパーライトの2層組織の線材を下記のよう
にして製造した。
Example 2 A wire having a two-layer structure in which the surface layer has a spheroidized cementite structure and the center has a pearlite structure was manufactured as follows.

【0039】前記表1に示す化学組成の8mmφ素材を送
り速度を変化させて4スタンドの圧延機により、冷却し
ながら同時に線材圧延を行うことによって 5.5φmmの線
材をつくった。それらの製造方法の具体的条件、および
実施例1と同様に測定した横断面組織における表面から
の球状化組織深さを表4に示す。
A wire rod having a diameter of 5.5 mm was prepared by simultaneously rolling the wire rod having a chemical composition of 8 mmφ shown in Table 1 by a four-stand rolling mill while changing the feed rate while cooling. Table 4 shows specific conditions of the manufacturing method thereof and the spheroidized structure depth from the surface in the cross-sectional structure measured in the same manner as in Example 1.

【0040】なお、表4に示す比較例1は鉛パテンティ
ング(鉛浴温度:600 ℃)により横断面全面をパーライ
ト組織とし、比較例10は球状化焼なまし処理により、全
面セメンタイトを球状化させた組織とした。図2に試験
No.5の線材の表層部および中心部の組織を示す。
In Comparative Example 1 shown in Table 4, lead cross-section (lead bath temperature: 600 ° C.) was used to form a pearlite structure on the entire cross section, and Comparative Example 10 was spheroidized to spheroidize the whole cementite. The organization was Test on Figure 2
The structures of the surface layer and the center of the wire of No. 5 are shown.

【0041】上記の5.5 mmφの線材を硫酸酸洗し、リン
酸亜鉛皮膜潤滑処理を施した後、湿式極細伸線機を用い
て、表5のパススケジュールで0.65mmφまで伸線した。
The above 5.5 mmφ wire was washed with sulfuric acid and subjected to a zinc phosphate coating lubrication treatment, and then drawn to 0.65 mmφ according to the pass schedule shown in Table 5 using a wet ultrafine wire drawing machine.

【0042】そして各伸線工程でサンプルを採取し、実
施例1と同様に捻回試験を行い、デラミネーションの発
生し始める伸線加工ひずみln(Ao/An) 〔ただし、Ao:伸
線前(5.5 mmφ) の横断面積、An:伸線後の横断面積〕
を確認するとともに、最終伸線材(0.65mmφ) の引張強
さを調べた。
Then, a sample is taken in each wire drawing step, a twisting test is conducted in the same manner as in Example 1, and a wire drawing strain ln (Ao / An) at which delamination begins to occur (where Ao: before wire drawing) (5.5 mmφ) cross-sectional area, An: Cross-sectional area after wire drawing)
And the tensile strength of the final drawn wire (0.65 mmφ) was checked.

【0043】それらの結果を表4に併記する。The results are also shown in Table 4.

【0044】表4から明らかなように、表面からの球状
化組織層の深さが本発明で定める範囲 (断面半径の 5〜
20%) より浅い場合にはデラミネーション発生時のひず
みが小さい。すなわちデラミネーションが発生しやすい
(試験No.1〜3)。一方、表面からの球状化組織層の深さ
が上記の範囲を超えて深いと、伸線性がわるくなり、0.
65mmφまでの伸線が不可能になるか (試験No.9, 10) 、
可能な場合でも伸線後の引張強さが急激に低下している
(試験No.8) 。また、表4の No.11、No.12 の例からわ
かるように、冷却圧延前の加熱温度が適切でない場合に
も伸線性が劣り伸線の途中で断線している。
As is apparent from Table 4, the depth of the spheroidized tissue layer from the surface is within the range defined by the present invention (section radius of 5 to 5).
If it is shallower than 20%, the strain when delamination occurs is small. That is, delamination is likely to occur
(Test No. 1 to 3). On the other hand, if the depth of the spheroidized tissue layer from the surface is deeper than the above range, wire drawability becomes poor, and 0.
Is wire drawing up to 65 mmφ impossible (Test Nos. 9 and 10),
Even if possible, the tensile strength after wire drawing is drastically reduced.
(Test No. 8). Further, as can be seen from No. 11 and No. 12 in Table 4, even if the heating temperature before cooling and rolling is not appropriate, the wire drawability is poor and the wire is broken during wire drawing.

【0045】[0045]

【表4】 [Table 4]

【0046】[0046]

【表5】 [Table 5]

【0047】[0047]

【発明の効果】本発明の2層組織を有する高炭素鋼線材
は、伸線後の引張強さが高く、かつデラミネーションが
発生しにくく伸線性に優れたものである。この線材は、
ロール冷却によって表層部を急冷する本発明方法によっ
て容易に製造することができる。
The high carbon steel wire rod having a two-layer structure of the present invention has a high tensile strength after wire drawing, is less likely to cause delamination, and is excellent in wire drawability. This wire is
It can be easily manufactured by the method of the present invention in which the surface layer portion is rapidly cooled by roll cooling.

【図面の簡単な説明】[Brief description of drawings]

【図1】2層組織の線材における表層部のベイナイト層
の深さと、伸線後の線材の引張強さ及びデラミネーショ
ン発生傾向との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a depth of a bainite layer in a surface layer portion of a wire having a two-layer structure, a tensile strength of the wire after drawing, and a tendency of delamination to occur.

【図2】本発明の2層組織の線材における表層部 (a)
と、中心部(b) の金属組織の例を示す図である。
FIG. 2 is a surface layer portion (a) of a wire having a two-layer structure of the present invention.
FIG. 4 is a diagram showing an example of a metallographic structure of the central part (b).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】0.7〜1.2 重量%のCを含有し、表面から
断面半径の 5〜20%の深さまでがベイナイト組織であ
り、それより内部の組織はパーライトまたはフェライト
・パーライト組織である二層組織構造を有することを特
徴とする高炭素鋼線材。
1. A two-layer structure containing 0.7 to 1.2% by weight of C, a bainite structure extending from the surface to a depth of 5 to 20% of a cross-sectional radius, and a structure inside the bainite structure being a pearlite or ferrite-pearlite structure. A high-carbon steel wire rod having a structural structure.
【請求項2】0.7〜1.2 重量%のCを含有する高炭素鋼
素線材を 850〜1100℃に加熱した後、冷却ロールに接触
させることにより、表層部を急冷し、表層部をベイナイ
ト組織とすることを特徴を有する請求項1の高炭素鋼線
材の製造方法。
2. A high-carbon steel wire rod containing 0.7 to 1.2% by weight of C is heated to 850 to 1100 ° C. and then brought into contact with a cooling roll to rapidly cool the surface layer portion to form a bainite structure. The method for manufacturing a high carbon steel wire rod according to claim 1, wherein
【請求項3】0.7〜1.2 重量%のCを含有し、表面から
断面半径の 5〜20%の深さまではセメンタイトが球状化
した組織であり、それより内部の組織はパーライトまた
はフェライト・パーライト組織である二層組織構造を有
することを特徴とする高炭素鋼線材。
3. A structure containing 0.7 to 1.2% by weight of C, in which cementite is spheroidized from the surface to a depth of 5 to 20% of the cross-sectional radius, and the internal structure is a pearlite or ferrite-pearlite structure. A high carbon steel wire rod characterized by having a two-layer structure structure of
【請求項4】0.7〜1.2 重量%のCを含有する高炭素鋼
素線材を 850〜1100℃に加熱した後、冷却ロールに接触
させて表層部を急冷し、表層部をパーライト、ベイナイ
ト、マルテンサイト、またはこれらの混合組織とし、上
記の急冷と同時または急冷の直後に合計加工率15%以上
の圧延を行って表層部組織中のセメンタイトを球状化す
ることを特徴とする請求項3の高炭素鋼線材の製造方
法。
4. A high carbon steel wire rod containing 0.7 to 1.2% by weight of C is heated to 850 to 1100 ° C. and then contacted with a cooling roll to rapidly cool the surface layer, and the surface layer is pearlite, bainite or martens. The cementite in the surface layer structure is spheroidized by rolling at a total working rate of 15% or more at the same time as or immediately after the quenching, as a site or a mixed structure thereof. Carbon steel wire rod manufacturing method.
JP6114094A 1994-03-30 1994-03-30 High carbon steel wire rod having two-layer structure and its production Pending JPH07268546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6114094A JPH07268546A (en) 1994-03-30 1994-03-30 High carbon steel wire rod having two-layer structure and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6114094A JPH07268546A (en) 1994-03-30 1994-03-30 High carbon steel wire rod having two-layer structure and its production

Publications (1)

Publication Number Publication Date
JPH07268546A true JPH07268546A (en) 1995-10-17

Family

ID=13162501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6114094A Pending JPH07268546A (en) 1994-03-30 1994-03-30 High carbon steel wire rod having two-layer structure and its production

Country Status (1)

Country Link
JP (1) JPH07268546A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048258A1 (en) * 1999-12-24 2001-07-05 Nippon Steel Corporation Bar or wire product for use in cold forging and method for producing the same
WO2001048257A1 (en) * 1999-12-24 2001-07-05 Nippon Steel Corporation Bar or wire product for use in cold forging and method for producing the same
JP2010065274A (en) * 2008-09-10 2010-03-25 Bridgestone Corp Method for patenting wire rod of high-carbon steel
KR101597756B1 (en) * 2014-10-07 2016-02-25 고려제강 주식회사 Prestressing Strand having high stress corrosion feature
CN105734402A (en) * 2016-02-19 2016-07-06 燕山大学 Low-carbon martensite steel for railway frog and preparation method of low-carbon martensite steel
WO2017014231A1 (en) * 2015-07-21 2017-01-26 新日鐵住金株式会社 High-strength pc steel wire
WO2017014232A1 (en) * 2015-07-21 2017-01-26 新日鐵住金株式会社 High-strength pc steel wire
CN108315637A (en) * 2013-07-09 2018-07-24 杰富意钢铁株式会社 High-carbon hot-rolled steel sheet and its manufacturing method
US10030281B2 (en) 2016-04-25 2018-07-24 Hyundai Motor Company High toughness heat-treated steel pipe having three-layer structure and manufacturing method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048258A1 (en) * 1999-12-24 2001-07-05 Nippon Steel Corporation Bar or wire product for use in cold forging and method for producing the same
WO2001048257A1 (en) * 1999-12-24 2001-07-05 Nippon Steel Corporation Bar or wire product for use in cold forging and method for producing the same
US6602359B1 (en) 1999-12-24 2003-08-05 Nippon Steel Corporation Bar or wire product for use in cold forging and method for producing the same
US6866724B2 (en) 1999-12-24 2005-03-15 Nippon Steel Corporation Steel bar or wire rod for cold forging and method of producing the same
JP2010065274A (en) * 2008-09-10 2010-03-25 Bridgestone Corp Method for patenting wire rod of high-carbon steel
CN108315637A (en) * 2013-07-09 2018-07-24 杰富意钢铁株式会社 High-carbon hot-rolled steel sheet and its manufacturing method
US10400298B2 (en) 2013-07-09 2019-09-03 Jfe Steel Corporation High-carbon hot-rolled steel sheet and method for producing the same
JP2016074978A (en) * 2014-10-07 2016-05-12 高麗製鋼株式会社 High strength pc steel twisted wire excellent in stress corrosion property
KR101597756B1 (en) * 2014-10-07 2016-02-25 고려제강 주식회사 Prestressing Strand having high stress corrosion feature
WO2017014231A1 (en) * 2015-07-21 2017-01-26 新日鐵住金株式会社 High-strength pc steel wire
WO2017014232A1 (en) * 2015-07-21 2017-01-26 新日鐵住金株式会社 High-strength pc steel wire
JP2017025369A (en) * 2015-07-21 2017-02-02 新日鐵住金株式会社 High strength PC steel wire
JP2017025370A (en) * 2015-07-21 2017-02-02 新日鐵住金株式会社 High strength PC steel wire
US10752974B2 (en) 2015-07-21 2020-08-25 Nippon Steel Corporation High-strength PC steel wire
US10808305B2 (en) 2015-07-21 2020-10-20 Nippon Steel Corporation High-strength PC steel wire
CN105734402A (en) * 2016-02-19 2016-07-06 燕山大学 Low-carbon martensite steel for railway frog and preparation method of low-carbon martensite steel
US10030281B2 (en) 2016-04-25 2018-07-24 Hyundai Motor Company High toughness heat-treated steel pipe having three-layer structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN102292460B (en) Wire material, steel wire, and process for production of wire material
US9097306B2 (en) Steel wire rod for high-strength spring excellent in wire drawability, manufacturing method therefor, and high-strength spring
JP3954338B2 (en) High-strength steel wire excellent in strain aging embrittlement resistance and longitudinal crack resistance and method for producing the same
CN1043062C (en) High-strength steel wire material of excellent fatigue characteristics and high-strength steel wire
JPH0730394B2 (en) Method for manufacturing steel wire
JPH07268546A (en) High carbon steel wire rod having two-layer structure and its production
JP4377715B2 (en) High strength PC steel wire with excellent twisting characteristics
US6949149B2 (en) High strength, high carbon steel wire
JP2001181789A (en) Small-diameter hot rolled high carbon steel wire rod excellent in wire drawability
JP2011219829A (en) High carbon steel wire rod and method for producing the same
JP6614005B2 (en) Hot rolled wire rod for high-strength steel wire and method for producing the same
JP2000119805A (en) Steel wire rod excellent in wire drawability
JP2001234286A (en) Small-diameter hot rolled wire rod of high carbon low alloy steel excellent in wire drawability, and its manufacturing method
JP3965010B2 (en) High-strength direct patenting wire and method for producing the same
KR20010102307A (en) Direct patenting high strength wire rod and method for producing the same
JPH05295448A (en) Manufacture of hypereutectoid steel wire rod
JPH08283867A (en) Production of hyper-eutectoid steel wire rod for wiredrawing
JPH05295436A (en) Production of hypereutectoid steel wire rod
JPH075992B2 (en) High-strength steel wire manufacturing method
JPH03274227A (en) Production of high strength steel wire for use in sour environment
JP2002212676A (en) Steel wire for wire saw and production method therefor
JPH04254526A (en) Manufacture of high carbon steel wire excellent in wire drawability
JP2002180200A (en) Steel wire rod for hard-drawn spring, wire drawing rod for hard-drawn spring, hard-drawn spring and method for producing the hard-drawn spring
JP2000063987A (en) High carbon steel wire rod excellent in wire drawability
JPH06100934A (en) Production of high carbon steel wire stock for wire drawing